1
|
Zhou L, Gong L, Liu Z, Xiang J, Ren C, Xu Y. Probiotic interventions with highly acid-tolerant Levilactobacillus brevis strains improve lipid metabolism and gut microbial balance in obese mice. Food Funct 2025; 16:112-132. [PMID: 39621366 DOI: 10.1039/d4fo03417a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Many studies have shown that specific lactic acid bacteria (LAB) strains can delay obesity, offering a viable alternative to medications and surgeries. However, the mining and development of highly effective LAB strains for obesity control is still limited. In this study, the naturally highly acid-tolerant and gamma-aminobutyric acid-producing Levilactobacillus brevis D17 and its glnR deletion strain were used to investigate their anti-obesity effects. In an 8-week mouse experiment, L. brevis D17 and its glnR-deletion strain D17ΔglnR significantly reduced weight gain by 28.4% and 29.1%, respectively, improving abnormal serum indicators and glucose metabolism caused by a high-fat diet. Furthermore, L. brevis D17 and its glnR-deletion strain D17ΔglnR successfully colonized in the gut. Both D17 and D17ΔglnR interventions significantly restored the relative abundance of Muribaculaceae, Ileibacterium valens, Lactobacillus, Faecalibaculum, Bifidobacterium globosum, Akkermansia muciniphila, and Romboutsia ilealis, whereas they significantly reduced potentially harmful bacteria like Leptogranulimonas, Flintibacter, and Alistipes. Additionally, L. brevis intervention effectively decreased the levels of primary bile acids and increased secondary bile acids in the gut, thus balancing bile acid metabolism. The transcriptional analysis suggested that D17 and D17ΔglnR interventions may activate the AMPK signaling pathway in the liver to inhibit lipogenesis, activate the cAMP pathway to promote lipolysis, and inhibit pro-inflammatory macrophage infiltration to block inflammatory responses. These results indicate that L. brevis D17 and its glnR-deletion mutant strain D17ΔglnR show great potential in combating obesity. Moreover, these results also provide insights into the underlying mechanism behind their anti-obesity properties.
Collapse
Affiliation(s)
- Liping Zhou
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Luchan Gong
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Zhihao Liu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Jinfeng Xiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| | - Cong Ren
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
- China Key Laboratory of Microbiomics and Eco-brewing Technology for Light Industry, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
3
|
Zhang D, Liu X, Li X, Cai X, Diao Z, Qiu L, Chen X, Liu Y, Sun J, Cui D, Ye Q, Yin T. A Multifunctional Low-Temperature Photothermal Nanomedicine for Melanoma Treatment via the Oxidative Stress Pathway Therapy. Int J Nanomedicine 2024; 19:11671-11688. [PMID: 39553457 PMCID: PMC11566580 DOI: 10.2147/ijn.s487683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Melanoma is a highly aggressive and dangerous malignant skin tumor and there is an urgent need to develop effective therapeutic approaches against melanoma. The main objective of this study was to construct a multifunctional nanomedicine (GNR@PEG-Qu) to investigate its therapeutic effect on melanoma from the oxidative stress pathway. Methods First, the nanomedicine GNR@PEG-Qu was synthesized and characterized, and its photothermal and antioxidant properties were confirmed. In addition, in vivo imaging capabilities were observed. Finally, the tumor inhibitory effects of GNR@PEG-Qu in vivo and in vitro as well as its biosafety were observed. Results GNR@PEG-Qu shows good photothermal and anti-oxidation properties. Following exposure to 1064 nm laser irradiation in the second near-infrared II (NIR-II) window, GNR@PEG-Qu shows anti-tumor ability through low-temperature photothermal therapy (PTT) adjuvant drug chemotherapy. GNR@PEG-Qu makes full use of the antioxidant capacity of quercetin, reduces ROS levels in melanoma, alleviates oxidative stress state, and achieves "oxidative stress avoidance" at the tumor site. Quercetin can also downregulate the expression of the heat shock protein Hsp70, which will improve the thermal sensitivity of the tumor site and enhance the efficacy of low-temperature PTT. Conclusion GNR@PEG-Qu nanoagent exhibits synergistic treatment and high tumor inhibition effects, which is a promising strategy developed to achieve oxidative stress avoidance and synergistic therapy of melanoma using quercetin (Qu)-coated gold nanorod (GNR@PEG).
Collapse
Affiliation(s)
- Dou Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuyi Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xiong Li
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Xinyi Cai
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Zhenying Diao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Long Qiu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuelin Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Yuyu Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Jianbo Sun
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Daxiang Cui
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Ting Yin
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| |
Collapse
|
4
|
Liu H, Cao X, Liu BZ, He L. Thermoresponsive in situ forming self-healing hydrogel dressings with pH/glucose dual responsive curcumin release for diabetic wound healing. JOURNAL OF MATERIALS SCIENCE 2024; 59:17573-17592. [DOI: 10.1007/s10853-024-10240-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 01/06/2025]
|
5
|
Wang L, Xu S, Chen J, Li R, Chen Q, Chen X. Ratiometric fluorescence method comprising carbon dots and rhodamine 6G encapsulated in metal-organic framework microcubes for curcumin detection. Mikrochim Acta 2024; 191:337. [PMID: 38777890 DOI: 10.1007/s00604-024-06430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
A ratiometric fluorescence method comprising carbon dots (CDs) and rhodamine 6G (Rh-6G) encapsulated in the microcubes of metal-organic framework (MOF-5) is introduced for the sensitive detection of curcumin (Cur) in condiments. CDs@MOF-5@Rh-6G, synthesized by the adsorption of Rh-6G on MOF-5 embedded with CDs, showed two distinct emission peaks at 435 and 560 nm under excitation at 335 nm, and could be used for Cur detection by ratiometric fluorescence. In the presence of Cur, the fluorescence of the CDs at 435 nm (F435) was quenched by Cur owing to internal filtering and dynamic quenching effects, whereas the emission of Rh-6G at 560 nm (F560) remained unchanged (335 nm is the excitation wavelength, 435 and 560 nm are the emission wavelengths, in which F435/F560 values are used as the output results). Under optimal conditions, a linear relationship was observed between the Cur concentration (in the range 0.1-5 μmol/L) and F435/F560 value for CDs@MOF-5@Rh-6G, with a detection limit of 15 nmol/L. Notably, the proposed method could accurately detect Cur in mustard, curry, and red pepper powders. Therefore, this study could improve the quality control of food and facilitate the development of sensitive ratiometric fluorescence probes.
Collapse
Affiliation(s)
- Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shifen Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jing Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Rundong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Wei L, Li S, Ma Y, Ye S, Yuan Y, Zeng Y, Raza T, Xiao F. Curcumin attenuates diphenyl phosphate-induced apoptosis in GC-2spd(ts) cells through activated autophagy via the Nrf2/P53 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2032-2042. [PMID: 38095090 DOI: 10.1002/tox.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Collapse
Affiliation(s)
- Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Tausif Raza
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
7
|
Yu H, Kim H, Chang PS. Fabrication and characterization of chitosan-pectin emulsion-filled hydrogel prepared by cold-set gelation to improve bioaccessibility of lipophilic bioactive compounds. Food Chem 2024; 437:137927. [PMID: 37944393 DOI: 10.1016/j.foodchem.2023.137927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Chitosan-pectin emulsion-filled hydrogel (EFH) was developed to enhance the bioaccessibility of lipophilic bioactive compounds through intestinal delivery. The EFH, incorporating a sodium caseinate-stabilized emulsion, was prepared using cold-set gelation under acidic conditions without crosslinking agents. Increasing the pectin concentration (0.75-1.50%, w/v) improved the mechanical strength and compactness of the EFH. The pH-responsive EFH retained the emulsion at pH 2.0 and released it at pH 7.4. In vitro digestion demonstrated that the EFH remained intact during oral and gastric stages, while the emulsion alone became destabilized. During intestinal digestion, the release of free fatty acids from the EFH decreased from 58.67% to 43.76% as the pectin concentration increased from 0.75% to 1.50%. EFH with 0.75% and 1.00% pectin significantly improved curcumin bioaccessibility compared to the emulsion alone. These findings demonstrate the potential of chitosan-pectin EFH as a novel carrier system for enhancing the bioaccessibility of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Hyunjong Yu
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
| | - Huisu Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Chen X, Xiao Y, Wei Y, Cao W, Han Y, Gao Z, Huang Y. High-internal-phase emulsions stabilized by alkali-extracted green tea polysaccharide conjugates for curcumin delivery. Food Chem 2024; 435:137678. [PMID: 37806198 DOI: 10.1016/j.foodchem.2023.137678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Exploring the emulsification capabilities of tea polysaccharide conjugates (TPCs) in high-internal-phase emulsions (HIPEs) would further expand the utilization value of TPCs. This study aimed to prepare 0.1-0.5 wt% alkali-extracted green tea polysaccharide conjugate (gTPC-A)-stabilized HIPEs containing 75-87 wt% medium chain triglycerides (MCTs) to investigate their stability, rheology, microstructure, and loading and protective effects on curcumin. The findings revealed that only 0.1 wt% of gTPC-A could stabilize HIPEs containing 85 wt% oil for 30 days. HIPEs had better storage stability in a weakly acidic environment at pH 5.0-6.0 and at temperatures less than 70 °C. HIPEs could load curcumin and protect it from ultraviolet (UV) radiation and in vitro digestion. The half-life of curcumin loaded in HIPEs was 65 h under UV radiation. The curcumin bioaccessibility of HIPEs (56.29 %) was higher than that in MCT (8.73 %). These results provided a theoretical basis for the extensive use of TPCs.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yuan Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yan'an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Han
- College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China
| | - Zhiling Gao
- Xinding Biotechnology Co. LTD, Yichang 443000, China
| | - Yi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Kang K, Gao W, Cui Y, Xiao M, An L, Wu J. Curcumin Changed the Number, Particle Size, and miRNA Profile of Serum Exosomes in Roman Laying Hens under Heat Stress. Genes (Basel) 2024; 15:217. [PMID: 38397207 PMCID: PMC10887567 DOI: 10.3390/genes15020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Exosomes have the ability to transport RNA/miRNAs and possess immune modulatory functions. Heat stress, a significant limiting factor in the poultry industry, can induce oxidative stress and suppress the immune responses of laying hens. In this study, we investigated the expression profiles of serum exosomes and their miRNAs in Roman laying hens who were fed a diet with either 0 or 200 mg/kg curcumin under heat stress conditions. The numbers of exosomes were significantly higher in both the HC (heat stress) and HT (heat stress with 200 mg/kg curcumin) groups compared to the NC (control) group and NT (control with 200 mg/kg curcumin) group (p < 0.05). Additionally, we observed that the most prevalent particle diameters were 68.75 nm, 68.25 nm, 54.25 nm, and 60.25 nm in the NC, NT, HC, and HT groups, respectively. From our sRNA library analysis, we identified a total of 863 unique miRNAs; among them, we screened out for subsequent bioinformatics analysis a total of 328 gga-miRNAs(chicken miRNA from the miRbase database). The KEGG pathways that are associated with target genes which are regulated by differentially expressed miRNAs across all four groups at a p-value < 0.01 included oxidative phosphorylation, protein export, cysteine and methionine metabolism, fatty acid degradation, ubiquitin-mediated proteolysis, and cardiac muscle contraction. The above findings suggest that curcumin could mitigate heat-induced effects on laying hens by altering the miRNA expression profiles of serum exosomes along with related regulatory pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.)
| |
Collapse
|
10
|
Erukainure OL, Oyebode OA, Chuturgoon AA, Ghazi T, Muhammad A, Aljoundi A, Elamin G, Chukwuma CI, Islam MS. Potential molecular mechanisms underlying the ameliorative effect of Cola nitida (Vent.) Schott & Endl. on insulin resistance in rat skeletal muscles. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117249. [PMID: 37806534 DOI: 10.1016/j.jep.2023.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cola nitida (Vent.) Schott & Endl. are among the common medicinal plants employed in traditional medicine for treating diabetes and its complications. AIM OF THE STUDY The present study investigated the effect of Cola nitida infusion on the expression of key genes involved in insulin signaling vis-à-vis Insulin receptor substrate 1 (IRS-1), tumor protein P53 gene, glucose transporter type 4 (GLUT4), phosphoinositide 3-kinases (PI3K) and B-cell lymphoma-2 (BCL2) in skeletal muscles of type 2 diabetic (T2D) rats. METHODS Type 2 diabetic rats were administered C. nitida infusion at low and high doses (150 and 300 mg/kg bodyweight, respectively), while a high dose of the infusion was also administered to a normal toxicological group. Metformin served as the standard antidiabetic drug. The rats were sacrificed at the end of the experimental period. Their psoas muscles were harvested and assayed for the expressions of IRS1, p53, GLUT4, PI3K and BCL2. The studied genes were further subjected to enrichment analysis using the ShinyGO 0.76 online software. RESULTS Induction of T2D upregulated the expressions of IRS-1, p53, PI3K and BCL2 in psoas muscles, while concomitantly downregulating GLUT4 expression. These expressions were significantly reversed in type 2 diabetic rats treated with C. nitida infusion, and the results were statistically significant compared to metformin. Gene enrichment analysis revealed that the genes were linked to intrinsic pathways and biological processes involved in insulin resistance. The infusion further improved muscle glucose uptake, ex vivo. Molecular docking and molecular dynamics stimulation of C. nitida infusion phytoconstituents, caffeine and theobromine with IRS-1, p53, GLUT4, PI3K and BCL2 revealed a strong binding affinity as evident by the RMSD and RMSF values. CONCLUSION These results indicate the potentials of C. nitida infusion to improve glucose homeostasis in skeletal muscles of type 2 diabetic rats.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Olajumoke A Oyebode
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL, 36088, USA; Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, P.M.B. 1044, Nigeria
| | - Aimen Aljoundi
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
11
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
12
|
Bi D, Li M, Yao L, Zhu N, Fang W, Guo W, Wu Y, Xu H, Hu Z, Xu X. Enhancement of the chemical stability of nanoemulsions loaded with curcumin by unsaturated mannuronate oligosaccharide. Food Chem 2023; 414:135670. [PMID: 36827777 DOI: 10.1016/j.foodchem.2023.135670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an acidic oligosaccharide prepared from alginate-derived polymannuronate by enzymatic depolymerization, followed by double bond formation between C-4 and C-5 at the nonreducing end. In this study, MOS was used as a stabilizer to fabricate O/W nanoemulsions loaded with curcumin (MOS-CUR) for the first time. The results revealed that the MOS-CUR showed small droplet sizes and narrow size distributions and was slightly more stable than normal oil-in-water (O/W) curcumin nanoemulsions (water-CUR). Additionally, MOS can improve the superoxide anion scavenging ability and iron ion reducing ability of the curcumin nanoemulsion system. Although the digestion behaviour of MOS-CUR and water-CUR was similar, the bioavailability of curcumin in MOS-CUR was significantly higher than that in water-CUR. All these results indicated that MOS could be used as a stabilizer for preparing nanoemulsions to easily encapsulate labile nutrients and to enhance the bioavailability and antioxidant capacity of these nutrients.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- Department of Experimental Teaching Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Wushuang Guo
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
13
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
14
|
Clariano M, Marques V, Vaz J, Awam S, Afonso MB, Jesus Perry M, Rodrigues CMP. Monocarbonyl Analogs of Curcumin with Potential to Treat Colorectal Cancer. Chem Biodivers 2023; 20:e202300222. [PMID: 36807727 DOI: 10.1002/cbdv.202300222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Curcumin has a plethora of biological properties, making this compound potentially effective in the treatment of several diseases, including cancer. However, curcumin clinical use is compromised by its poor pharmacokinetics, being crucial to find novel analogs with better pharmacokinetic and pharmacological properties. Here, we aimed to evaluate the stability, bioavailability and pharmacokinetic profiles of monocarbonyl analogs of curcumin. A small library of monocarbonyl analogs of curcumin 1a-q was synthesized. Lipophilicity and stability in physiological conditions were both assessed by HPLC-UV, while two different methods assessed the electrophilic character of each compound monitored by NMR and by UV-spectroscopy. The potential therapeutic effect of the analogs 1a-q was evaluated in human colon carcinoma cells and toxicity in immortalized hepatocytes. Our results showed that the curcumin analog 1e is a promising agent against colorectal cancer, with improved stability and efficacy/safety profile.
Collapse
Affiliation(s)
- Marta Clariano
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Vanda Marques
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - João Vaz
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Salma Awam
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marta B Afonso
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Jesus Perry
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Cecília M P Rodrigues
- Faculty of Pharmacy, iMed.ULisboa, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Research Institute for Medicines, iMed.ULisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
15
|
Mor N, Raghav N. In-vitro simulation of modified-alginate ester as sustained release delivery system for curcumin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
16
|
Huang Y, Zhan Y, Luo G, Zeng Y, McClements DJ, Hu K. Curcumin encapsulated zein/caseinate-alginate nanoparticles: Release and antioxidant activity under in vitro simulated gastrointestinal digestion. Curr Res Food Sci 2023; 6:100463. [PMID: 36860615 PMCID: PMC9969245 DOI: 10.1016/j.crfs.2023.100463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Curcumin-loaded zein/sodium caseinate-alginate nanoparticles were successfully fabricated using a pH-shift method/electrostatic deposition method. These nanoparticles produced were spheroids with a mean diameter of 177 nm and a zeta-potential of -39.9 mV at pH 7.3. The curcumin was an amorphous, and the content in the nanoparticles was around 4.9% (w/w) and the encapsulation efficiency was around 83.1%. Aqueous dispersions of the curcumin-loaded nanoparticles were resistant to aggregation when subjected to pH changes (pH 7.3 to 2.0) and sodium chloride addition (1.6 M), which was mainly attributed to the strong steric and electrostatic repulsion provided by the outer alginate layer. An in vitro simulated digestion study showed that the curcumin was mainly released during the small intestine phase and that its bioaccessibility was relatively high (80.3%), which was around 5.7-fold higher than that of non-encapsulated curcumin mixed with curcumin-free nanoparticles. In the cell culture assay, the curcumin reduced reactive oxygen species (ROS), increased superoxide dismutase (SOD) and catalase (CAT) activity, and reduced malondialdehyde (MDA) accumulation in hydrogen peroxide-treated HepG2 cells. The results suggested that nanoparticles prepared by pH shift/electrostatic deposition method are effective at delivering curcumin and may be utilized as nutraceutical delivery systems in food and drug industry.
Collapse
Affiliation(s)
- Yunfei Huang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Yiling Zhan
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Guangyi Luo
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Yan Zeng
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA,Corresponding author.
| | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, 528458, China,Corresponding author.
| |
Collapse
|
17
|
Labban RSM, Alfawaz HA, Amina M, Bhat RS, Hassan WM, El-Ansary A. Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats. Nutrients 2022; 14:nu14214630. [PMID: 36364892 PMCID: PMC9657435 DOI: 10.3390/nu14214630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to explore the effects of Garcinia mangostana (mangosteen) and Curcuma longa independently and synergistically in modulating induced inflammation and impaired brain neurotransmitters commonly observed in high-fat diet-induced obesity in rodent models. Male albino Wistar rats were divided into four experimental groups. Group I, control, obese, fed on a high-fat diet (HFD), and Group II-IV, fed on HFD then given mangosteen extract (400 mg/kg/day) and/or Curcuma (80 mg/kg/day), or a mixture of both for 6 weeks. Plasma pro-inflammatory cytokines, leptin, and brain serotonin, dopamine, and glutamate were measured in the five studied groups. G. mangostana and Curcuma longa extracts demonstrate antioxidant and DPPH radical scavenging activities. Both induced a significant reduction in the weight gained, concomitant with a non-significant decrease in the BMI (from 0.86 to 0.81 g/cm2). Curcuma either alone or in combination with MPE was more effective. Both extracts demonstrated anti-inflammatory effects and induced a significant reduction in levels of both IL-6 and IL-12. The lowest leptin level was achieved in the synergistically treated group, compared to independent treatments. Brain dopamine was the most affected variable, with significantly lower levels recorded in the Curcuma and synergistically treated groups than in the control group. Glutamate and serotonin levels were not affected significantly. The present study demonstrated that mangosteen pericarp extract (MPE) and Curcuma were independently and in combination effective in treating obesity-induced inflammation and demonstrating neuroprotective properties.
Collapse
Affiliation(s)
- Ranyah Shaker M. Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
- Deputyship for Therapeutic Services, General, Administration of Nutrition, Ministry of Health, Riyadh 11595, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence:
| |
Collapse
|
18
|
Zheng Y, Yao F, Chen F. Curcumin-loaded electrospun peanut protein isolate/ poly-l-lactic acid nanofibre membranes: Preparation and characterisation and release behaviour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Nosrati‐Oskouie M, Aghili‐Moghaddam NS, Tavakoli‐Rouzbehani O, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin: A dietary phytochemical for boosting exercise performance and recovery. Food Sci Nutr 2022; 10:3531-3543. [PMID: 36348809 PMCID: PMC9632206 DOI: 10.1002/fsn3.2983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/07/2022] Open
Abstract
Curcumin, as the main natural compound in the turmeric plant (Curcuma longa), is a yellowish polyphenol that has been used traditionally in Asian countries as a medicinal herb for various types of disease and pathological conditions caused by inflammation and oxidative stress. In the present review, we conducted a comprehensive literature search for evidence that shows the effect of curcumin on factors influencing exercise performance, including muscle damage, muscle soreness, inflammation, and oxidative stress. During exercise, reactive oxygen species and inflammation are increased. Thus, if there is no balance between endogenous and exogenous antioxidants and increases in oxidative stress and inflammation, which is important for maintaining redox homeostasis in skeletal muscle, it can lead to muscle soreness and muscle damage and ultimately result in reduced exercise performance. Due to the anti-oxidant and anti-inflammatory properties of curcumin, it can increase exercise performance and decrease exercise-induced muscle soreness and muscle damage. It appears that curcumin supplementation can have positive effects on exercise performance and recovery, muscle damage and pain, inflammation, and oxidative stress. However, there is still a need to precisely evaluate factors to more accurately assess/quantify the beneficial therapeutic effects of curcumin with regard to enhancing exercise performance and recovery.
Collapse
Affiliation(s)
- Mohammad Nosrati‐Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Tannaz Jamialahmadi
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Science, School of PharmacyUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amirhossein Sahebkar
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- School of MedicineThe University of Western AustraliaPerthWestern AustraliaAustralia
- Department of Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
20
|
Zheng J, Song X, Yang Z, Tan Y, Yin C, Yin J, Lu Y, Yang Y, Liu C, Yi L, Zhang Y. Self-assembling glycyrrhizic acid micellar hydrogels as encapsulant carriers for delivery of curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Lin S, Cai X, Chen H, Xu Y, Wu J, Wang S. Development of fish gelatin-chitooligosaccharide conjugates through the Maillard reaction for the encapsulation of curcumin. Curr Res Food Sci 2022; 5:1625-1639. [PMID: 36164327 PMCID: PMC9507993 DOI: 10.1016/j.crfs.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The poor water solubility, bioavailability and stability of bioactive compounds have become the bottleneck restricting their wide application, thus developing a functional carrier to realize the efficient encapsulation and activity improvement of active hydrophobic substances has become a research hotspot. In this work, a functional glycosylated fish gelatin (called FG-COS conjugates) carrier based on fish gelatin (FG) and chitooligosaccharide (COS) via Maillard reaction was developed. The functional carrier exhibited good antioxidant activity and high encapsulation of curcumin (Cur). Enhanced antioxidant effect of Cur loaded in FG-COS conjugates (called FG-COS-Cur nanoparticles) was achieved, showing remarkable UV protection on Cur and enhanced intracellular antioxidant activity of FG-COS-Cur nanoparticles. Remarkably, FG-COS-Cur nanoparticles increased the cell viability of H2O2-induced oxidative damage Caco-2 cells, drastically reduced the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), and significantly increased intracellular antioxidant enzyme activities, which all exhibited a dose-response relationship. These findings suggested that the FG-COS conjugates with intrinsic antioxidant activity could effectively encapsulate Cur and improved bioavailability for hydrophobic active molecules in functional food field.
Collapse
Affiliation(s)
- Sheng Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Yizhou Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| |
Collapse
|
22
|
Youssef MA, Panda SS, Aboshouk DR, Said MF, El Taweel A, GabAllah M, Fayad W, Soliman AF, Mostafa A, Fawzy NG, Girgis AS. Novel Curcumin Mimics: Design, Synthesis, Biological Properties and Computational Studies of Piperidone‐Piperazine Conjugates. ChemistrySelect 2022. [DOI: 10.1002/slct.202201406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Adel Youssef
- Department of Chemistry Faculty of Science Helwan University Helwan Egypt
| | - Siva S. Panda
- Department of Chemistry and Physics Augusta University Augusta GA 30912 USA
| | - Dalia R. Aboshouk
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Mona F. Said
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department National Research Centre Dokki, Giza 12622 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses National Research Centre Dokki Giza 12622 Egypt
| | - Nehmedo G. Fawzy
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
23
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Lagreca E, Vecchione R, Di Cicco C, D’Aria F, La Rocca A, De Gregorio E, Izzo L, Crispino R, Mollo V, Bedini E, Imparato G, Ritieni A, Giancola C, Netti PA. Physicochemical and in vitro biological validation of food grade secondary oil in water nanoemulsions with enhanced mucus-adhesion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022; 11:foods11152189. [PMID: 35892774 PMCID: PMC9330871 DOI: 10.3390/foods11152189] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plant polyphenols have attracted considerable attention because of their key roles in preventing many diseases, including high blood sugar, high cholesterol, and cancer. A variety of functional foods have been designed and developed with plant polyphenols as the main active ingredients. Polyphenols mainly come from vegetables and fruits and can generally be divided according to their structure into flavonoids, astragalus, phenolic acids, and lignans. Polyphenols are a group of plant-derived functional food ingredients with different molecular structures and various biological activities including antioxidant, anti-inflammatory, and anticancer properties. However, many polyphenolic compounds have low oral bioavailability, which limits the application of polyphenols in nutraceuticals. Fortunately, green bio-based nanocarriers are well suited for encapsulating, protecting, and delivering polyphenols, thereby improving their bioavailability. In this paper, the health benefits of plant polyphenols in the prevention of various diseases are summarized, with a review of the research progress into bio-based nanocarriers for the improvement of the oral bioavailability of polyphenols. Polyphenols have great potential for application as key formulations in health and nutrition products. In the future, the development of food-grade delivery carriers for the encapsulation and delivery of polyphenolic compounds could well solve the limitations of poor water solubility and low bioavailability of polyphenols for practical applications.
Collapse
|
26
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
27
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
28
|
Song J, Kim JY, You G, Kang YY, Yang J, Mok H. Formulation of Glycyrrhizic Acid-based Nanocomplexes for Enhanced Anti-cancer and Anti-inflammatory Effects of Curcumin. BIOTECHNOL BIOPROC E 2022; 27:163-170. [PMID: 35530367 PMCID: PMC9059693 DOI: 10.1007/s12257-021-0198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/04/2022]
Abstract
In this study, nanocomplexes composed of glycyrrhizic acid (GA) derived from the root of the licorice plant (Glycyrrhiza glabra) were formulated for the delivery of curcumin (CUR). Sonication of amphiphilic GA solution with hydrophobic CUR resulted in the production of nanosized complexes with a size of 164.8 ± 51.7 nm, which greatly enhanced the solubility of CUR in aqueous solution. A majority of the CURs were released from these GA/ CUR nanocomplexes within 12 h. GA/CUR nanocomplexes exhibited excellent intracellular uptake in human breast cancer cells (Michigan cancer foundation-7/multi-drug resistant cells), indicating enhanced anti-cancer effects compared to that of free CUR. In addition, GA/CUR nanocomplexes demonstrated high intracellular uptake into macrophages (RAW264.7 cells), consequently reducing the release of the pro-inflammatory cytokine tumor necrosis factor-α. Furthermore, GA/CUR nanocomplexes successfully reduced the levels of serum pro-inflammatory cytokines and splenomegaly in a rheumatoid arthritis model.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Jiwon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
29
|
ZHOU M, LI F, CHEN J, WU Q, ZOU Z. Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Man ZHOU
- Sichuan Agricultural University, China
| | - Fuli LI
- Sichuan Agricultural University, China
| | - Jie CHEN
- Sichuan Agricultural University, China
| | | | | |
Collapse
|
30
|
Alinejad S, Khademvatan S, Amani S, Asadi N, Tappeh KH, Yousefi E, Miandoabi T. The Effect of Curcumin on the Expression of INFγ, TNF-α, and iNOS Genes in PBMCs Infected with Leishmania major [MRHO/IR/75/ER]. Infect Disord Drug Targets 2022; 22:83-89. [PMID: 35379161 DOI: 10.2174/1871526522666220404083220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis, caused by the Leishmania parasite, is one of the most important tropical neglected diseases. The urgent search for effective, inexpensive, and preferably herbal anti-leishmanial agents, is needed. OBJECTIVE Curcumin is a natural polyphenolic compound derived from turmeric that is well known for its antioxidant, anti-inflammatory, anti-tumor, and anti-cancer activity. METHODS The present work evaluates the anti-leishmanial [Leishmania major] activity of curcumin. The infected PBMCs were treated with curcumin. The ROS level at 6, 12, 24 h and gene expression levels at 24, 48, and 72 h of PBMCs after treatment with curcumin were determined. RESULTS Based on the results, the curcumin concentrations of 268 μM [24 h] and 181.2 μM [72 h] were defined as IC50 against L. major promastigotes. Treatment of L. major infected-peripheral blood mononuclear cells [PBMCs] with IC50 concentrations of curcumin, depending on exposure time, significantly induced the reactive oxygen species [ROS] generation and increased the expression levels of interferongamma [IFN-γ], tumor necrosis factor-alpha [TNF-α], and nitric oxide synthase [iNOS] genes. CONCLUSION These findings suggest the potential of curcumin against Leishmaniasis.
Collapse
Affiliation(s)
- Soheila Alinejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahla Amani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Touraj Miandoabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Chen H, Xu B, Zhou C, Yagoub AEGA, Cai Z, Yu X. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhuang H, Jiang X, Wu S, Li X, Yan H. Construction, stability and photodynamic germicidal efficacy of curcumin nanoemulsion stabilised with Maillard conjugate of Wpi‐Rha. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering Jilin University Changchun China
| | - Xinyu Jiang
- College of Food Science and Engineering Jilin University Changchun China
| | - Sijia Wu
- College of Food Science and Engineering Jilin University Changchun China
| | - Xueqian Li
- College of Food Science and Engineering Jilin University Changchun China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
33
|
Vellido-Perez JA, Ochando-Pulido JM, Brito-de la Fuente E, Martinez-Ferez A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6395-6406. [PMID: 33969886 DOI: 10.1002/jsfa.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Curcumin is a natural antioxidant with important beneficial properties for health, although its low bioavailability and sensitivity to many environmental agents limits its use in the food industry. Furthermore, some studies mention a potential synergistic effect with omega-3 polyunsaturated fatty acids, comprising other bioactive compounds extremely unstable and susceptible to oxidation. A relatively novel strategy to avoid oxidation processes is to transform liquid oils into three-dimensional structures by adding a gelling agent and forming a self-assembled network that can later be vectorized by incorporating it into other systems. The present study aimed to design and optimize an oil gelled-in-water curcumin-loaded emulsion to maximize curcumin stability and minimize lipid oxidation in terms of some critical operating parameters, such as dispersed phase, emulsifier and stabilizer concentrations, and homogenization rate. RESULTS The operating conditions that had a significant effect on the formulation were the dispersed phase weight fraction affecting droplet size and total lipid oxidation, homogenization conditions affecting droplet size and primary lipid oxidation, and emulsifier concentration affecting droplet size (significance level = 95%). The optimal formulation for maximizing curcumin load and minimizing lipid oxidation in the oleogelified matrix was 140.4 g kg-1 dispersed phase, 50.0 g kg-1 emulsifier, 4.9 g kg-1 stabilizer and homogenization speed 1016 × g. CONCLUSION The results obtained in the present study provide a valuable tool for the rational design and development of oil gelled-in-water emulsions that stabilize and transport bioactive compounds such as curcumin. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Edmundo Brito-de la Fuente
- Innovation & Development Centers China & Germany Business Unit Parenteral Nutrition, Ketoanalogues & IV Fluids Pharmaceuticals & Devices Division, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Antonio Martinez-Ferez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
34
|
Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Kuroiwa T, Kawauchi Y, Moriyoshi R, Shino H, Suzuki T, Ichikawa S, Kobayashi I, Uemura K, Kanazawa A. Biocompatible homogeneous particle formation via the self-complexation of chitosan with oleic acid and its application as an encapsulation material for a water-insoluble compound. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. In vitro digestion of curcumin-nanoemulsion-enriched dairy protein matrices: Impact of the type of gel structure on the bioaccessibility of curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Karthika C, Hari B, Mano V, Radhakrishnan A, Janani SK, Akter R, Kaushik D, Rahman MH. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp Gerontol 2021; 152:111438. [PMID: 34098006 DOI: 10.1016/j.exger.2021.111438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the life-taking diseases worldwide and among cancer-related death; colorectal cancer is the third most. Though conventional methods of treatment are available, multidrug resistance and side effects are predominant. Physicians and scientists are working side by side to develop an effective medicament, which is safe and cost-effective. However, most failures are obtained when focused on the clinical perspective. This review mainly brings out the correlation between the curcumin and its use for the mitigation of colorectal cancer, the use of curcumin as a chemotherapeutic agent, chemosensitizer, and in a combination and synergistic approach. The pharmacokinetics and pharmacodynamics properties of curcumin and its formulation approach helps in giving an idea to develop new approaches for the treatment of colorectal cancer using curcumin.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - Vignesh Mano
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S K Janani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University,Wonju 26426, Gangwon-do, Korea..
| |
Collapse
|
38
|
Dietary Natural Plant Extracts Can Promote Growth and Modulate Oxidative Status of Senegalese Sole Postlarvae under Standard/Challenge Conditions. Animals (Basel) 2021; 11:ani11051398. [PMID: 34068939 PMCID: PMC8156806 DOI: 10.3390/ani11051398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Oxidative stress has a direct impact on the welfare of fish, affecting growth performance and health status. Natural plant extracts present a high antioxidant capacity, due to a diversity and abundant content of polyphenols. Thus, the aim of this work was to identify if plant extracts, such as curcumin, green tea, and grape seeds, can promote oxidative status, and ultimately, enhance the growth and physiological stress response of postlarvae. Our results showed that plant extracts can improve the growth and oxidative status of the fish. Moreover, they may help fish to cope under stressful conditions. Dietary formulations with natural supplements may be a viable strategy to improve fish robustness during early life stages, and can therefore contribute to the development of aquafeeds and promote the sustainability of aquaculture production. Abstract Plant extracts are known for their high content and diversity of polyphenols, which can improve fish oxidative status. A growth trial with Senegalese sole postlarvae (45 days after hatching) fed with one of four experimental diets—control (CTRL), and supplemented with curcumin (CC), green tea (GT), and grape seed (GS) extracts—was performed to assess if supplementation could improve growth performance and oxidative status. At the end of the growth trial, postlarvae were submitted to a thermal stress to assess their robustness. Sole growth was improved by CC and GS diets when compared to those fed the CTRL. CC and CTRL postlarvae presented the lowest oxidative damage (lipid peroxidation and protein carbonylation values). Stress-related biomarkers (heat shock protein 70 and glutathione-S-transferase) decreased in CC fish compared to those fed the CTRL diet, which might be due to a direct antioxidant capacity. In contrast, oxidative damage increased in GT and GS sole reared in standard conditions. However, after a thermal stress, GT and GS diets prevented the increase of protein carbonylation content and the decrease of antioxidant glutathione, depending on exposure time. Overall, dietary supplementation with natural extracts modulated oxidative status and stress response after a short/long-term exposure to temperature.
Collapse
|
39
|
Tetrahydrocurcumin ameliorates Alzheimer's pathological phenotypes by inhibition of microglial cell cycle arrest and apoptosis via Ras/ERK signaling. Biomed Pharmacother 2021; 139:111651. [PMID: 34243602 DOI: 10.1016/j.biopha.2021.111651] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin, THC) is a major bioactive metabolite of curcumin, demonstrating the potential anti-inflammatory, antioxidant and neuroprotective properties, etc. In this study, it was found that Aβ induced decreased cell viability, cell cycle arrest and apoptosis in BV-2 cells, which were ameliorated by THC. In vivo, THC administration rescued learning and memory, and reduced Aβ burden in the hippocampus of APP/PS1 mice. By proteomic analysis of the hippocampus of mice, 157 differentially expressed proteins were identified in APP/PS1 mice treated with THC (comparing with APP/PS1 mice), which also suggested that the effects of THC on the cell cycle and apoptosis were mostly related to the "Ras signaling pathway", etc. In APP/PS1 mice, the down-regulation of Gab2 and K-Ras, and the up-regulation of caspase-3, TGF-β1 and TNF-ɑ were observed; THC attenuated the abnormal expression of Gab2, K-Ras, caspase-3 and TNF-ɑ, and up-regulated TGF-β1 and Bag1 expression. In BV-2 cells, Aβ induced the down-regulation of Gab2, K-Ras and TGF-β1, and the overexpression of caspase-3, PARP1, cleaved-PARP1 and TNF-ɑ, which were restored by THC. Moreover, THC up-regulated Bag1 expression in Aβ-treated BV-2 cells. The decreased transcriptional expression of Ccnd2 and Cdkn1a were also observed in Aβ-treated BV-2 cells, and THC alleviated the down-regulation of Ccnd2. For the first time, we identified that the action of THC in preventing AD was associated with inhibition of cell cycle arrest and apoptosis of microglia via the Ras/ERK signaling pathway, shedding new light on the role of THC in alleviating the progression of AD.
Collapse
|
40
|
Stabilizing effect of the cyclodextrins additive to spray-dried particles of curcumin/polyvinylpyrrolidone on the supersaturated state of curcumin. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Meng X, Liu H, Xia Y, Hu X. A family of chitosan-peptide conjugates provides broad HLB values, enhancing emulsion's stability, antioxidant and drug release capacity. Carbohydr Polym 2021; 258:117653. [PMID: 33593541 DOI: 10.1016/j.carbpol.2021.117653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Strong hydrophilicity of polysaccharide and physicochemical instability of peptides limit application of polysaccharide-peptide mixtures in food industry. In this study, a natural resource platform of polysaccharide-peptide conjugates was constructed through Maillard reaction from chitosan and casein hydrophobic peptide. By choosing the molecular weight and deacetylation degree of chitosan and other reaction parameters, the conjugated chitosan-peptides possess extensive HLB values from 6 to 14 were obtained with grafting degree of 3.10%-15.08%. The conjugates have gained dramatically improved emulsifying ability, and endowed the emulsion higher antioxidant capacity than the peptide, chitosan and the mixture of peptide-chitosan has. Emulsions prepared with all conjugates exhibited long-term stability and strengthened tolerance towards temperature and electrolyte stimuli. This stable emulsion system also provided an effective encapsulation, protection and controlled release of curcumin, which may provide a method for transfer polysaccharides to stable emulsifiers with broader HLB values and application.
Collapse
Affiliation(s)
- Xinyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
42
|
Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother Res 2021; 35:4913-4929. [PMID: 33837579 DOI: 10.1002/ptr.7121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Cancer is the second-leading cause of death worldwide. Till date, many such effective treatments are available, for example chemotherapy, surgery, and radiation therapy, but there are severe associated side effects, such as increased infection risk, constipation, hair loss, anaemia, among others. Thus, the need for effective therapeutic strategies and screening methodology arises. Researchers around the world are increasingly trying to discover anticancer therapies with as few side effects as possible and many are now focusing on phytochemicals, like curcumin. Curcumin is a bright yellow substance isolated from the plant rhizomes of Curcuma longa L. To this molecule a high therapeutic benefit has been underlined, being able to alter the development of cancer by different mechanisms, such as regulating multiple microRNA expression, modifying a series of signalling pathways, that is, Akt, Bcl-2, PTEN, p53, Notch, and Erbb. Another major pathway that curcumin targets is the matrix metalloproteinase (MMP) gene expression. In fact, MMPs are responsible for the degradation of the cell-extracellular matrix, which can lead to the diseased condition and many different pathways contribute to its activity, such as JAK/STAT, NF-κB, MAPK/ERK, COX-2, ROS, TGF-β, among others. In this review, we have attempted to describe the curcumin regulatory effect on different cell signalling pathways involved in the progression of different types of cancers.
Collapse
Affiliation(s)
- Muskan Bhatia
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Mihir Bhalerao
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Dileep Kumar
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
43
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
44
|
Chintakovid N, Tisarum R, Samphumphuang T, Sotesaritkul T, Cha-um S. In vitro acclimatization of Curcuma longa under controlled iso-osmotic conditions. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:37-46. [PMID: 34177323 PMCID: PMC8215464 DOI: 10.5511/plantbiotechnology.20.1021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In vitro acclimatization has been validated as the successful key to harden the plantlets before transplanting to ex vitro conditions. In the present study, we investigated the potential of different sugar types (glucose, fructose, galactose, sucrose) in regulating morphological, physiological and biochemical strategies, survival percentage and growth performance, and rhizome traits of turmeric under iso-osmotic potential. Leaf greenness (SPAD value) in acclimatized plantlets (4% glucose; -1.355 MPa osmotic potential) of 'ST018' was retained and greater than in 'PB009' by 1.69-fold, leading to maintain high Fv/Fm (maximum quantum yield of PSII), ΦPSII (photon yield of PSII) and Pn (net photosynthetic rate) levels, and retained shoot height, leaf length, leaf width, shoot fresh weight and shoot dry weight after one month upon transplanting to ex vitro conditions. In addition, Pn, Ci (intracellular CO2), gs (stomatal conductance) and E (transpiration rate) in acclimatized plantlets (6% sucrose; -1.355 MPa osmotic potential) of 'PB009' were stabilized as physiological adapted strategies, regulating the shoot and root growth and fresh and dry weights of mini-rhizome. Interestingly, the accumulation of total curcuminoids in mini-rhizome derived from 6% sucrose acclimatized plantlets of 'ST018' was greater than in 'PB009' by 3.76-fold. The study concludes that in vitro acclimation of turmeric 'PB009' and 'ST018' using 6% sucrose and 4% glucose, respectively, promoted percent survival, physiological adaptations, and overall growth performances under greenhouse conditions.
Collapse
Affiliation(s)
- Nutwadee Chintakovid
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- E-mail: Tel: +66-2-564-6700 Fax: +66-2-564-6707
| |
Collapse
|
45
|
Liang F, Xi J, Chen X, Huang J, Jin D, Zhu X. Curcumin decreases dibutyl phthalate-induced renal dysfunction in Kunming mice via inhibiting oxidative stress and apoptosis. Hum Exp Toxicol 2021; 40:1528-1536. [DOI: 10.1177/09603271211001124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Curcumin (Cur) has been used extensively in dietary supplement with antioxidant and anti-apoptotic properties. Although dibutyl phthalate (DBP) has adverse effects on the kidney, any association between DBP exposure and the role of Cur is unclear. We tested the hypothesis that exposure to DBP has adverse consequences on renal dysfunction in mice and the potential protective role of Cur in decreasing DBP-induced renal dysfunction via inhibiting oxidative stress and apoptosis. Kidney function, oxidative stress biomarkers, and apoptosis factors as well as Bcl-2 and Bax were investigated. The results showed a marked increase of renal dysfunction, oxidative stress and apoptosis level after DBP exposure compared to the control. While administration of Cur to DBP-treated mice may reduce these adverse biochemical changes compared with DBP-alone group. Overall, these results suggest that oxidative stress and apoptosis are involved in DBP-induced renal disorder, whereas Cur plays a protective role in inhibiting these two pathways.
Collapse
Affiliation(s)
- F Liang
- These authors contributed equally to this work
| | - J Xi
- These authors contributed equally to this work
| | - X Chen
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - J Huang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - D Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - X Zhu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
46
|
Marcon H, Griss LG, Molosse VL, Cecere BGO, Alba DF, Leal KW, Galli GM, Souza CF, Baldissera MD, Gundel S, de A Bassotto V, Ourique AF, Vedovatto M, Da Silva AS. Dietary supplementation with curcumin-loaded nanocapsules in lambs: Nanotechnology as a new tool for nutrition. ACTA ACUST UNITED AC 2021; 7:521-529. [PMID: 34258441 PMCID: PMC8245810 DOI: 10.1016/j.aninu.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Curcumin-containing nanocapsule powder formulations have not been used in ruminant feed to date, despite the fact that curcumin is known to be a functional food additive. The objective of this study was to determine whether ethyl polymethacrylate (Eudragit L-100) nanocapsules loaded with curcumin (N-CU) would improve health and growth of lambs. Thirty-two male Lacaune lambs (body weight [BW] = 16 ± 0.99 kg; 45 d of age) were randomly assigned to 1 of 4 treatments: T0, T1, T2 and T4, representing supplementation of curcumin at 0, 1, 2, and 4 mg/kg concentrate, respectively. The animals in each treatment were allocated in 4 pens of 2 lambs each (8 lambs per treatment). The experiment lasted 17 d, with samples and measurements collected on d 0, 7, 12, and 17. The T2 lambs had greater average daily gain than T0 lambs. Regression analysis showed that the ideal dose of N-CU to enhance weight gain was 1.89 mg/kg concentrate. There were significant interactions (P < 0.05) between treatments × time for hematological variables, particularly for increases in erythrocytes (T2) and reductions in counts of leukocytes, neutrophils, and lymphocytes in T1 and T2. There were significant interactions between treatment × time for total protein, globulin, urea, and triglyceride levels. Stimulation of the antioxidant system was also observed. There were increased levels of non-protein thiols (NPSH), as well as increased activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in the supplemented animals. Levels of reactive oxygen species (ROS) were lower in the serum of supplemented lambs. In general, the 4 mg/kg dose had no positive effects on growth or health. This was an unexpected result, given the known properties of curcumin. Taken together, these findings suggest that addition of low concentrations of nanoencapsulated curcumin (T1 and T2) in lamb feed improves health, minimizing oxidative stress and generates anti-inflammatory effects that may have contributed indirectly to greater weight gain. Nanocapsules potentiate the effects of curcumin and may emerge as a new tool in animal nutrition.
Collapse
Affiliation(s)
- Hiam Marcon
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Luiz G Griss
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Vitor L Molosse
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Bruno G O Cecere
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Davi F Alba
- Graduate Program in Animal Science, UDESC, Chapecó, SC, Brazil
| | - Karoline W Leal
- Graduate Program in Animal Science, UDESC, Chapecó, SC, Brazil
| | | | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | | | | | - Marcelo Vedovatto
- Graduate Program in Animal Science, Universidade Estadual de Mato Grosso Do Sul, Aquidauana, MS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.,Graduate Program in Animal Science, UDESC, Chapecó, SC, Brazil
| |
Collapse
|
47
|
Curcumin Can Bind and Interact with CRP: An in silico Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:91-100. [PMID: 33861438 DOI: 10.1007/978-3-030-64872-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Curcuminis a polyphenol with anti-inflammatory and antioxidative properties, found primarily in turmeric, a flowering plant of the ginger family. Among its numerous medical uses, curcumin has been used in the management of metabolic syndrome, and inflammatory conditions such as artrhritis, anxiety and hyperlipidemia. In this paper, we used molecular docking tools to assess the affinity of four curcumin derivatives (Curcumin, Cyclocurcumin, Demethoxycurcumin, Bisdemethoxycurcumin) as well as the endogenous ligand phosphorylcholine to C-reactive protein (CRP), a sensitive marker of systemic inflammation. Our results showed that curcumin interacts through H bond with CRP at GLN 150 and ASP 140. Similar H bond interactions were found for each of the four curcumin derivatives with CRP. Moreover, a molecular dynamic simulation were performed to further establish the interaction between CRP and the ligands in atomic details using the Nanoscale Molecular Dynamics (NAMD) and CHARMM27 force field. Importantly, our results suggest the possible interaction between curcumin and curcurmin related molecules with CRP, thus showing an important regulatory function with plausible applications in inflammatory and oxidative processes in diseases.
Collapse
|
48
|
Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soybean oil has been supplemented with 10% (w/w) of ginger and turmeric powders derived from commercial products (GC—commercial ginger and TC—commercial turmeric), freeze-dried rhizomes (freeze-dried ginger (GR) and freeze-dried turmeric rhizome—TR) and peels (freeze-dried ginger peel (GP) and freeze-dried turmeric peel—TP) for developing a functional seasoning with great lipid stability for human consumption. The exhausted ginger and turmeric powders were also recovered and recycled two times to promote a more sustainable process. The antioxidant activity and oxidative stability of oil samples were evaluated respectively by spectrophotometric and Rancimat methods. Folin–Ciocalteu assay and HPLC analysis were also performed to quantify total polyphenols, ginger-derived 6-gingerol and 6-shogaol, and turmeric-derived curcumin. Their antioxidant activity as well as oxidative stability, which non-linearly decreased over cycles because of a strongly reduced phenolic extractability, linearly increased with increasing phenolic yields. Hence, ginger and turmeric can be proposed as healthy spices containing bioactive compounds to control lipid oxidation and improve oil stability. Moreover, the valorization of peels as eco-friendly source of natural antioxidants is a valid strategy for providing added-value to these agro-food wastes.
Collapse
|
49
|
Alginate hydrogels: Sustained release system to analyze the effect of traditional excipients on curcumin availability. Bioorg Chem 2020; 107:104513. [PMID: 33279244 DOI: 10.1016/j.bioorg.2020.104513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
Curcumin, a molecule of immense pharmacological significance is also known to exhibit poor aqueous solubility and low bioavailability. Different strategies have been adopted to enhance the aqueous solubility of curcumin, but report on the effect of traditional excipients on curcumin solubility still stand in need of. Here, we presented the significance of different traditional excipients used in anti-inflammatory formulations on curcumin solubility. The endeavor has been undertaken with the hypothesis that "traditional formulation used since ages have a scientific basis". To meet the quest we encapsulated 28 different formulations containing varying concentrations of milk, sugar, cow milk fat, and black pepper in alginate hydrogels. After the characterization of formulations through FT-IR, solubility studies were conducted. Milk was found to be an essential component for improved curcumin availability. Individually, cow milk fat and piperine exhibited lesser effect but their synergistic effect was observed in the presence of milk. Dual behavior of sugar has been observed. Traditionally used excipients greatly enhanced the solubility of curcumin. The results have also been validated through anti-oxidant activities of different formulations. Intermolecular interactions have been explained using Molecular modeling studies.
Collapse
|
50
|
Study on enhanced serum protein protecting and anti-cathepsin activities of various curcumin formulations containing traditional excipients and bio-enhancers. Bioorg Chem 2020; 104:104177. [DOI: 10.1016/j.bioorg.2020.104177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022]
|