1
|
Wu J, Shen S, Cheng H, Pan H, Ye X, Chen S, Chen J. RG-I pectic polysaccharides and hesperidin synergistically modulate gut microbiota: An in vitro study targeting the proportional relationship. Food Chem 2025; 462:141010. [PMID: 39217745 DOI: 10.1016/j.foodchem.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gogoi D, Chattopadhyay P, Dolui SK, Khan MR, Mukherjee AK. Studies on in vivo antithrombotic activity of quercetin, a natural flavonoid isolated from a traditional medicinal plant, African eggplant (Solanum indicum). JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118686. [PMID: 39127114 DOI: 10.1016/j.jep.2024.118686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Every year, cardiovascular diseases (CVDs) account for about 17.9 million deaths, making them the primary cause of both morbidity and mortality. Conventional drugs, which are often prescribed to treat cardiovascular diseases, are costly and have adverse effects. Consequently, dietary modifications and other medications are needed. Traditional use of Solanum indicum as cardiotonic to treat hypertension and anticoagulant potency has been reported but poorly evaluated scientifically. AIM OF THE STUDY This study investigated the in vivo anticoagulant activity and mechanism of anticoagulation of quercetin (QC), a bioactive compound isolated from S. indicum (SI) hydroethanolic fruit extract. MATERIALS AND METHODS Bioassay-guided fractionation (anticoagulant activity) extracted QC from hydroethanolic SI extract. QC was extensively characterized biochemically and pharmacologically. The interaction between QC and thrombin was investigated using spectrofluorometric and isothermal calorimetric methods. Cytotoxicity, antiplatelet, and thrombolytic studies were carried out in vitro. The Swiss albino mice were used to assess the in vivo, anticoagulant, and antithrombotic activities of QC. RESULTS QC exhibits anticoagulant activity via (i) uncompetitive inhibition of thrombin but not FXa with a Ki value of 33.11 ± 4.2 μM and (ii) a partial inhibition of thrombin-catalyzed platelet aggregation with an IC50 value of 13.2 ± 1.2 μM. The experimental validation of the in silico study's prediction of QC's binding to thrombin was confirmed by spectrofluorometric and isothermal calorimetric analyses. QC was nontoxic to mammalian, non-hemolytic cells and demonstrated thrombolytic activity by activating plasminogen. QC demonstrated in vivo anticoagulant efficacy, preventing k-carrageen-induced thrombus formation in mice's tails. In the acute circulatory stasis paradigm in mice, QC reduces thromboxane B2 (TXB2) and endothelin-1 (ET-1) while increasing nitric oxide synthase (eNOS) and 6-keto prostaglandin F1α (6-keto-PGF1 α). CONCLUSION Effective in vivo anticoagulant and antithrombotic properties of S. indicum's bioactive component QC point to the plant's potential use as a herbal anticoagulant medication for preventing and treating cardiovascular diseases linked to thrombosis.
Collapse
Affiliation(s)
- Debananda Gogoi
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | | | - Swapan K Dolui
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam, India
| | - Mujibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India.
| |
Collapse
|
3
|
Prajapat B, Sharma A, Kumar S, Sharma D. Deciphering Rickettsia conorii metabolic pathways: A treasure map to therapeutic targets. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:1-9. [PMID: 39722831 PMCID: PMC11667008 DOI: 10.1016/j.biotno.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Indian tick typhus is an infectious disease caused by intracellular gram-negative bacteria Rickettsia conorii (R. conorii). The bacterium is transmitted to humans through bite of infected ticks and sometimes by lice, fleas or mites. The disease is restricted to some areas with few cases but in last decade it is re-emerging with large number of cases from different areas of India. The insight in to genetic makeup of bacterial pathogens can be derived from their metabolic pathways. In the current study 18 metabolic pathways were found to be unique to the pathogen (R. conorii). A comprehensive analysis revealed 163 proteins implicated in 18 unique metabolic pathways of R. conorii. 140 proteins were reported to be essential for the bacterial survival, 46 were found virulent and 10 were found involved in resistance which can enhance the bacterial pathogenesis. The functional analysis of unique metabolic pathway proteins showed the abundance of plasmid conjugal transfer TrbL/VirB6, aliphatic acid kinase short chain, signal transduction response regulator receiver and components of type IV transporter system domains. The proteins were classified into six broad categories on the basis of predicted domains, i.e., metabolism, transport, gene expression and regulation, antimicrobial resistance, cell signalling and proteolysis. Further, in silico analysis showed that 88 proteins were suitable therapeutic targets which do not showed homology with host proteins. The 43 proteins showed hits with the DrugBank database showing their druggable nature and remaining 45 proteins were classified as novel drug targets that require further validation. The study will help to provide the better understanding of pathogens survival and embark on the development of successful therapies for the management of Indian tick typhus.
Collapse
Affiliation(s)
- Brijesh Prajapat
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Ankita Sharma
- Dr. Ambedkar Centre of Excellence, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176215, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| |
Collapse
|
4
|
Adiamo OQ, Bobasa EM, Phan ADT, Akter S, Seididamyeh M, Dayananda B, Gaisawat MB, Kubow S, Sivakumar D, Sultanbawa Y. In-vitro colonic fermentation of Kakadu plum (Terminalia ferdinandiana) fruit powder: Microbial biotransformation of phenolic compounds and cytotoxicity. Food Chem 2024; 448:139057. [PMID: 38555694 DOI: 10.1016/j.foodchem.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Kakadu plum (Terminalia ferdinandiana) (KP) is an indigenous fruit used as a functional ingredient in powdered form. Three KP doses (1, 2.5 and 5 g) were digested in a dynamic in vitro gut digestion model over 48 h. Faecal water digests from the colonic reactors were assessed for total soluble polyphenols (TSP), ferric reducing antioxidant power (FRAP), phenolic metabolites and short-chain fatty acids (SCFAs). Effects of digests on cell viability were tested against Caco-2 intestinal and HepG2 hepatic cells. All doses of KP fermentation produced castalagin, corilagin, chebulagic acid, chebulinic acid, and gallic acid. TSP and FRAP significantly increased in 5 g KP digests at 0 and 48 h of fermentation. SCFA concentrations significantly increased after 48 h. Cytotoxic effects of 2.5 and 5 g KP digests diminished significantly after 12 h. Overall, colonic fermentation increased antioxidant activity and polyphenolic metabolites of 5 g KP powder for 48 h.
Collapse
Affiliation(s)
- Oladipupo Q Adiamo
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Eshetu M Bobasa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Stan Kubow
- School of Human Nutrition, McGill University, Montréal, QC, Canada
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia; Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 001, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia.
| |
Collapse
|
5
|
Massaut KB, Dos Santos Pereira E, Moreira AN, Padilha da Silva W, Fiorentini ÂM. Potentially functional lactose-free ice cream with Lacticaseibacillus casei CSL3, ginger, and honey. Braz J Microbiol 2024; 55:1735-1744. [PMID: 38727922 PMCID: PMC11153460 DOI: 10.1007/s42770-024-01310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS To develop and characterize a functional lactose-free ice cream with added ginger and honey, evaluate the survival of Lacticaseibacillus casei CSL3 under frozen storage and the simulated gastrointestinal tract (GIT), as well as antioxidant activity and product acceptability. METHODS AND RESULTS The survival of Lacticaseibacillus casei CSL3 was evaluated for 180 days, under frozen storage, and GIT at 60 days. At 15 days of storage, proximal composition, antioxidant activity, color, pH, acidity, fusion, density, overrun, and sensory analysis were performed. Ice cream was an effective food matrix for maintaining the viability of CSL3, with concentrations > 7 log CFU g- 1 during storage and GIT. In addition, the analysis showed overrun and prebiotic characteristics through high values of antioxidant activity and phenolic compounds, good acceptability, and purchase intention. CONCLUSIONS The product has satisfactory market potential (acceptance rate of 95.19% and purchase intention rate > 96%), and it could become another means of inserting probiotics in food.
Collapse
Affiliation(s)
- Khadija Bezerra Massaut
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Elisa Dos Santos Pereira
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Angela Nunes Moreira
- Faculty of Nutrition, Department of Nutrition, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Ferreira-Santos P, Nobre C, Rodrigues RM, Genisheva Z, Botelho C, Teixeira JA. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem 2024; 436:137780. [PMID: 37879228 DOI: 10.1016/j.foodchem.2023.137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
This study addresses the effectiveness of ohmic heating technology (OH) for the sustainable recovery of phenolic compounds from Grape Pomace (GP) by hydroethanolic extraction. GP extracts biological potential was evaluated in terms of antioxidant activity, cytotoxicity and preventive effect against reactive oxygen species (ROS). To understand if GP extracts can be used as a functional ingredient, simulated gastrointestinal digestion was performed to evaluate the bioaccessibility. OH-assisted hydroethanolic extraction proved to be an effective process for the recovery of GP phenolic compounds with high antioxidant capacity. The digestion process increased the concentration of total phenolics and the biotransformation of high-molecular phenolics (anthocyanins, flavonoids and resveratrol) in simpler phenolic acids, improving bioaccessibility. GP extract displayed a selective action against cancer cells (Caco-2 and HeLa) and promoted ROS prevention. The results highlighted the ability of OH to extract bioactives from GP and its potential application as a nutraceutical or for functional food formulations.
Collapse
Affiliation(s)
- P Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, 32004 Ourense, Spain; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - C Nobre
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - R M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Z Genisheva
- CVR - Centre of Wastes Valorization, 4800-058 Guimarães, Portugal
| | - C Botelho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - J A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Ávila-Gálvez MÁ, Giménez-Bastida JA, Karadeniz B, Romero-Reyes S, Espín JC, Pelvan E, González-Sarrías A. Polyphenolic Characterization and Anti-Inflammatory Effect of In Vitro Digested Extracts of Echinacea purpurea L. Plant Parts in an Inflammatory Model of Human Colon Cells. Int J Mol Sci 2024; 25:1744. [PMID: 38339018 PMCID: PMC10855148 DOI: 10.3390/ijms25031744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Echinacea purpurea L. (EP) preparations are globally popular herbal supplements known for their medicinal benefits, including anti-inflammatory activities, partly related to their phenolic composition. However, regarding their use for the management of inflammation-related intestinal diseases, the knowledge about the fate of orally ingested constituents throughout the human gastrointestinal tract and the exposition of in vitro digested extracts in relevant inflammatory models are unknown. This study investigated for the first time the impact of in vitro gastrointestinal digestion (INFOGEST) on the phenolic composition and anti-inflammatory properties of EP extracts from flowers (EF), leaves (EL), and roots (ER) on IL-1β-treated human colon-derived CCD-18Co cells. Among the seven hydroxycinnamic acids identified using HPLC-UV-MS/MS, chicoric and caftaric acids showed the highest concentrations in EL, followed by EF and ER, and all extracts exerted significant reductions in IL-6, IL-8, and PGE2 levels. After digestion, despite reducing the bioaccessibility of their phenolics, the anti-inflammatory effects were preserved for digested EL and, to a lesser extent, for EF, but not for digested ER. The lower phenolic content in digested EF and ER could explain these findings. Overall, this study emphasizes the potential of EP in alleviating intestinal inflammatory conditions and related disorders.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Bulent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Salvador Romero-Reyes
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, P.O. Box 21, 41470 Gebze-Kocaeli, Türkiye; (B.K.); (E.P.)
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (S.R.-R.); (J.C.E.)
| |
Collapse
|
8
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
9
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
10
|
Nsairat H, Lafi Z, Al-Sulaibi M, Gharaibeh L, Alshaer W. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chem 2023; 424:136438. [PMID: 37244187 DOI: 10.1016/j.foodchem.2023.136438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
11
|
Marín-Tello C, Jintaridth P, Sanchez F, González C, Zelada-Castillo L, Vásquez-Arqueros A, Guevara-Vásquez A, Vieira A. Epigenetic regulation by metabolites from the gut microbiome. Benef Microbes 2022; 13:437-444. [PMID: 36377583 DOI: 10.3920/bm2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gut microbiome can metabolise food components, such as dietary fibres and various phytochemicals; and the microbiome can also synthesise some nutrients, for example B vitamins. The metabolites produced by bacteria and other micro-organisms in the colon can have implications for health and disease risk. Some of these metabolites are epigenetically active, and can contribute to changes in the chemical modification and structure of chromatin by affecting the activity and expression of epigenetically-active enzymes, for example histone deacetylases and DNA methyltransferases. The epigenetic activity of such gut microbiome metabolites is reviewed herein.
Collapse
Affiliation(s)
- C Marín-Tello
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - P Jintaridth
- Department of Tropical Nutrition and Food Science, The Faculty of Tropical Medicine, Mahidol University, 420/6 Rachavithi Road, Rachathevi, Payatai, Bangkok 10400, Thailand
| | - F Sanchez
- Instituto De Educacion Superior Tecnológico Público, 103, Lonya Grande 01556, Perú
| | - C González
- CITE Agroindustrial Chavimochic, Virú 044, Perú
| | - L Zelada-Castillo
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Vásquez-Arqueros
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Guevara-Vásquez
- Food, Metabolism, and Physiology Laboratory, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13008, Perú
| | - A Vieira
- Nutrition and Metabolism Research Laboratory, BPK-9625, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
12
|
Liu Q, Liu S, Ye Q, Hou X, Yang G, Lu J, Hai Y, Shen J, Fang Y. A Novel Streptococcus thermophilus FUA329 Isolated from Human Breast Milk Capable of Producing Urolithin A from Ellagic Acid. Foods 2022. [PMCID: PMC9601659 DOI: 10.3390/foods11203280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Urolithin A, a metabolite of ellagic acid, has many beneficial biological activities for people. Strains capable of producing urolithin A from ellagic acid have the hope of becoming the next-generation probiotics. However, only a few species of these strains have been reported. In this study, FUA329, a strain capable of converting ellagic acid to urolithin A in vitro, was isolated from the breast milk of healthy Chinese women. The results of morphological observation, physiological and biochemical tests, and 16S rRNA gene sequence analysis confirmed that the strain FUA329 was Streptococcus thermophilus. In addition, the S. thermophilus FUA329 growth phase is consistent with the degradation of ellagic acid, and urolithin A was produced in the stationary phase, with a maximum concentration of 7.38 μM at 50 h. The corresponding conversion efficiency of urolithin A from ellagic acid was 82%. In summary, S. thermophilus FUA329, a novel urolithin A-producing bacterium, would be useful for the industrial production of urolithin A and may be developed as a next-generation probiotic.
Collapse
Affiliation(s)
- Qitong Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qinwen Ye
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence:
| |
Collapse
|
13
|
Abstract
Given the worldwide epidemic of diet-related chronic diseases, evidence-based dietary recommendations are fundamentally important for health promotion. Despite the importance of the human gut microbiota for the physiological effects of diet and chronic disease etiology, national dietary guidelines around the world are just beginning to capitalize on scientific breakthroughs in the microbiome field. In this review, we discuss contemporary nutritional recommendations from a microbiome science perspective, focusing on mechanistic evidence that established host-microbe interactions as mediators of the physiological effects of diet. We apply this knowledge to inform discussions of nutrition controversies, advance innovative dietary strategies, and propose an experimental framework that integrates the microbiome into nutrition research. The congruence of key paradigms in the nutrition and microbiome disciplines validates current recommendations in dietary guidelines, and the systematic incorporation of microbiome science into nutrition research has the potential to further improve and innovate healthy eating.
Collapse
|
14
|
Curiel JA, Landete JM. Identification and cloning of the first O-demethylase gene of isoflavones from Bifidobacterium breve INIA P734. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sultanbawa Y, Sivakumar D. Enhanced nutritional and phytochemical profiles of selected underutilized fruits, vegetables and legumes. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Li Z, Chen X, Liu G, Li J, Zhang J, Cao Y, Miao J. Antioxidant Activity and Mechanism of Resveratrol and Polydatin Isolated from Mulberry ( Morus alba L.). Molecules 2021; 26:molecules26247574. [PMID: 34946655 PMCID: PMC8709137 DOI: 10.3390/molecules26247574] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Natural stilbenes have unique physiological effects, such as anti-senile dementia, anti-cancer, anti-bacterial, lowering blood lipid, and other important biological functions, which have attracted great attention from scholars in recent years. In this study, two stilbene compounds, resveratrol (RES) and polydatin (PD), were isolated from Mulberry (Morus alba L.), and their antioxidant activity and mechanism were investigated. The results showed that the contents of RES and PD in mulberry roots were 32.45 and 3.15 μg/g, respectively, significantly higher than those in mulberry fruits (0.48 and 0.0020 μg/g) and mulberry branches (5.70 and 0.33 μg/g). Both RES and PD showed high antioxidant potential by DPPH, ABTS free-scavenging methods, and ORAC assay, and provided protection against oxidative damage in HepG2 cells by increased catalase (CAT) activity, superoxide dismutase (SOD) activity, and Glutathione (GSH) content, and decreasing generation of reactive oxygen species (ROS), lactate dehydrogenase (LDH) level, and malondialdehyde (MDA) content. Therefore, RES and PD treatment could be effective for attenuating AAPH-induced oxidative stress in HepG2 cells. This study will promote the development and application of stilbene compounds. Furthermore, the RES and PD could be used as antioxidant supplements in functional foods, cosmetics, or pharmaceuticals, contributing to health improvement.
Collapse
Affiliation(s)
- Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
| | - Xiaoman Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
- Correspondence: (J.Z.); (J.M.); Tel.: +86-10-68985382 (J.Z.); +86-20-85286234 (J.M.)
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (X.C.); (G.L.); (J.L.); (Y.C.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
- Correspondence: (J.Z.); (J.M.); Tel.: +86-10-68985382 (J.Z.); +86-20-85286234 (J.M.)
| |
Collapse
|
17
|
Greene LK, Rambeloson E, Rasoanaivo HA, Foss ED, Yoder AD, Drea CM, Blanco MB. Gut Microbial Diversity and Ecological Specialization in Four Sympatric Lemur Species Under Lean Conditions. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie 2021; 193:38-63. [PMID: 34688789 DOI: 10.1016/j.biochi.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.
Collapse
|
19
|
Hui Yan T, Babji AS, Lim SJ, Sarbini SR. A Systematic Review of Edible Swiftlet's Nest (ESN): Nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhang W, Qi S, Xue X, Al Naggar Y, Wu L, Wang K. Understanding the Gastrointestinal Protective Effects of Polyphenols using Foodomics-Based Approaches. Front Immunol 2021; 12:671150. [PMID: 34276660 PMCID: PMC8283765 DOI: 10.3389/fimmu.2021.671150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plant polyphenols are rich sources of natural anti-oxidants and prebiotics. After ingestion, most polyphenols are absorbed in the intestine and interact with the gut microbiota and modulated metabolites produced by bacterial fermentation, such as short-chain fatty acids (SCFAs). Dietary polyphenols immunomodulatory role by regulating intestinal microorganisms, inhibiting the etiology and pathogenesis of various diseases including colon cancer, colorectal cancer, inflammatory bowel disease (IBD) and colitis. Foodomics is a novel high-throughput analysis approach widely applied in food and nutrition studies, incorporating genomics, transcriptomics, proteomics, metabolomics, and integrating multi-omics technologies. In this review, we present an overview of foodomics technologies for identifying active polyphenol components from natural foods, as well as a summary of the gastrointestinal protective effects of polyphenols based on foodomics approaches. Furthermore, we critically assess the limitations in applying foodomics technologies to investigate the protective effect of polyphenols on the gastrointestinal (GI) system. Finally, we outline future directions of foodomics techniques to investigate GI protective effects of polyphenols. Foodomics based on the combination of several analytical platforms and data processing for genomics, transcriptomics, proteomics and metabolomics studies, provides abundant data and a more comprehensive understanding of the interactions between polyphenols and the GI tract at the molecular level. This contribution provides a basis for further exploring the protective mechanisms of polyphenols on the GI system.
Collapse
Affiliation(s)
- Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|