1
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
2
|
Rossi I, Mignogna C, Del Rio D, Mena P. Health effects of 100% fruit and vegetable juices: evidence from human subject intervention studies. Nutr Res Rev 2024; 37:194-238. [PMID: 37655747 DOI: 10.1017/s095442242300015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The health effects of 100% fruit and vegetable juices (FVJ) represent a controversial topic. FVJ contain notable amounts of free sugars, but also vitamins, minerals, and secondary compounds with proven biological activities like (poly)phenols and carotenoids. The review aimed to shed light on the potential impact of 100% FVJ on human subject health, comprehensively assessing the role each type of juice may have in specific health outcomes for a particular target population, as reported in dietary interventions. The effects of a wide range of FVJ (orange, grapefruit, mandarin, lemon, apple, white, red, and Concord grapes, pomegranate, cranberry, chokeberry, blueberry, other minor berries, sweet and tart cherry, plum, tomato, carrot, beetroot, and watermelon, among others) were evaluated on a series of outcomes (anthropometric parameters, body composition, blood pressure and vascular function, lipid profile, glucose homeostasis, biomarkers of inflammation and oxidative stress, cognitive function, exercise performance, gut microbiota composition and bacterial infections), providing a thorough picture of the contribution of each FVJ to a health outcome. Some juices demonstrated their ability to exert potential preventive effects on some outcomes while others on other health outcomes, emphasising how the differential composition in bioactive compounds defines juice effects. Research gaps and future prospects were discussed. Although 100% FVJ appear to have beneficial effects on some cardiometabolic health outcomes, cognition and exercise performance, or neutral effects on anthropometric parameters and body composition, further efforts are needed to better understand the impact of 100% FVJ on human subject health.
Collapse
Affiliation(s)
- Irene Rossi
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Olaoye S, Oladele S, Badmus T, Filani I, Jaiyeoba F, Sedara A, Olalusi A. Thermaland non-thermal pasteurization of citrus fruits: A bibliometrics analysis. Heliyon 2024; 10:e30905. [PMID: 38803896 PMCID: PMC11128875 DOI: 10.1016/j.heliyon.2024.e30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Thermal and non-thermal pasteurization (TNP) process of food is not new to food technology, disparities in the merits and demerits of the two pasteurizations necessitate their uses concurrently. Bibliometric analysis of the subject matter is expedient to analyses of database for published publications. Especially to provide times, state-of-the art innovations and prospects of the techniques. In addressing these lacunas, we utilized VOSview visualization to establish connections among crucial elements within a dataset of 495 research publications gathered from Web of Science. This approach facilitated the identification of links and collaboration networks among key factors in the research landscape. Analysis of publications indicate thermal pasteurization is an age long practices, while non-thermal pasteurization is gaining more acceptance. This study exposed ranking differences in scholar's collaboration, citations of scholars, impactful institution and most published countries. United State, China, United Kingdom have largest publications of research in TNP among the top 10 countries. Coupling network and Sankey illustration showed new area of research where new researchers and scholars can begin new phase of findings.
Collapse
Affiliation(s)
- S.A. Olaoye
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - S.O. Oladele
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - T.A. Badmus
- Department of Agricultural and Bioresources Engineering, University of Calabar, Nigeria
| | - I. Filani
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - F.K. Jaiyeoba
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.M. Sedara
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.P. Olalusi
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| |
Collapse
|
4
|
Pan X, Bi S, Lao F, Wu J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res Int 2023; 169:112835. [PMID: 37254409 DOI: 10.1016/j.foodres.2023.112835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Orange juice is the most widely consumed fruit juice globally because of its pleasant aromas and high nutritional value. Aromas, contributed by free and bound aroma compounds, are an important attribute and determine the quality of orange juice and consumer choices. Aldehydes, alcohols, esters, and terpenoids have been shown to play important roles in the aroma quality of orange juice. Many factors affect the aroma compounds in orange juice, such as genetic makeup, maturity, processing, matrix compounds, packaging, and storage. This paper reviews identified aroma compounds in free and bound form, the biosynthetic pathways of aroma-active compounds, and factors affecting aroma from a molecular perspective. This review also outlines the effect of variations in aroma on the sensory profile of orange juice and discusses the sensory perception pathways in human systems. Sensory perception of aromas is affected by aroma variations but also converges with taste perception. This review could provide critical information for further research on the aromas of orange juice and their manipulation during the development of products.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
5
|
Zhang M, Jiang H, Ou S, Qian M, Qi H, Chen J, Zeng X, Bai W, Xiao G. Dietary sinensetin and polymethoxyflavonoids: Bioavailability and potential metabolic syndrome-related bioactivity. Crit Rev Food Sci Nutr 2023; 64:9992-10008. [PMID: 37283048 DOI: 10.1080/10408398.2023.2219758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.
Collapse
Affiliation(s)
- Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hao Jiang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobi Ou
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing, China
| | | | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Okoduwa SIR, Abdulwaliyu I. Dietary approach for management of Type-2 diabetes: An overview of glycemic indices of commonly consumed foods in Nigeria. Diabetes Metab Syndr 2023; 17:102698. [PMID: 36584553 DOI: 10.1016/j.dsx.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS The global prevalence of diabetes mellitus is on the increase, and Africa, particularly Nigeria is not left out. The management of the disease using a diabetes drug is often a hard choice to make for many. Information on the right food is inevitably important, as eating some type of food and avoiding or limiting some could help manage diabetes. Therefore, this study investigated glycemic indices of commonly consumed staples in Nigeria. METHODS Databases like PubMed, ScienceDirect, Google scholars, African journal online and Nigerian journal online was used to search for relevant information. Keywords like: nutritional management, diabetes in Nigeria, quality of life, prevalence, glycemic index, foods and diabetes, macronutrients and diabetes, were used separately or combined to obtain the relevant information. RESULTS Findings from literature search revealed that the glycemic indices of many staples such as Rice dough (Tuwo shinkafa), maize dough (tuwo masara), millet dough (tuwo gero), yam/cassava flour (amala), pounded fermented cassava (fufu, akpu), garri (eba), african salad (abacha), pounded yam (ema, iyan), rice (shinkafa, isesi), beans (wake, ewa, Agwa), and plantain (Ojoko, Ogbagba, Ogede) that are consumed in different parts of Nigeria are high (75.0%-97.0%). However, available information revealed that less commonly consumed foods like, Maize pudding (igbangwu), dried beef floss (dambu), Fonio (acha), bean pudding (moi-moi) and Tom Brownvita (Turnbrown) exhibit lower glycemic indices (14.1%-52.9%). CONCLUSIONS This study revealed the few among several local foods in Nigeria that are low in glycemic indices that could be useful in the management of Type-2 diabetes. However, these foods may require further certification by appropriate authorities and agencies to enable persons with diabetes, particularly in Nigeria make informed choices on the right food to consume.
Collapse
Affiliation(s)
- Stanley I R Okoduwa
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria; Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria, Nigeria.
| | - Ibrahim Abdulwaliyu
- Scientific and Industrial Research Department, National Research Institute for Chemical Technology, Zaria, Nigeria; Department of Nutrition and Dietetics, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
7
|
Visvanathan R, Williamson G. Review of factors affecting citrus polyphenol bioavailability and their importance in designing in vitro, animal, and intervention studies. Compr Rev Food Sci Food Saf 2022; 21:4509-4545. [PMID: 36183163 DOI: 10.1111/1541-4337.13057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
Evidence from in vitro, animal, and human studies links citrus fruit consumption with several health-promoting effects. However, many in vitro studies disregard bioavailability data, a key factor determining responses in humans. Citrus (poly)phenol metabolism and bioavailability follow specific pathways that vary widely among individuals and are affected by several intrinsic (age, sex, gut microbiota, metabolic state, genetic polymorphisms) and extrinsic (food matrix, co-consumed food, (poly)phenol solubility, dose, food processing, lifestyle) factors. The gut microbiota is crucial to both absorption of citrus (poly)phenols and the production of catabolites, and absorption of both takes place mostly in the colon. Citrus (poly)phenol absorption can reach up to 100% in some individuals when the sum of the gut microbiota products are taken into account. This review emphasizes the importance of understanding citrus (poly)phenol absorption, metabolism, and bioavailability using evidence primarily derived from human studies in designing in vitro, animal, and further human clinical studies.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
8
|
Effects of Fermented Camel Milk Supplemented with Sidr Fruit (Ziziphus spina-christi L.) Pulp on Hyperglycemia in Streptozotocin-Induced Diabetic Rats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes is one of the most common chronic metabolic diseases, and its occurrence rate has increased in recent decades. Sidr (Ziziphus spina-christi L.) is a traditional herbaceous medicinal plant. In addition to its good flavor, sidr has antidiabetic, anti-inflammatory, sedative, analgesic, and hypoglycemic activities. Camel milk has a high nutritional and health value, but its salty taste remains the main drawback in relation to its organoleptic properties. The production of flavored or fortified camel milk products to mask the salty taste can be very beneficial. This study aimed to investigate the effects of sidr fruit pulp (SFP) on the functional and nutritional properties of fermented camel milk. SFP was added to camel milk at rates of 5%, 10%, and 15%, followed by the selection of the best-fermented product in terms of functional and nutritional properties (camel milk supplemented with 15% SFP), and an evaluation of its hypoglycemic activity in streptozotocin (STZ)-induced diabetic rats. Thirty-two male adult albino rats (weighing 150–185 g) were divided into four groups: Group 1, nontreated nondiabetic rats (negative control); Group 2, diabetic rats given STZ (60 mg/kg body weight; positive control); Group 3, diabetic rats fed a basal diet with fermented camel milk (10 g/day); and Group 4, diabetic rats fed a basal diet with fermented camel milk supplemented with 15% SFP (10 g/day). The results revealed that supplementation of camel milk with SFP increased its total solids, protein, ash, fiber, viscosity, phenolic content, and antioxidant activity, which was proportional to the supplementation ratio. Fermented camel milk supplemented with 15% SFP had the highest scores for sensory properties compared to other treatments. Fermented camel milk supplemented with 15% SFP showed significantly decreased (p < 0.05) blood glucose, malondialdehyde, low-density lipoprotein-cholesterol, cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, creatinine, and urea, and a significantly increased (p < 0.05) high-density lipoprotein-cholesterol, total protein content, and albumin compared to diabetic rats. The administration of fermented camel milk supplemented with 15% SFP in diabetic rats restored a series of histopathological changes alonsgside an improvement in various enzyme and liver function tests compared to the untreated group, indicating that fermented camel milk supplemented with 15% SFP might play a preventive role in such patients.
Collapse
|
9
|
|
10
|
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206:567-579. [PMID: 35247420 DOI: 10.1016/j.ijbiomac.2022.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
Abstract
Compromised carbohydrate metabolism leading to hyperglycemia is the primary metabolic disorder of non-insulin-dependent diabetes mellitus. Reformed digestion and altered absorption of carbohydrates, exhaustion of glycogen stock, enhanced gluconeogenesis and overproduced hepatic glucose, dysfunction of β-cell, resistance to insulin in peripheral tissue, and impaired insulin signaling pathways are essential reasons for hyperglycemia. Although oral anti-diabetic drugs like α-glucosidase inhibitors, sulfonylureas and insulin therapies are commonly used to manage Type 2 Diabetes (T2D) and hyperglycemia, natural compounds in diet also play a significant role in combating the effect of diabetes. Due to their vast bioavailability and anti-hyperglycemic effect with least or no side effects, polyphenolic compounds have gained wide popularity. Polyphenols such as flavonoids and tannins play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible for the digestion of carbohydrates to glucose like α-glucosidase and α-amylase. Several polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG) and quercetin enhanced glucose uptake in the muscle and adipocytes by translocating GLUT4 to plasma membrane mainly by the activation of the AMP-activated protein kinase (AMPK) pathway. This review provides an insight into the protective role of polyphenols in T2D, highlighting the aspects of insulin resistance.
Collapse
Affiliation(s)
- Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prince M Z Hasan
- Centre of Nanotechnology, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
11
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants (Basel) 2022; 11:antiox11020239. [PMID: 35204122 PMCID: PMC8868476 DOI: 10.3390/antiox11020239] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.
Collapse
|
13
|
Lu X, Lu J, Fan Z, Liu A, Zhao W, Wu Y, Zhu R. Both Isocarbohydrate and Hypercarbohydrate Fruit Preloads Curbed Postprandial Glycemic Excursion in Healthy Subjects. Nutrients 2021; 13:nu13072470. [PMID: 34371978 PMCID: PMC8308803 DOI: 10.3390/nu13072470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of fruit preloads on the acute postprandial glycemic response (PGR) and satiety response of a rice meal in healthy female subjects based on iso-carbohydrate (IC) and hyper-carbohydrate (HC) contents, respectively. The IC test meals including (1) rice preload (R + 35R), (2) orange preload (O + 35R), (3) apple preload (A + 35R) and (4) pear preload (P + 35R), contained 50.0 g available carbohydrates (AC) where the preload contributed 15.0 g and rice provided 35.0 g. The HC meals included (1) orange preload (O + 50R), (2) apple preload (A+50R) and (3) pear preload (P + 50R), each containing 65.0 g AC, where the fruits contributed 15.0 g and rice provided 50.0 g. Drinking water 30 min before the rice meal was taken as reference (W + 50R). All the preload treatments, irrespective of IC or HC meals, resulted in remarkable reduction (p < 0.001) in terms of incremental peak glucose (IPG) and the maximum amplitude of glycemic excursion in 180 min (MAGE0–180), also a significant decrease (p < 0.05) in the area of PGR contributed by per gram of AC (AAC), compared with the W + 50R. Apple elicited the lowest PGR among all test meals, as the A + 35R halved the IPG and slashed the incremental area under the curve in 180 min (iAUC0–180) by 45.7%, while the A + 50R reduced the IPG by 29.7%, compared with the W + 50R. All the preload meals and the reference meal showed comparable self-reported satiety in spite of the difference in AC. In conclusion, pre-meal consumption of three fruits effectively curbed post-meal glycemia even in the case of a 30% extra carbohydrate load.
Collapse
Affiliation(s)
- Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Jiacan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737717
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Wenqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Yixue Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Ruixin Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| |
Collapse
|