1
|
Jayarajan S, Sethi S, Awasthi OP, Sharma A, Bukvički D. Synergistic Influence of Melatonin-Hydrocolloid Coating on Decay and Senescence of Nectarine ( Prunus persica var. nucipersica) during Supermarket Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:822. [PMID: 38592840 PMCID: PMC10974631 DOI: 10.3390/plants13060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Nectarines have remarkable nutritional value, low caloric content, and are rich in antioxidants. However, despite substantial local and global demand, their susceptibility to rapid spoilage during peak summer harvest is limited. To address this issue, the current study investigated the potential benefits of using melatonin (MLT), an antioxidant biomolecule, in combination with edible hydrocolloid coatings like carboxymethylcellulose (CMC) and gum Arabic (G.A.) on 'Snow Queen' nectarine fruits. The nectarines were treated with various combinations of coatings, including 1% and 1.5% CMC, 8% and 10% G.A., and 0.1 mM melatonin. These coated and non-coated samples were stored under standard supermarket conditions (18 ± 1 °C, 85-90% R.H.) for 16 days. The outcomes demonstrated that the most effective treatment was the combination of 1% CMC with 0.1 mM melatonin. This treatment significantly (p ≤ 0.05) reduced the rate of respiration, curbed fruit decay by approximately 95%, minimized weight loss by around 42%, and maintained approximately 39% higher levels of total phenol content and roughly 30% greater antioxidant (AOX) activity. These positive effects were accompanied by preserved firmness and overall quality attributes. Moreover, the treatment extended the shelf life to 16 days through retarding senescence and suppressing the activities of lipoxygenase (LOX) and pectin methylesterase (PME), all without compromising the functional qualities of the nectarine.
Collapse
Affiliation(s)
- Smruthi Jayarajan
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Amity Institute of Horticulture Studies & Research, Amity University, Noida 201301, India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Om Prakash Awasthi
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201303, India
| | - Danka Bukvički
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Shi L, Chen Y, Dong W, Li S, Chen W, Yang Z, Cao S. Melatonin delayed senescence by modulating the contents of plant signalling molecules in postharvest okras. FRONTIERS IN PLANT SCIENCE 2024; 15:1304913. [PMID: 38516664 PMCID: PMC10954822 DOI: 10.3389/fpls.2024.1304913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Okra has been widely cultivated worldwide. Consumers appreciate its nutritional value and delicious taste. However, okra is very perishable after harvest because of rapid senescence and high susceptibility to mechanical injuries, which limits its storage life and reduces consumer acceptance. This study examined the influence of melatonin treatment on senescence process and endogenous plant signalling molecules in postharvest okras. The results indicated that melatonin treatment delayed senescence by increasing the endogenous melatonin content through upregulation of its biosynthetic genes. In addition, the treatment increased the contents of indole-3-acetic acid (IAA) and gibberellin (GA) due to the positive modulation of their metabolic and signalling genes. Furthermore, treated okras exhibited higher levels of γ-aminobutyric acid (GABA) but lower abscisic acid (ABA) content, contributing to the delayed senescence process compared to control. Overall, the findings suggested that melatonin postponed senescence in okras fruit by positively regulating endogenous signalling molecules such as melatonin, IAA, GABA, GA, and ABA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
3
|
Al-Qurashi AD, Awad MA, Elsayed MI, Ali MA. Postharvest melatonin and chitosan treatments retain quality of 'Williams' bananas during ripening. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:84-96. [PMID: 38192706 PMCID: PMC10771425 DOI: 10.1007/s13197-023-05819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/25/2023] [Accepted: 08/12/2023] [Indexed: 01/10/2024]
Abstract
The effect of postharvest dipping treatments with 0.5 mM melatonin (MT) and 1% chitosan (CT) either alone or in combination on quality of pre-climacteric 'Williams' bananas during ripening at ambient conditions were investigated. MT or CT treatments delayed ripening by retaining greener peel, higher firmness, titratable acidity (TA), but lower total soluble solids (TSS) and TSS/TA, weight loss, browning and electrolyte leakage than the control. Total phenol (TPC) and flavonoid contents (TFC) in both peel and pulp increased up to 6 days and then decreased and was higher in treated fruit than the control. Vitamin C content decreased up to 3 days, then increased and was higher in treated fruit than control. MT and CT combination exhibited the highest TPC, TFC and vitamin C contents compared to other treatments. Radical scavenging capacity (RSC) of peel and pulp increased up to 6 days, then decreased and was higher in treated fruit than the control. The treated fruit exhibited lower polyphenoloxidase (PPO) and hydrolytic enzymes but higher peroxidase (POD) activities in both peel and pulp than the control. Postharvest treatments with 0.5 mM MT and 1% CT alone or in combination could be used to retain quality of 'Williams' bananas during ripening.
Collapse
Affiliation(s)
- Adel D. Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed A. Awad
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Mohamed I. Elsayed
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Md. Arfan Ali
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O.Box. 80208, Jeddah, Saudi Arabia
- Pomology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| |
Collapse
|
4
|
Wang J, Zhang H, Hou J, Yang E, Zhao L, Zhou Y, Ma W, Ma D, Li J. Metabolic Profiling and Molecular Mechanisms Underlying Melatonin-Induced Secondary Metabolism of Postharvest Goji Berry ( Lycium barbarum L.). Foods 2023; 12:4326. [PMID: 38231790 DOI: 10.3390/foods12234326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Postharvest decay of goji berries, mainly caused by Alternaria alternata, results in significant economic losses. To investigate the effects of melatonin (MLT) on resistance to Alternaria rot in goji berries, the fruits were immersed in the MLT solutions with varying concentrations (0, 25, 50, and 75 μmol L-1) and then inoculated with A. alternata. The results showed that the fruits treated with 50 μmol L-1 MLT exhibited the lowest disease incidence and least lesion diameter. Meanwhile, endogenous MLT in the fruits treated with 50 μmol L-1 MLT showed higher levels than in the control fruits during storage at 4 ± 0.5 °C. Further, the enzymatic activities and expressions of genes encoding peroxidase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate-CoA ligase, chalcone synthase, chalcone isomerase, and cinnamyl alcohol dehydrogenase were induced in the treated fruit during storage. UPLC-ESI-MS/MS revealed that secondary metabolites in the fruits on day 0, in order of highest to lowest levels, were rutin, p-coumaric acid, chlorogenic acid, ferulic acid, caffeic acid, naringenin, quercetin, kaempferol, and protocatechuic acid. MLT-treated fruits exhibited higher levels of secondary metabolites than the control. In conclusion, MLT treatment contributed to controlling the postharvest decay of goji fruit during storage by boosting endogenous MLT levels, thus activating the antioxidant system and secondary metabolism.
Collapse
Affiliation(s)
- Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Hou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - En Yang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Yueli Zhou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wenping Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Danmei Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiayi Li
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
5
|
Badiche-El Hilali F, Valverde JM, García-Pastor ME, Serrano M, Castillo S, Valero D. Melatonin Postharvest Treatment in Leafy 'Fino' Lemon Maintains Quality and Bioactive Compounds. Foods 2023; 12:2979. [PMID: 37569248 PMCID: PMC10418853 DOI: 10.3390/foods12152979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Spain is a great producer of organic lemon; however, it is necessary to reduce the losses caused by post-harvest diseases. Melatonin (MEL) is a naturally occurring compound with physiological functions in fruit growth and ripening and is able to modulate postharvest ripening and senescence, most of it being concentrated in climacteric fruit. Thus, the aim of this study was to apply MEL to organic lemon fruit with stems and leaves (LEAF) and to organic lemon without those components (LEAFLESS) after harvesting and storage during 21 days at 2 °C to understand the effects of this treatment on the fruit quality. For this purpose, two experiments were carried out. First, MEL was applied at 0.01 mM, 0.1 mM and 1.0 mM by immersion for 15 min on lemon fruits, and the quality parameters and bioactive compounds of the fruit were analysed. Subsequently, a second experiment was carried out where the best concentration (1 mM) was selected and another time (15 and 30 min) was added, with the same quality parameters being analysed. As a result, we observed that all MEL treatments showed positive effects on weight loss reduction, softening (higher fruit firmness), total acidity and lower colour changes. Total phenols increased in MEL-treated lemons, both in peel and juice. For the three concentrations tested, the best efficiency was obtained with MEL at 1.0 mM, while LEAF lemons were the most effective. In conclusion, lemons containing stems and leaves (LEAF) improved preservability by using MEL at 1.0 mM with better organoleptic quality and enhanced phenolic compounds.
Collapse
Affiliation(s)
- Fátima Badiche-El Hilali
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - Juan Miguel Valverde
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - María E. García-Pastor
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - María Serrano
- Department of Applied Biology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - Salvador Castillo
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| | - Daniel Valero
- Department of AgroFood Technology, EPSO-CIAGRO, University Miguel Hernández, Ctra. Beniel km. 3.2, 03312 Orihuela, Alicante, Spain; (F.B.-E.H.); (J.M.V.); (M.E.G.-P.); (S.C.)
| |
Collapse
|
6
|
Pervaiz S, Gul H, Rauf M, Mohamed HI, Ur Rehman K, Wasila H, Ahmad I, Shah ST, Basit A, Ahmad M, Akbar S, Fahad S. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. GESUNDE PFLANZEN 2023. [DOI: 10.1007/s10343-023-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 10/26/2023]
|
7
|
Zulfiqar F, Moosa A, Darras A, Nafees M, Ferrante A, Siddique KHM. Preharvest melatonin foliar treatments enhance postharvest longevity of cut tuberose via altering physio-biochemical traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1151722. [PMID: 37035084 PMCID: PMC10076727 DOI: 10.3389/fpls.2023.1151722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Melatonin (MLT) is a bioactive molecule involved in the physiological functioning of plants. Reports related to preharvest applications of melatonin on the postharvest performance of cut flowers are not available in the literature. MATERIALS & METHODS This study evaluated the effects of different concentrations of exogenous MLT [0 mM (MT0), 0.5 mM (MT1), 0.7 mM (MT2), 1 mM (MT3)] applied preharvest on the physiological characteristics and postharvest performance of cut tuberose, a globally demanded cut flower. RESULTS & DISCUSSION The results revealed that all treatments increased postharvest vase life by up to 4 d. The MT1, MT2, and MT3 treatments increased total soluble proteins (TSP) by 25%, 41%, and 17%, soluble sugars (SS) by 21%, 36%, and 33%, an+d postharvest catalase (CAT) activity by 52%, 66%, and 70%, respectively. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased in all preharvest treatments by up to 23% and 56%, respectively. Proline concentration decreased in all treatments, particularly MT3 (38%). These findings suggest that preharvest MLT treatment is a promising strategy for improving the postharvest quality of cut tuberose.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anastasios Darras
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
9
|
Zhou C, Luo L, Miao P, Dong Q, Cheng H, Wang Y, Li D, Pan C. A novel perspective to investigate how nanoselenium and melatonin lengthen the cut carnation vase shelf. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:982-992. [PMID: 36893613 DOI: 10.1016/j.plaphy.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Nano-selenium (nano-Se) and melatonin (MT) applications confirmed to boost plant growth and resistance. The mechanism of various ratios of nano-Se and MT foliar application postpone the senescence of fresh cut carnation flowers and improve vase life remains unclear. In this study, a combined effect with nano-Se (nano-Se5, 5 mg/L) and MT(MT1, 1 mg/L) was preferable to the control, nano-Se, and MT treatment alone when it came to delaying flower senescence. They enhance the antioxidant ability of carnation flowers by lowering MDA and H2O2 levels, raising SOD and POD concentrations, and lowering procyanidins biosynthesis (catechins and epicatechin). Inducing the biosynthesis of hormonal compounds (salicylic acid, jasmonic acid, and abscisic acid), their combination also boosted the growth of carnations. Biofortification with nano-Se and MT substantially increased the amounts of key lignin biosynthesis pathway metabolites (L-phenylalanine, p-hydroxycinnamic acid, p-coumaric acid, perillyl alcohol, p-Coumaryl alcohol, and cinnamic acid), which may increase stem cellular thickness and facilitate water absorption and transmission. The study hypothesizes that nano-Se and MT synergistic applications act as a new efficient non-toxic preservative to extend the vase life and improve the decorative value of carnations.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Luna Luo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Yuwei Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan, 570228, PR China.
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing, 100193, PR China.
| |
Collapse
|
10
|
Melatonin Treatments Reduce Chilling Injury and Delay Ripening, Leading to Maintenance of Quality in Cherimoya Fruit. Int J Mol Sci 2023; 24:ijms24043787. [PMID: 36835199 PMCID: PMC9960509 DOI: 10.3390/ijms24043787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Spain is the world's leading producer of cherimoya, a climacteric fruit highly appreciated by consumers. However, this fruit species is very sensitive to chilling injury (CI), which limits its storage. In the present experiments, the effects of melatonin applied as dipping treatment on cherimoya fruit CI, postharvest ripening and quality properties were evaluated during storage at 7 °C + 2 days at 20 °C. The results showed that melatonin treatments (0.01, 0.05, 0.1 mM) delayed CI, ion leakage, chlorophyll losses and the increases in total phenolic content and hydrophilic and lipophilic antioxidant activities in cherimoya peel for 2 weeks with respect to controls. In addition, the increases in total soluble solids and titratable acidity in flesh tissue were also delayed in melatonin-treated fruit, and there was also reduced firmness loss compared with the control, the highest effects being found for the 0.05 mM dose. This treatment led to maintenance of fruit quality traits and to increases in the storage time up to 21 days, 14 days more than the control fruit. Thus, melatonin treatment, especially at 0.05 mM concentration, could be a useful tool to decrease CI damage in cherimoya fruit, with additional effects on retarding postharvest ripening and senescence processes and on maintaining quality parameters. These effects were attributed to a delay in the climacteric ethylene production, which was delayed for 1, 2 and 3 weeks for 0.01, 0.1 and 0.05 mM doses, respectively. However, the effects of melatonin on gene expression and the activity of the enzymes involved in ethylene production deserves further research.
Collapse
|
11
|
A Synergistic Effect Based on the Combination of Melatonin with 1-Methylcyclopropene as a New Strategy to Increase Chilling Tolerance and General Quality in Zucchini Fruit. Foods 2022; 11:foods11182784. [PMID: 36140912 PMCID: PMC9498259 DOI: 10.3390/foods11182784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Zucchini fruit are highly sensitive to low temperatures leading to significant peel depressions, increasing weight loss and making them impossible to be commercialized. In this study the effect on the reduction of chilling injury (CI) assaying different postharvest treatments to cv. Cronos was evaluated. We have compared the application of substances such as 1-methylcyclopropene (1-MCP) with the application of a natural origin compound as melatonin (MT), both with demonstrated activity against CI in different vegetal products. The effects of MT (1 mM) by dipping treatment of 1 h and 1-MCP (2400 ppb) have been evaluated on zucchini fruit during 15 days of storage at 4 °C plus 2 days at 20 °C. Treatments applied independently improved some fruit quality parameters in comparison with control fruit but were not able to manage CI even though they mitigated the impact on several parameters. However, when these two separated strategies were combined, zucchini cold tolerance increased with a synergic trend. This synergic effect affected in general all parameters but specially CI, being also the only lot in which zucchini fruit were most effectively preserved. This is the first evidence in which a clear positive effect on zucchini chilling tolerance has been obtained combining these two different strategies. In this sense, the combined effect of 1-MCP and MT could be a suitable tool to reach high quality standards and increasing shelf life under suboptimal temperatures.
Collapse
|
12
|
Zang H, Ma J, Wu Z, Yuan L, Lin ZQ, Zhu R, Bañuelos GS, Reiter RJ, Li M, Yin X. Synergistic Effect of Melatonin and Selenium Improves Resistance to Postharvest Gray Mold Disease of Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:903936. [PMID: 35812947 PMCID: PMC9257244 DOI: 10.3389/fpls.2022.903936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 05/23/2023]
Abstract
Melatonin (MT) is a ubiquitous hormone molecule that is commonly distributed in nature. MT not only plays an important role in animals and humans but also has extensive functions in plants. Selenium (Se) is an essential micronutrient for animals and humans, and is a beneficial element in higher plants at low concentrations. Postharvest diseases caused by fungal pathogens lead to huge economic losses worldwide. In this study, tomato fruits were treated with an optimal sodium selenite (20 mg/L) and melatonin (10 μmol/L) 2 h and were stored for 7 days at room temperature simulating shelf life, and the synergistic effects of Se and MT collectively called Se-Mel on gray mold decay in tomato fruits by Botrytis cinerea was investigated. MT did not have antifungal activity against B. cinerea in vitro, while Se significantly inhibited gray mold development caused by B. cinerea in tomatoes. However, the interaction of MT and Se showed significant inhibition of the spread and growth of the disease, showing the highest control effect of 74.05%. The combination of MT with Se treatment enhanced the disease resistance of fruits by improving the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as increasing the gene expression level of pathogenesis-related (PR) proteins. Altogether, our results indicate that the combination of MT and Se would induce the activation of antioxidant enzymes and increase the expression of PR proteins genes that might directly enhance the resistance in tomato fruit against postharvest pathogenic fungus B. cinerea.
Collapse
Affiliation(s)
- Huawei Zang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Jiaojiao Ma
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Zhilin Wu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhi-Qing Lin
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, Parlier, CA, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Miao Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agriculture University, Hefei, China
- The Central Area of Anhui Province Station for Integrative Agriculture, Research Institute of New Rural Development, Anhui Agricultural University, Hefei, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Bio-Engineering Research Centre of Selenium, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants (Basel) 2022; 11:antiox11040634. [PMID: 35453319 PMCID: PMC9028855 DOI: 10.3390/antiox11040634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a multiple-function molecule that was first identified in animals and later in plants. Plant melatonin regulates versatile processes involved in plant growth and development, including seed germination, root architecture, flowering time, leaf senescence, fruit ripening, and biomass production. Published reviews on plant melatonin have been focused on two model plants: (1) Arabidopsis and (2) rice, in which the natural melatonin contents are quite low. Efforts to integrate the function and the mechanism of plant melatonin and to determine how plant melatonin benefits human health are also lacking. Barley is a unique cereal crop used for food, feed, and malt. In this study, a bioinformatics analysis to identify the genes required for barley melatonin biosynthesis was first performed, after which the effects of exogenous melatonin on barley growth and development were reviewed. Three integrated mechanisms of melatonin on plant cells were found: (1) serving as an antioxidant, (2) modulating plant hormone crosstalk, and (3) signaling through a putative plant melatonin receptor. Reliable approaches for characterizing the function of barley melatonin biosynthetic genes and to modulate the melatonin contents in barley grains are discussed. The present paper should be helpful for the improvement of barley production under hostile environments and for the reduction of pesticide and fungicide usage in barley cultivation. This study is also beneficial for the enhancement of the nutritional values and healthcare functions of barley in the food industry.
Collapse
|
14
|
Hernández-Ruiz J, Ruiz-Cano D, Giraldo-Acosta M, Cano A, Arnao MB. Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules 2022; 27:1523. [PMID: 35268624 PMCID: PMC8911641 DOI: 10.3390/molecules27051523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants are of great interest for human consumption due to their wide variety and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred varieties of 6-8 genera are extensively cultivated. One of the most interesting aspects is its high content of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic properties that make them healthy. The most relevant Brassicaceae studies related to food and melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed. The beneficial effect of melatonin treatments on the organoleptic properties of these commonly consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In addition, an integrated model indicating the role of melatonin on the organoleptic properties, the biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with anti-oncogenic activity is presented.
Collapse
Affiliation(s)
| | | | | | | | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (D.R.-C.); (M.G.-A.); (A.C.)
| |
Collapse
|
15
|
Ali S, Gill RA, Shafique MS, Ahmar S, Kamran M, Zhang N, Riaz M, Nawaz M, Fang R, Ali B, Zhou W. Role of phytomelatonin responsive to metal stresses: An omics perspective and future scenario. FRONTIERS IN PLANT SCIENCE 2022; 13:936747. [PMID: 36147242 PMCID: PMC9486320 DOI: 10.3389/fpls.2022.936747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 05/03/2023]
Abstract
A pervasive melatonin (N-acetyl-5-methoxytryptamine) reveals a crucial role in stress tolerance and plant development. Melatonin (MT) is a unique molecule with multiple phenotypic expressions and numerous actions within the plants. It has been extensively studied in crop plants under different abiotic stresses such as drought, salinity, heat, cold, and heavy metals. Mainly, MT role is appraised as an antioxidant molecule that deals with oxidative stress by scavenging reactive oxygen species (ROS) and modulating stress related genes. It improves the contents of different antioxidant enzyme activities and thus, regulates the redox hemostasis in crop plants. In this comprehensive review, regulatory effects of melatonin in plants as melatonin biosynthesis, signaling pathway, modulation of stress related genes and physiological role of melatonin under different heavy metal stress have been reviewed in detail. Further, this review has discussed how MT regulates different genes/enzymes to mediate defense responses and overviewed the context of transcriptomics and phenomics followed by the metabolomics pathways in crop plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Sunny Ahmar
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Basharat Ali,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
- *Correspondence: Weijun Zhou,
| |
Collapse
|