1
|
Ahmad I, Lopez-Martinez JM, Sadiq MB. Impact of high-pressure processing on rheological, dispersive, and sensorial quality attributes of oat milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:508-518. [PMID: 39917350 PMCID: PMC11794928 DOI: 10.1007/s13197-024-06040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 02/09/2025]
Abstract
Oat milk has attracted considerable consumer interest because of its high nutritional value, dietary fiber content, and phytochemical content. High-pressure processing (HPP) increases the shelf life of food while maintaining its nutritional value. However, HPP is known to induce rheological changes. Therefore, this study aimed to assess the rheological and microbiological characteristics of oat milk and the effect of HPP on various pressure levels. Oat milk was prepared and then treated with high-pressure processing (300-600 MPa) and heat. Subsequently, it was evaluated for its rheological properties, color, microbial content, and sensory attributes. Oat milk processed at 600 MPa was found to have improved viscosity (0.015-0.99, Pa.s), color, protein content, and homogenization compared to other treatments (p ≤ 0.05). The HPP inactivated mesophilic and psychotropic microorganisms, resulting in a 5-log drop in total microbial counts at 600 MPa. The panelists perceived that the sensory characteristics of the sample treated at 600 MPa were similar to those of samples that had been heat-treated (p < 0.05). High-pressure processing at 600 MPa effectively inhibited vegetative cells without negatively impacting the rheological properties of oat milk, in contrast to heat-treated milk. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06040-x.
Collapse
Affiliation(s)
- Imran Ahmad
- Food, Agriculture and Bio-innovation Lab (FABiL), Chaplin School of Hospitality and Tourism Management, Florida International University, 3000 NE 151st St., North Miami, FL 33027 USA
| | - Julieta Melissa Lopez-Martinez
- Food, Agriculture and Bio-innovation Lab (FABiL), Chaplin School of Hospitality and Tourism Management, Florida International University, 3000 NE 151st St., North Miami, FL 33027 USA
| | - Muhammad Bilal Sadiq
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600 Pakistan
| |
Collapse
|
2
|
Ding J, Li Y, Zhong L, Lu X, Bao Z, Lin S. Unveiling the regulatory mechanism of pulsed electric field modified instant soy milk powder: Exploring allergenicity, conformation, and epitopes. Food Chem 2025; 465:142071. [PMID: 39556925 DOI: 10.1016/j.foodchem.2024.142071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glycinin and β-conglycinin are prominent allergens, limiting the safety of soy and soy products in a wide range of applications. The study investigated the effects of pulsed electric field (PEF) on allergenicity, conformation, and epitopes of instant soy milk powder (ISMP) and the simulated digestion products (SDP), and to preliminarily elucidate the regulatory mechanism using multispectroscopy and peptidomics. The allergenicity of SDP and ISMP treated at 20 and 30 kV/cm were reduced and conformations were altered, especially decrease or disappearance of α-helix, enhancement of random coil, and reduction of hydrogen and disulfide bonds in SDP (P < 0.05). Furthermore, their digestion-resistant linear epitopes (DRLE) were differed, such as RSQSDN, EEEEQRQQ, and SRNPIY, therein N and P might be critical amino acids affecting their allergenicity. Overall, PEF reduced the ISPM allergenicity by altering conformations, increasing sensitivities to gastrointestinal digestive enzymes, and modulating binding sites to IgE by covering or disrupting linear epitopes.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, PR China
| | - Yaru Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, PR China
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co., Ltd., Ganzhou 341100, PR China
| | - Xinqing Lu
- Dalian Dingtong Technology Development Co., Ltd., Dalian 116081, PR China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, PR China; Ganzhou Quanbiao Biological Technology Co., Ltd., Ganzhou 341100, PR China.
| |
Collapse
|
3
|
Qu X, Ma Z, Wu X, Lv L. Recent Advances of Processing and Detection Techniques on Crustacean Allergens: A Review. Foods 2025; 14:285. [PMID: 39856951 PMCID: PMC11764718 DOI: 10.3390/foods14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Crustaceans are delicious and highly nutritional food. However, crustaceans are one of the main food allergens, causing severe public health issues. Thus, it is important to increase the knowledge on crustacean allergens and protect the health of sensitized individuals. This review systematically summarizes the basic information on major crustacean allergens' characteristics, structures, and function. It also summarizes the latest evaluation and detection methods of crustacean allergens. In addition, various processing techniques to alleviate crustacean's allergenicity are discussed and compared. A host of multiplex approaches as innovative research is attractive to decrease crustacean allergenicity. In addition, the strategies to address the risk of crustacean allergens are also reviewed and discussed in detail. This review provides updates and new findings on crustacean allergens, which helps better understand crustacean allergy and provide novel strategies for its prevention and management.
Collapse
Affiliation(s)
- Xin Qu
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road Shibei District, Qingdao 266033, China;
| | - Zekun Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
4
|
Pang L, Li R, Chen C, Huang Z, Zhang W, Man C, Yang X, Jiang Y. Combined processing technologies: Promising approaches for reducing Allergenicity of food allergens. Food Chem 2025; 463:141559. [PMID: 39393111 DOI: 10.1016/j.foodchem.2024.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Food allergy is a severe threat to human health. Although processing technologies are widely used to reduce allergenicity, hypoallergenic foods produced by a single processing technology cannot satisfy consumer demands. Combined processing technology (CPT) is a promising strategy for efficiently producing high-quality hypoallergenic foods. This paper reviews the effects of CPT on the allergenicity of food allergens from three aspects: physical-biochemical CPT, biochemical-biochemical CPT, and physical-physical CPT. The synergistic mechanisms, strengths, and limitations of these technologies were discussed. It was found that CPT is generally more effective than single-processing technologies. Physical-biochemical CPT is the most widely studied and well-established because physical and biochemical processing technologies complement each other and effectively disrupt conformational and linear epitopes. Biochemical-biochemical CPT primarily disrupts linear epitopes, but most methods are time-consuming. Physical-physical CPT is the least studied; they mainly disrupt conformational epitopes and only rarely affect linear epitopes.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
5
|
Lei YT, Meng FB, Jiao XL, Tang YM, Wu QJ, Li YC. Effects of UV-A irradiation and microbial fermentation on the physicochemical, microstructure and functional properties of okara. Food Res Int 2025; 200:115445. [PMID: 39779102 DOI: 10.1016/j.foodres.2024.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content. Saccharomyces cerevisiae fermentation (YUO), Lactiplantibacillus plantarum fermentation (LUO), and mixed fermentation (MUO) followed by UV-A irradiation of okara significantly reduced the IDF/SDF ratio to 2.48, 1.86 and 2.25, respectively. The modifications significantly reduced the lipid and total nitrogen contents and decreased the E-nose sensor values associated with beany odors. The combined treatment of microbial fermentation and UV-A irradiation partially destroyed the crystalline, resulting in a loose and porous surface, further enhanced the functional properties of water holding capacity, water solubility, antioxidant properties and cation exchange capacity. In particular, the DPPH and ABTS scavenging abilities of okara subject to microbial fermentation followed by UV-A irradiation were greater than that of other samples. These results indicate that the treatment sequence is very important for the functional properties of okara and microbial fermentation followed by UV-A irradiation is most conducive to improve the physicochemical properties and functionalities of okara.
Collapse
Affiliation(s)
- Ya-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiao-Lei Jiao
- Neijiang Academy of Agricultural Sciences, Neijiang 641099, PR China
| | - Yuan-Mou Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi-Jun Wu
- Longchang Siyu Food Co., Ltd, Neijiang 642150, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
6
|
Pang L, Chen C, Liu M, Huang Z, Zhang W, Shi J, Yang X, Jiang Y. A comprehensive review of effects of ultrasound pretreatment on processing technologies for food allergens: Allergenicity, nutritional value, and technofunctional properties and safety assessment. Compr Rev Food Sci Food Saf 2025; 24:e70100. [PMID: 39746865 DOI: 10.1111/1541-4337.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Many proteins are essential food components but also major allergens. Reducing protein allergenicity while preserving its nutritional value and technofunctional properties has always been the goal of the food industry. Ultrasound (US) is a green processing method for modifying proteins. In addition, US pretreatment combined with other processing techniques (USPCT) has been increasingly used in the food industry. Therefore, this review presents an overview of recent advances in the impact of US and USPCT (US-combined enzymatic hydrolysis [USCE], US-combined glycation [USCG], and US-combined polyphenol conjugation [USCP]) on the allergenicity, nutritional value, and technofunctional properties of food allergens. We discuss the potential mechanisms, advantages, and limitations of these technologies for improving the properties of proteins and analyze their safety, challenges, and corresponding solutions. It was found that USPCT can improve the efficiency and effectiveness of different methods, which in turn can be more effective in reducing protein allergenicity and improving the nutritional value and functional properties of processed products. Future research should start with new processing methods, optimization of process conditions, industrial production, and the use of new research techniques to promote technical progress. This paper is expected to provide reference for the development of high-quality hypoallergenic protein raw materials.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ming Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
7
|
Qiu C, Meng Y, Zhang Z, Li X, McClements DJ, Li G, Jiang L, Wen J, Jin Z, Ji H. Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review. Compr Rev Food Sci Food Saf 2025; 24:e70095. [PMID: 39746860 DOI: 10.1111/1541-4337.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaxu Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Guanghua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Ashaolu TJ, Greff B, Varga L. The structure-function relationships and techno-functions of β-conglycinin. Food Chem 2025; 462:140950. [PMID: 39213968 DOI: 10.1016/j.foodchem.2024.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
β-conglycinin (β-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of β-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of β-CG, particularly the spatial arrangement of its α, α', and β subunits, influence its functional properties. Considering these aspects, β-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores β-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of β-CG in the healthcare sector and the food industry is evident.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Babett Greff
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| | - László Varga
- Department of Food Science, Széchenyi István University, Mosonmagyaróvár 9200, Hungary
| |
Collapse
|
9
|
Harahap IA, Suliburska J, Karaca AC, Capanoglu E, Esatbeyoglu T. Fermented soy products: A review of bioactives for health from fermentation to functionality. Compr Rev Food Sci Food Saf 2025; 24:e70080. [PMID: 39676350 PMCID: PMC11647071 DOI: 10.1111/1541-4337.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance. These fermented products provide bioactive profiles with unique health-promoting properties. This review critically examines the bioactive compounds generated through fermentation, focusing on their bioconversion pathways in the gastrointestinal tract and their metabolic implications for human health. Recent consumer demand for novel food ingredients with additional biological benefits has fueled research into advanced extraction techniques, enhancing the functional applications of bioactive compounds from these soy-based products. This review further explores innovations in extraction methods that improve bioactive yield and sustainability, reinforcing the applicability of these compounds in health-promoting food interventions. The originality of this review lies in its in-depth exploration of the gastrointestinal bioconversion of fermented soy bioactive compounds alongside the latest sustainable extraction methods designed to optimize their use. Future research should aim to refine fermentation and extraction processes, investigate synergistic microbial interactions, and develop environmentally sustainable production methods. These efforts have the potential to position fermented soy products as essential contributors to global nutritional security and sustainable food systems, addressing both public health and environmental needs.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
- Research Organization for HealthNational Research and Innovation AgencyBogorIndonesia
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
| |
Collapse
|
10
|
Xing G, Liu J, Wang R, Wu Y. Assessment of transglutaminase catalyzed cross-linking on the potential allergenicity and conformation of heterologous protein polymers. J Food Sci 2024; 89:9257-9270. [PMID: 39686659 DOI: 10.1111/1750-3841.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Transglutaminase (TGase)-mediated cross-linking has gained significant attention due to its potential to reduce the allergenicity of food proteins. This study investigates the effects of TGase cross-linking on allergenicity and conformational modifications in a dual-protein system comprising soy protein isolate (SPI) and β-lactoglobulin (β-LG). The results showed that TGase cross-linking effectively decreased the allergenic potential of both SPI and β-LG, with a more pronounced reduction observed in the allergenicity of soy protein in the dual-protein system. SDS-PAGE analysis revealed that the 7S and 11S subunits of soy protein were more easily cross-linked than β-LG. Secondary structure analysis indicated that TGase treatment disrupted β-sheet structures, increased the content of random coils, and enhanced protein flexibility. Ultraviolet absorption and intrinsic fluorescence analyses confirmed these structural alterations, with TGase treatment exposing additional aromatic amino acids. A reduction in free sulfhydryl groups and altered intermolecular forces further corroborated the occurrence of cross-linking. These findings suggest that TGase-mediated cross-linking effectively reduced the allergenicity of SPI and β-LG by modifying their conformations, offering potential strategies for the development of hypoallergenic dual-protein food products. PRACTICAL APPLICATION: This study has practical applications in the food industry to develop hypoallergenic food products, particularly those that combine soy and dairy proteins. By using TGase to cross-link these proteins, the allergenicity can be reduced, resulting in products that are safer for consumers with food allergies.
Collapse
Affiliation(s)
- Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, P.R. China
| | - Jia Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, P.R. China
| | - Ruohan Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, P.R. China
| | - Yitong Wu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, P.R. China
| |
Collapse
|
11
|
Zhang X, Zhang Z, Shen A, Zhang T, Jiang L, El-Seedi H, Zhang G, Sui X. Legumes as an alternative protein source in plant-based foods: Applications, challenges, and strategies. Curr Res Food Sci 2024; 9:100876. [PMID: 39435454 PMCID: PMC11491897 DOI: 10.1016/j.crfs.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Since animal proteins may pose a threat to the global environment and human health, the development of alternative proteins has become an inevitable trend in the future. Legumes are considered to be one of the most promising sources of sustainable alternative animal proteins. Legume proteins are considered to exhibit excellent processing properties, including emulsification, gelation, and foaming, which have led to their widespread use in the food industry. Moreover, legume proteins are not only taken as substitutes for meat proteins, they also play an essential role in novel plant-based foods (meat, dairy, fermented food, and fat). However, there are few comprehensive overview studies on the application of legume proteins in plant-based foods. Therefore, this review provides a general overview of the main sources, functional properties, and applications in plant-based foods of legume proteins. In addition, challenges to the application of legume proteins in plant-based foods and specific strategies to address these challenges are presented. The review may provide some references for the further application of legume proteins in novel plant-based foods.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaonan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ao Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden
| | - Guohua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Pi X, Liu J, Ren S, Zhu L, Li B, Zhang B. Research progress in ultrasound and its assistance treatment to reduce food allergenicity: Mechanisms, influence factor, application and prospect. Int J Biol Macromol 2024; 278:134687. [PMID: 39137859 DOI: 10.1016/j.ijbiomac.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Food allergy is a serious public health problem, which is mainly induced by food allergens (mainly allergenic proteins). Ultrasound can change protein structure, suggesting its potential to decrease food allergenicity. The review concluded the mechanism and influence factors of ultrasound to reduce food allergenicity. The effects of ultrasound alone on some major allergenic foods such as tree nuts, shellfish, fish, egg, soy, milk, and wheat were also discussed. Moreover, ultrasound pre- and post-treatments were combined with heating, glycation, germination, hydrolysis, fermentation, irradiation and polyphenol treatment for reducing food allergenicity were also evaluated. It was found that ultrasound induced structural changes even degradation of protein to reduce the allergenicity mainly due to cavitation effects. The reduction of allergenicity through ultrasound alone was affected by ultrasound power, time, frequency and food types, while, apart from these factors, it was affected by ultrasound order and the assisted technologies conditions during ultrasound-assisted technologies. Compared to ultrasound alone treatment, the ultrasound-assisted technology exhibited high efficiency of allergenicity reduction because ultrasound treatment caused protein unfolding to accelerate allergen modification of the assisted technologies for masking and disrupting more epitopes. Thus, ultrasound treatment, especially ultrasound-assisted technologies under appropriate conditions, was promising for producing hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Siyu Ren
- Westa College, Southwest University, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Bowen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
13
|
Xing G, Yang S, Huang L, Liu S, Wan X. Effect of transglutaminase crosslinking combined with lactic fermentation on the potential allergenicity and conformational structure of soy protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7977-7984. [PMID: 38817117 DOI: 10.1002/jsfa.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Food allergies are a growing concern worldwide, with soy proteins being important allergens that are widely used in various food products. This study investigated the potential of transglutaminase (TGase) and lactic acid bacteria (LAB) treatments to modify the allergenicity and structural properties of soy protein isolate (SPI), aiming to develop safer soy-based food products. RESULTS Treatment with TGase, LAB or their combination significantly reduced the antibody reactivity of β-conglycinin and the immunoglobulin E (IgE) binding capacity of soy protein, indicating a decrease in allergenicity. TGase treatment led to the formation of high-molecular-weight aggregates, suggesting protein crosslinking, while LAB treatment resulted in partial protein hydrolysis. These structural changes were confirmed by Fourier transform infrared spectroscopy, which showed a decrease in β-sheet content and an increase in random coil and β-turn contents. In addition, changes in intrinsic fluorescence and ultraviolet spectroscopy were also observed. The alterations in protein interaction and the reduction in free sulfhydryl groups highlighted the extensive structural modifications induced by these treatments. CONCLUSION The synergistic application of TGase and LAB treatments effectively reduced the allergenicity of SPI through significant structural modifications. This approach not only diminished antibody reactivity of β-conglycinin and IgE binding capacity of soy protein but also altered the protein's primary, secondary and tertiary structures, suggesting a comprehensive alteration of SPI's allergenic potential. These findings provide a promising strategy for mitigating food allergy concerns and lay the foundation for future research on food-processing techniques aimed at allergen reduction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
| | - Siran Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Sitong Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
- Department of Kinesiology, Health, Food and Nutrition Sciences, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| | - Xinyi Wan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, People's Republic of China
- Department of Kinesiology, Health, Food and Nutrition Sciences, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| |
Collapse
|
14
|
Zhou W, Geng Q, Zhang Y, Zhou X, Wu Z, Chen H, El-Sohaimy S. The flavonoid-allergen interaction and its influence on allergenicity. FOOD BIOSCI 2024; 61:104939. [DOI: 10.1016/j.fbio.2024.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Pi X, Zhu L, Liu J, Zhang B. Effect of Thermal Processing on Food Allergenicity: Mechanisms, Application, Influence Factor, and Future Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20225-20240. [PMID: 39254084 DOI: 10.1021/acs.jafc.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thermally processed foods are essential in the human diet, and their induced allergic reactions are also very common, seriously affecting human health. This review covers the effects of thermal processing on food allergenicity, involving boiling, water/oil bath heating, roasting, autoclaving, steaming, frying, microwave heating, ohmic heating, infrared heating, and radio frequency heating. It was found that thermal processing decreased the protein electrophoretic band intensity (except for infrared heating and radio frequency heating) responsible for destruction of linear epitopes and changed the protein structure responsible for the masking of linear/conformational epitopes or the destruction of conformational epitopes, thus decreasing food allergenicity. The outcome was related to thermal processing (e.g., temperature, time) and food (e.g., types, pH) condition. Of note, as for conventional thermal processing, it is necessary to control the generation of the advanced glycation end products in roasting/baking and frying, and the increase of structural flexibility in boiling and water/oil bath heating, autoclaving, and steaming must be controlled; otherwise, it might increase food allergenicity. As for novel thermal processing, the temperature nonuniformity of microwave and radio frequency heating, low penetration of infrared heating, and unwanted metal ion production of ohmic heating must be considered; otherwise, it might be the nonuniformity and low effect of allergenicity reduction and safety problems.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| | - LiLin Zhu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| |
Collapse
|
16
|
Kim GH, Chin KB. Effects of faba bean protein isolate on rheological properties of pork myofibrillar protein gels and quality characteristics of pork low-fat model sausages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6322-6329. [PMID: 38520300 DOI: 10.1002/jsfa.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND This study aimed to assess the effect of faba bean (Vicia faba L.) protein isolate (FBPI) on the rheological properties of pork myofibrillar protein gels (MPGs) and the quality characteristics of pork low-fat model sausages (LFMSs). RESULTS Pork MPGs with 5 or 10 g kg-1 FBPI had higher cooking yield, gel strength, and viscosity than controls. The addition of FBPI to MPGs increased the protein surface hydrophobicity and decreased sulfhydryl groups. Adding FBPI to MPGs changed the protein profile and microstructure. The cooking loss and expressible moisture of LFMSs with 5, 10, or 15 g kg-1 FBPI were lower than those of controls and showed similar results to those with 15 g kg-1 soy protein isolate (SPI). Hardness values of LFMSs with FBPI and SPI were no different, and were higher than those of controls. CONCLUSION The addition of FBPI potentially improves rheological properties of MPGs and the functional properties of LFMSs, including water-holding capacity and textural properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geon Ho Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
17
|
Pi X, Zhu L, Wang Y, Sun F, Zhang B. Effect of the Combined Ultrasound with Other Technologies on Food Allergenicity: Ultrasound before, under, and after Other Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16095-16111. [PMID: 38984512 DOI: 10.1021/acs.jafc.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Food allergies are a main public health disease in the world. Ultrasound is an environmentally friendly technology that typically leads to protein unfolding and loss of protein structure, which means it has the potential to be combined with other technologies to achieve a great reduction of allergenicity in foods. This review concludes the effects of the combined ultrasound with other technologies on food allergenicity from three combinations: ultrasound before other technologies, ultrasound under other technologies, and ultrasound after other technologies. Each combination affects food allergenicity through different mechanisms: (1) as for ultrasound before other technologies, ultrasound pretreatment can unfold and lose the protein structure to improve the accessibility of other technologies to epitopes; (2) as for ultrasound under other technologies, ultrasound can continuously affect the accessibility of other technologies to epitopes; (3) as for ultrasound after other technologies, ultrasound further induces structural changes to mask and disrupt the epitopes. The reduction of allergenicity is related to the ultrasound/other technologies conditions and food types/cultivars, etc. The comparison of ultrasound before, under, and after other technologies to decrease food allergenicity should be further investigated in the future. The combination of ultrasound with other technologies is promising to produce hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yixuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Farong Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
18
|
Xing G, Hui T, Liu J, Yang S. Impact of Transglutaminase-Mediated Crosslinking on the Conformational Changes in a Dual-Protein System and IgE Reactivity of Soy Protein. Molecules 2024; 29:3371. [PMID: 39064949 PMCID: PMC11280011 DOI: 10.3390/molecules29143371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Transglutaminase (TGase)-catalyzed crosslinking has gained substantial traction as a novel strategy for reducing allergenic risk in food proteins, particularly within the realm of hypoallergenic food production. This study explored the impact of TGase crosslinking on conformational changes in a binary protein system composed of soy protein isolate (SPI) and sodium caseinate (SC) at varying mass ratios (10:0, 7:3, 5:5, 3:7 (w/w)). Specifically, the immunoglobulin E (IgE) binding capacity of soy proteins within this system was examined. Prolonged TGase crosslinking (ranging from 0 h to 15 h) resulted in a gradual reduction in IgE reactivity across all SPI-SC ratios, with the order of IgE-binding capability as follows: SPI > SPI5-SC5 > SPI7-SC3 > SPI3-SC7. These alterations in protein conformation following TGase crosslinking, as demonstrated by variable intrinsic fluorescence, altered surface hydrophobicity, increased ultraviolet absorption and reduced free sulfhydryl content, were identified as the underlying causes. Additionally, ionic bonds were found to play a significant role in maintaining the structure of the dual-protein system after crosslinking, with hydrophobic forces and hydrogen bonds serving as supplementary forces. Generally, the dual-protein system may exhibit enhanced efficacy in reducing the allergenicity of soy protein.
Collapse
Affiliation(s)
- Guangliang Xing
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tianran Hui
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
- UCL Division of Medicine, University College London, London WC1E 6BT, UK
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | - Jia Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Siran Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
19
|
Diana Kerezsi A, Jacquet N, Lelia Pop O, Othmeni I, Figula A, Francis F, Karamoko G, Karoui R, Blecker C. Impact of pilot-scale microfluidization on soybean protein structure in powder and solution. Food Res Int 2024; 188:114466. [PMID: 38823863 DOI: 10.1016/j.foodres.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of β-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in β-sheet and the increase in β-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, β-sheet and β-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.
Collapse
Affiliation(s)
- Andreea Diana Kerezsi
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania.
| | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Ines Othmeni
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Antoine Figula
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
20
|
Meng X, Tu ZC, Wen PW, Hu YM, Wang H. Investigating the Mechanism of Microwave-Assisted Enzymolysis Synergized with Magnetic Bead Adsorption for Reducing Ovalbumin Allergenicity through Biomass Spectrometry Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833376 DOI: 10.1021/acs.jafc.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Ping-Wei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
21
|
Yun Z, Li J, Zhu W, Yuan X, Zhao J, Liao M, Ma L, Chen F, Hu X, Ji J. Effects of Chlorogenic Acid on Lowering IgE-Binding Capacity of Soybean 7S: Comparison between Covalent and Noncovalent Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12270-12280. [PMID: 38743450 DOI: 10.1021/acs.jafc.4c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.
Collapse
Affiliation(s)
- Ze Yun
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jiahao Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Wenyue Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Minjie Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
22
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
23
|
Ding J, Qi L, Zhong L, Shang S, Zhu C, Lin S. Conformation-Activity Mechanism of Alcalase Hydrolysis for Reducing In Vitro Allergenicity of Instant Soy Milk Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10627-10639. [PMID: 38664940 DOI: 10.1021/acs.jafc.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and β-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from β-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Shan Shang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
24
|
Mostashari P, Mousavi Khaneghah A. Sesame Seeds: A Nutrient-Rich Superfood. Foods 2024; 13:1153. [PMID: 38672826 PMCID: PMC11049391 DOI: 10.3390/foods13081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sesame seeds (Sesamum indicum L.) have been cultivated for thousands of years and have long been celebrated for their culinary versatility. Beyond their delightful nutty flavor and crunchy texture, sesame seeds have also gained recognition for their remarkable health benefits. This article provides an in-depth exploration of the numerous ways in which sesame seeds contribute to overall well-being. Sesame seeds are a powerhouse of phytochemicals, including lignans derivatives, tocopherol isomers, phytosterols, and phytates, which have been associated with various health benefits, including the preservation of cardiovascular health and the prevention of cancer, neurodegenerative disorders, and brain dysfunction. These compounds have also been substantiated for their efficacy in cholesterol management. Their potential as a natural source of beneficial plant compounds is presented in detail. The article further explores the positive impact of sesame seeds on reducing the risk of chronic diseases thanks to their rich polyunsaturated fatty acids content. Nevertheless, it is crucial to remember the significance of maintaining a well-rounded diet to achieve the proper balance of n-3 and n-6 polyunsaturated fatty acids, a balance lacking in sesame seed oil. The significance of bioactive polypeptides derived from sesame seeds is also discussed, shedding light on their applications as nutritional supplements, nutraceuticals, and functional ingredients. Recognizing the pivotal role of processing methods on sesame seeds, this review discusses how these methods can influence bioactive compounds. While roasting the seeds enhances the antioxidant properties of the oil extract, certain processing techniques may reduce phenolic compounds.
Collapse
Affiliation(s)
- Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, Saint Petersburg 191002, Russia
| |
Collapse
|
25
|
Du T, Xiong S, Wang L, Liu G, Guan Q, Xie M, Xiong T, Huang J. Two-stage fermentation of corn and soybean meal mixture by Bacillus subtilis and Lactobacillus acidophilus to improve feeding value: optimization, physicochemical property, and microbial community. Food Sci Biotechnol 2024; 33:1207-1219. [PMID: 38440689 PMCID: PMC10908692 DOI: 10.1007/s10068-023-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 03/06/2024] Open
Abstract
Microbial treatment can reduce the antinutritional factors and allergenic proteins in corn-soybean meal mixture (CSMM), but the role of the microbial community in hypoallergenicity and digestibility during the fermentation process remains unclear. Therefore, the fermentation strains of Bacillus and LAB were determined, and the compatibility and fermentation process of two-stage solid fermentation composite bacteria were optimized, and the dynamic changes in physicochemical property and microbial community during two-stage fermentation were investigated. Results showed that Bacillus subtilis NCUBSL003 and Lactobacillus acidophilus NCUA065016 were the best fermentation combinations. The optimal fermentation conditions were inoculum 7.14%, solid-liquid ratio of 1:0.88 and fermentation time of 74.30 h. The contents of TI, β-conglycinin and glycinin decreased significantly after fermentation. Besides, TCA-SP, small peptides and FAA increased. Bacillus and Lactobacillus were the main genera. Pathogenic bacteria genera were inhibited effectively. This study suggests the feasibility of two-stage fermentation in improving the nutrient values and safety of the CSMM. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01426-7.
Collapse
Affiliation(s)
- Tonghao Du
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 China
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047 Jiangxi China
| | - Shijin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 China
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047 Jiangxi China
| | - Li Wang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, 602 Nanlian Road, Nanchang, 330200 Jiangxi China
| | - Guangxian Liu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, 602 Nanlian Road, Nanchang, 330200 Jiangxi China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 China
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047 Jiangxi China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 China
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047 Jiangxi China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 China
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047 Jiangxi China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, 602 Nanlian Road, Nanchang, 330200 Jiangxi China
| |
Collapse
|
26
|
Li P, Sheng L, Ye Y, Wang JS, Geng S, Ning D, Sun X. Allergenicity of alternative proteins: research hotspots, new findings, evaluation strategies, regulatory status, and future trends: a bibliometric analysis. Crit Rev Food Sci Nutr 2024:1-12. [PMID: 38189352 DOI: 10.1080/10408398.2023.2299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As the world population rises, the demand for protein increases, leading to a widening gap in protein supply. There is an unprecedented interest in the development of alternative proteins, but their allergenicity has raised consumer concerns. This review aims to highlight and correlate the current research status of allergenicity studies on alternative proteins based on previously published studies. Current research keywords, hotspots and trends in alternative protein sensitization were analyzed using a mixed-method approach that combined bibliometric analysis and literature review. According to the bibliometric analysis, current research is primarily focused on food science, agriculture, and immunology. There are significant variations in the type and amount of allergens found in alternative proteins. A significant amount of research has been focused on studying plant-based proteins and the cross-reactivity of insect proteins. The allergenicity of alternative proteins has not been studied extensively or in depth. The allergenicity of other alternative proteins and the underlying mechanisms warrant further study. In addition, the lack of a standardized allergy assessment strategy calls for additional efforts by international organizations and collaborations among different countries. This review provides new research and regulatory perspectives for the safe utilization of alternative proteins in human food systems.
Collapse
Affiliation(s)
- Peipei Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Deli Ning
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| |
Collapse
|
27
|
Fu Y, Guo X, Li W, Simpson BK, Rui X. Construction of hypoallergenic microgel by soy major allergen β-conglycinin through enzymatic hydrolysis and lactic acid bacteria fermentation. Food Res Int 2024; 175:113733. [PMID: 38128990 DOI: 10.1016/j.foodres.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Soy allergenicity is a public concern, and the combination of multiple processing methods may be a promising strategy for reducing soy allergenicity. In this study, a novel two-step enzymatic hydrolysis followed by lactic acid bacteria fermentation was proposed for the construction of hypoallergenic soybean protein microgel. β-Conglycinin was used as the main soy allergen. The effects of different enzymatic hydrolysis (Alcalase, Neutrase, and Protamex) and LAB fermentation on β-conglycinin microgel formation and its immunoreactivity were investigated. Results showed that the use of different enzymes and the attainment of different degrees of hydrolysis affected the particle distribution and zeta potential in the microgels and leads to differences in microstructure and immunoreactivity. All hydrolysates compared with intact protein accelerated the formation of gel during LAB fermentation. Among the three assayed enzymes, fermented Protamex hydrolysates at 60 min (PF-60) demonstrated a microgel with an overall reduced average particle size (741.20±7.18 nm), lower absolute values of zeta potential (10.43±0.65 mV), and regular gel network. The antigenicity and IgE-binding capacity decreased to the lowest value of 0.30 % and 6.93 %, respectively. Peptidomics and immunoinformatic analysis suggested that PF-60 disrupted 17/30, 16/44, and 23/75 epitopes in the α, α', and β subunits, respectively. Unlike the LAB-fermented unhydrolyzed β-conglycinin disrupted epitopes mostly located at the loop domain, PF-60 primarily promoted the exposure and disruption of allergen epitopes with β-sheet structure located at the core barrel domain. These findings can provide new perspectives on the preparation of hypoallergenic soybean-gel products on edible particulate systems.
Collapse
Affiliation(s)
- Yumeng Fu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Xinran Guo
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald, Quebec, Canada
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, PR China.
| |
Collapse
|
28
|
|
29
|
Calcinai L, Prandi B, Faccini A, Puxeddu I, Tedeschi T. Molecular characterization and allergenicity assessment of different samples of Mung Bean. Food Chem X 2023; 20:100980. [PMID: 38144835 PMCID: PMC10740012 DOI: 10.1016/j.fochx.2023.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/26/2023] Open
Abstract
Legumes represent a promising nutritional alternative source of proteins to meat and dairy products. Additionally, Novel Foods (Regulation EU 2015/2283) can help meet the rising protein demand. However, despite their benefits, emerging allergenicity risks must be considered. The aim of this work is the molecular characterization of the Novel Food Mung bean protein isolate for allergenicity prediction with High Resolution Mass Spectrometry analysis. The assessment of the allergenicity was evaluated in silico by comparing protein sequences of the Novel Food with other known legume allergens, using bioinformatic databases. The results highlighted similarity higher than 60 % of the protein structure of Mung bean with two known allergens of soybean and pea. Furthermore, enzymatic hydrolysis effects on allergenic potential was evaluated by immunoblotting analysis using sera of patients allergic to legumes. The protein hydrolysates obtained showed a high nutritional quality and a reduced allergenic potential, making them suitable for hypoallergenic food formulations.
Collapse
Affiliation(s)
- Luisa Calcinai
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Faccini
- Centro Interdipartimentale di Misure, University of Parma, Parco Area delle Scienze, 25/A, Parma, Italy
| | - Ilaria Puxeddu
- Immuno-allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
30
|
Yu XX, Wang XH, Zhang SA, Zhang YH, Zhang HL, Yin YQ. Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis. Food Res Int 2023; 173:113218. [PMID: 37803536 DOI: 10.1016/j.foodres.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of β-lactoglobulin (β-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of β-sheet decreased along with the pressure. The results showed the increment of α-helix and β-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of β-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the β-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Hui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Sheng-Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; National Center of Technology Innovation for Dairy, Hohhot 010020, PR China.
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
31
|
Pi X, Liu J, Peng Z, Liang S, Cheng J, Sun Y. Comparison of proanthocyanidins A2 and B2 on IgE-reactivity and epitopes in Gly m 6 using multispectral, LC/MS-MS and molecular docking. Int J Biol Macromol 2023; 249:126026. [PMID: 37506791 DOI: 10.1016/j.ijbiomac.2023.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study comparatively analyzed the changes in IgE-reactivity and epitopes in proanthocyanidins A2- (PA-Gly m 6) and B2-Gly m 6 (PB-Gly m 6) conjugates prepared by alkali treatment at 80 °C for 20 min. Similar to the western blot, ELISA also showed a higher reduced IgE-reactivity in PA-Gly m 6 (70.12 %) than PB-Gly m 6 (63.17 %). SDS-PAGE demonstrated that proanthocyanidins A2 caused more formation of >180 kDa polymers than proanthocyanidins B2. Multispectral analyses revealed that PA-Gly m 6 exhibited more structural alteration (e.g., a decrease of α-helical content and ANS fluorescence intensity) to unfold protein structure than proanthocyanidins B2, improving the accessibility to modify Gly m 6 for shielding or destroying conformational epitopes. LC/MS-MS revealed that PA-Gly m 6 conjugates had a lower abundance of allergens, peptides and linear epitopes than PB-Gly m 6 conjugates. Molecular docking showed that proanthocyanidins A2 and B2 reacted with Gln-317 and Asn-94 of epitopes, respectively. Overall, proanthocyanidins A2 is more effective than proanthocyanidins B2 to decrease the IgE-reactivity of Gly m 6 due to more shielding or destruction of conformational epitopes and lower content allergens and linear epitopes, which was attributed to more protein-crosslinks formation and structural changes in PA-Gly m 6 conjugates.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuxia Liang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Jiangsu DAISY FSMP Co., Ltd, Nantong, Jiangsu 226133, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
32
|
Tian M, Zhang Q, Zeng X, Rui X, Jiang M, Chen X. The Differences in Protein Degradation and Sensitization Reduction of Mangoes between Juices and Pieces Fermentation. Foods 2023; 12:3465. [PMID: 37761174 PMCID: PMC10529661 DOI: 10.3390/foods12183465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Given the allergic reaction caused by mangoes, nonthermal food technologies for allergenicity reduction are urgently desired. This study aimed to assess the impact of kombucha fermentation on the allergenicity of mangoes. The total proteins, soluble proteins, peptides, amino acid nitrogen, the SDS-PAGE profiles of the protein extracts, and immunoreactivity of the sediment and supernatant were measured in two fermentation systems (juices and pieces fermentation). Throughout the fermentation, the pH decreased from about 4.6 to about 3.6, and the dissolved oxygen reduced about 50% on average. However, the protein degradation and sensitization reduction of mangoes were different between the two fermentation systems. In juices fermentation, there was a drop in proteins and peptides but an increase in amino acids, due to the conversion of proteins and peptides into amino acids both in the supernatant and sediment. The allergenicity decreased both in the solid and liquid phases of juices fermentation. In pieces fermentation, proteins and peptides were decreased in the solid phase but increased in the liquid phase. This was due to the fact that proteins and peptides were partly transported into the culture liquid, resulting in a decrease of allergenicity in fruit pieces and an increase in culture liquid. The principal component analysis results showed that the fermentation type had significant effects on the protein degradation and sensitization reduction, while mango variety had no significant effect. These results demonstrate that kombucha fermentation can reduce the allergenicity of mangoes, and it is more effective in juices fermentation than in pieces fermentation. The present study provides a theoretical basis for developing hypoallergenic mango products.
Collapse
Affiliation(s)
- Mengtian Tian
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Qiuqin Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xianming Zeng
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Mei Jiang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiaohong Chen
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
33
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
34
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
35
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
36
|
Ye L, Lü L, Lin X, He K, Yang X, Wan Z, Liu L, Wu H, Xing S, Wu X. Effect of lipid peroxidation on the allergenicity and functional properties of soybean β-conglycinin (7S) and glycinin (11S). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Li L, Chai W, Ma L, Zhang T, Chen J, Zhang J, Wu X. Covalent polyphenol with soybean 11S protein to develop hypoallergenic conjugates for potential immunotherapy. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
38
|
Pi X, Sun Y, Liu J, Peng Z, Liang S, Cheng J, Jiang Y. The alteration of composition, conformation, IgE-reactivity and functional attributes in proanthocyanidins-soy protein 7S conjugates formed by alkali-heating treatment: Multi-spectroscopic and proteomic analyses. Int J Biol Macromol 2023; 234:123672. [PMID: 36801228 DOI: 10.1016/j.ijbiomac.2023.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
This study assessed the alteration of IgE-reactivity and functional attribute in soy protein 7S-proanthocyanidins conjugates (7S-80PC) formed by alkali-heating treatment (pH 9.0, 80 °C, 20 min). SDS-PAGE demonstrated that 7S-80PC exhibited the formation of >180 kDa polymers, although the heated 7S (7S-80) had no changes. Multispectral experiments revealed more protein unfolding in 7S-80PC than in 7S-80. Heatmap analysis showed that 7S-80PC showed more alteration of protein, peptide and epitope profiles than 7S-80. LC/MS-MS demonstrated that the content of total dominant linear epitopes was increased by 11.4 % in 7S-80, but decreased by 47.4 % in 7S-80PC. As a result, Western-blot and ELISA showed that 7S-80PC exhibited lower IgE-reactivity than 7S-80, probably because 7S-80PC exhibited more protein-unfolding to increase the accessibility of proanthocyanidins to mask and destroy the exposed conformational epitopes and dominant linear epitopes induced by heating treatment. Furthermore, the successful attachment of PC to soy 7S protein significantly increased antioxidant activity in 7S-80PC. 7S-80PC also showed higher emulsion activity than 7S-80 owing to its high protein flexibility and protein unfolding. However, 7S-80PC exhibited lower foaming properties than 7S-80. Therefore, the addition of proanthocyanidins could decrease IgE-reactivity and alter the functional attribute of the heated soy 7S protein.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Soy Biology of Chinese Education Ministry, Harbin 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuxia Liang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Jiangsu DAISY FSMP Co., Ltd, Nantong, Jiangsu 226133, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yunqing Jiang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
39
|
Yang Z, Xie C, Bao Y, Liu F, Wang H, Wang Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
40
|
Pi X, Liu J, Sun Y, Sun X, Sun Z, Cheng J, Guo M. Investigation of the differences in the effect of (-)-epigallocatechin gallate and proanthocyanidins on the functionality and allergenicity of soybean protein isolate. Food Chem X 2023; 17:100566. [PMID: 36845520 PMCID: PMC9945447 DOI: 10.1016/j.fochx.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, the differences in effects of (-)-epigallocatechin gallate (EGCG) and proanthocyanidins (PC) on the functionality and allergenicity of soybean protein isolate (SPI) were studied. SDS-PAGE demonstrated that SPI-PC conjugates exhibited more high-molecular-weight polymers (>180 kDa) than SPI-EGCG conjugates. Structural analysis showed that SPI-PC conjugates exhibited more disordered structures and protein-unfolding, improving the accessibility of PC to modify SPI, compared to SPI-EGCG conjugates. LC/MS-MS demonstrated that PC caused more modification of SPI and major soybean allergens than EGCG, resulting in a lower abundance of epitopes. The successful attachment of EGCG and PC to SPI significantly increased antioxidant capacity in conjugates. Furthermore, SPI-PC conjugates exhibited greater emulsifying activity and lower immunoglobulin E (IgE) binding capacity than SPI-EGCG conjugates, which was attributed to more disordered structure and protein-unfolding in SPI-PC conjugates. It is implied that proanthocyanidins may be promising compounds to interact with soybean proteins to produce functional and hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhigang Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Corresponding authors at: Northeast Agricultural University, No. 600, Changjiang Road, Harbin, China.
| | - Mingruo Guo
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405, United States,Corresponding authors at: Northeast Agricultural University, No. 600, Changjiang Road, Harbin, China.
| |
Collapse
|
41
|
Characterization of the improved functionality in soybean protein-proanthocyanidins conjugates prepared by the alkali treatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Evaluating the influence of cold plasma bubbling on protein structure and allergenicity in sesame milk. Allergol Immunopathol (Madr) 2023; 51:1-13. [PMID: 36924386 DOI: 10.15586/aei.v51isp1.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds. OBJECTIVE The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min). RESULTS The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes. CONCLUSION These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk. However, increase in binding at 30-min bubbling is to be studied to facilitate further reduction of the binding capacity of IgE antibodies.
Collapse
|
43
|
ELISA Based Immunoreactivity Reduction of Soy Allergens through Thermal Processing. Processes (Basel) 2022. [DOI: 10.3390/pr11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allergens are proteins and are, therefore, likely to be denatured when subjected to thermal treatment. Traditional cooking has so far been able to reduce allergen sensitivity by around 70–90%. This study was aimed at evaluating the effect of a broad range of thermal treatments on the reduction of soy immunoreactivity (IR) in a 5% slurry using a sandwich ELISA technique. Cooking at 100 °C (10–60 min) and different thermal processing conditions, such as in commercial sterilization (with a process lethality (Fo) between 3 and 5 min) and selected severe thermal processing conditions (Fo > 5 and up to 23 min) were used in the study to evaluate their influence on allergen IR. Based on an IR comparison with an internal soy allergen standard, the allergen concentration in the untreated soy sample was calculated to be equivalent to 333 mg/kg (ppm). Cooking conditions only reduced the IR sensitivity to about 10 mg/kg (~1.5 log reductions), while the thermal processing treatments lowered the allergen IR up to 23 × 10−3 mg/kg (or 23 ppb) (>4 log reductions). FTIR analysis indicated significant changes in protein structure resulting from the thermal processing treatments, with a higher degree of allergen reduction corresponding with a higher value of random coil percentages. The influence of process severity on color and rheological properties was, however, minimal.
Collapse
|
44
|
Pea and lentil 7S globulin crystal structures with comparative immunoglobulin epitope mapping. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100146. [PMID: 36573105 PMCID: PMC9789324 DOI: 10.1016/j.fochms.2022.100146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Legumes represent an affordable high protein, nutrient dense food source. However, the vast majority of legume crops contain proteins that are known allergens for susceptible individuals. These include proteins from the 7S globulin family, which comprise a vast majority of seed storage proteins. Here, the crystal structures of 7S globulins from Pisum sativum L. (pea) and Lens culinaris Medicus (lentil) are presented for the first time, including pea vicillin and convicilin, and lentil vicilin. All three structures maintain the expected 7S globulin fold, with trimeric quaternary structure and monomers comprised of β-barrel N- and C-modules. The potential impact of sequence differences on structure and packing in the different crystal space groups is noted, with potential relevance to packing upon seed deposition. Mapping on the obtained crystal structures highlights significant Ig epitope overlap between pea, lentil, peanut and soya bean and significant coverage of the entire seed storage protein, emphasizing the challenge in addressing food allergies. How recently developed biologicals might be refined to be more effective, or how these seed storage proteins might be modified in planta to be less immuno-reactive remain challenges for the future. With legumes representing an affordable, high protein, nutrient dense food source, this work will enable important research in the context of global food security and human health on an ongoing basis.
Collapse
|
45
|
Heat-induced changes in epitopes and IgE binding capacity of soybean protein isolate. Food Chem 2022; 405:134830. [DOI: 10.1016/j.foodchem.2022.134830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
46
|
Protein modification, IgE binding capacity, and functional properties of soybean protein upon conjugation with polyphenols. Food Chem 2022; 405:134820. [DOI: 10.1016/j.foodchem.2022.134820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
47
|
Jia W, Zhu J, Wang X, Peng J, Shi L. Covalent or non-covalent binding of polyphenols, polysaccharides, metal ions and nanoparticles to beta-lactoglobulin and advanced processing techniques: Reduce allergenicity and regulate digestion of beta-lactoglobulin. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Pi X, Fu G, Yang Y, Wan Y, Xie M. Changes in IgE binding capacity, structure, physicochemical properties of peanuts through fermentation with Bacillus natto and Lactobacillus plantarum along with autoclave pretreatment. Food Chem 2022; 392:133208. [PMID: 35659698 DOI: 10.1016/j.foodchem.2022.133208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the immunoglobulin E (IgE) binding capacity, structure, and physicochemical properties of raw crushed peanut (RCP) after fermentation with Lactobacillus plantarum and Bacillus natto along with autoclaved pretreatment. SDS-PAGE showed the disappearance of partial protein (>45 kDa) in autoclaved peanuts (ACP) and fermented autoclaved peanuts with L. plantarum (LP), and of majority protein (>14.4 kDa) in fermented autoclaved peanuts with B. natto (BN) or a mixture of L. plantarum and B. natto (LPBN). Structural analysis revealed protein-aggregation and protein-unfolding in autoclaved and fermented peanuts, respectively. Indirect ELISA demonstrated that the IgE binding capacities in ACP, LP, BN and LPBN were reduced by 11.3%, 20.6%, 78.7% and 90.2%, respectively, compared to RCP. LPBN showed the lowest IgE binding capacity due to the highest masking and destruction of epitopes and exhibited the desirable physicochemical properties simultaneously. Mixed strain fermentation has the potential to produce hypoallergenic peanut products.
Collapse
Affiliation(s)
- Xiaowen Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215123, Jiangsu, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
49
|
Effect of proanthocyanidins on protein composition, conformational structure, IgE binding capacities and functional properties in soybean protein. Int J Biol Macromol 2022; 224:881-892. [DOI: 10.1016/j.ijbiomac.2022.10.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
50
|
Pi X, Peng Z, Liu J, Jiang Y, Wang J, Fu G, Yang Y, Sun Y. Sesame allergy: mechanisms, prevalence, allergens, residue detection, effects of processing and cross-reactivity. Crit Rev Food Sci Nutr 2022; 64:2847-2862. [PMID: 36165272 DOI: 10.1080/10408398.2022.2128031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesame allergy is a serious public health problem and is mainly induced by IgE-mediated reactions, whose prevalence is distributed all over the world. Sesame has been included on the priority allergic food list in many countries. This review summarizes the mechanism and prevalence of sesame allergy. The characteristics, structures and epitopes of sesame allergens (Ses i 1 to Ses i 7) are included. Moreover, the detection methods for sesame allergens are evaluated, including nucleic-acid, immunoassays, mass spectrometry, and biosensors. Various processing techniques for reducing sesame allergenicity are discussed. Additionally, the potential cross-reactivity of sesame with other plant foods is assessed. It is found that the allergenicity of sesame is related to the structures and epitopes of sesame allergens. Immunoassays and mass spectrometry are the major analytical tools for detecting and quantifying sesame allergens in food. Limited technologies have been successfully used to reduce the antigenicity of sesame, involving microwave heating, high hydrostatic pressure, salt and pH treatment. More technologies for reducing the allergenicity of sesame should be widely investigated in future studies. The reduction of allergenicity in processed sesames should be ultimately confirmed by clinical studies. What's more, sesame may exhibit cross-reactivity with peanut and tree nuts.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiarong Wang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, Heilongjiang, China
| |
Collapse
|