1
|
Blikra MJ, Aakre I, Rigutto-Farebrother J. Consequences of acute and long-term excessive iodine intake: A literature review focusing on seaweed as a potential dietary iodine source. Compr Rev Food Sci Food Saf 2024; 23:e70037. [PMID: 39379288 DOI: 10.1111/1541-4337.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Macroalgae, also called seaweed, are becoming more widespread as food in Western diets. Seaweed can accumulate iodine, an essential nutrient for humans. However, some species of seaweed may contain very high amounts of iodine, and therefore, iodine has been identified as one of the major hazards in the seaweed food chain. Macroalgae may be consumed regularly, though many consumers report eating macroalgae only occasionally. The aim of this paper is to explore possible health consequences of excessive iodine intake according to long-term (chronic) or occasional (acute) excessive exposure to iodine, relating to a regular (chronic) or occasional (acute) seaweed intake, respectively. Furthermore, through a modeling exercise, we add different amounts of seaweed to the diet in a population group to explore the possible safe amounts that can be added without exceeding excessive iodine intakes and risking detrimental health effects. Chronic excessive iodine intakes were associated with several negative health outcomes at variable doses in various studies. For acute excessive iodine exposure, negative health effects seemed to be associated with higher iodine exposures. However, the research on this topic was limited. The chronic and acute iodine exposures needed to result in negative health outcomes may easily be ingested by macroalgae consumption. Adding seaweed to the diet must be done thoughtfully to avoid the risk of exceeding thresholds for excessive iodine intake.
Collapse
Affiliation(s)
| | - Inger Aakre
- Department of seafood and nutrition, Institute of Marine Research, Bergen, Norway
| | - Jessica Rigutto-Farebrother
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
3
|
Hunt D, Dewar A, Dal Molin F, Willey N. Does it run in the family? - Improving radiological risk assessment in the coastal environment using taxonomic and phylogenetic perspectives in macroalgae species. MARINE POLLUTION BULLETIN 2024; 207:116863. [PMID: 39213886 DOI: 10.1016/j.marpolbul.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Marine macroalgae are widely used indicator species for monitoring environmental radioactivity. Empirical studies have demonstrated a range in radionuclide transfer coefficients, or concentration ratios (CRs), between taxonomic groups, however the CR values used for dose estimation assume that macroalgae are a homogenous group, represented by a single CR. This study demonstrates the presence of a taxonomic signal in macroalgae CRs for multiple anthropogenic and naturally occurring radionuclides (137Cs, 241Am, 239+240Pu, 210Po) based on a collation of available data. A Residual Maximum Likelihood (REML) mixed model was applied, producing relative estimate CRs specific to each species within the datasets. The collated data was also analysed for a phylogenetic signal, but only a weak signal was found for one radionuclide in one group (239+240Pu in Phaeophyceae). A theoretical case study using the estimated CRs and the ERICA tool was carried out to demonstrate the implications of these findings in a real-world scenario.
Collapse
Affiliation(s)
- D Hunt
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK.
| | - A Dewar
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - F Dal Molin
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - N Willey
- Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
4
|
Lang T, Cummins SF, Paul NA, Campbell AH. Molecular responses of seaweeds to biotic interactions: A systematic review. JOURNAL OF PHYCOLOGY 2024; 60:1036-1057. [PMID: 39298370 DOI: 10.1111/jpy.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Seaweed farming is the single largest aquaculture commodity with >30 million tonnes produced each year. Furthermore, the restoration of lost seaweed forests is gaining significant momentum, particularly for kelps in warming temperate areas. Whether in aquaculture settings, following restoration practices, or in the wild, all seaweeds undergo biotic interactions with a diverse range of co-occurring or cocultured organisms. To date, most research assessing such biotic interactions has focused on the response of the organism interacting with seaweeds, rather than on the seaweeds themselves. However, understanding how seaweeds respond to other organisms, particularly on a molecular scale, is crucial for optimizing outcomes of seaweed farming or restoration efforts and, potentially, also for the conservation of natural populations. In this systematic review, we assessed the molecular processes that seaweeds undergo during biotic interactions and propose priority areas for future research. Despite some insights into the response of seaweeds to biotic interactions, this review specifically highlights a lack of characterization of biomolecules involved in the response to chemical cues derived from interacting organisms (four studies in the last 20 years) and a predominant use of laboratory-based experiments conducted under controlled conditions. Additionally, this review reveals that studies targeting metabolites (70%) are more common than those examining the role of genes (22%) and proteins (8%). To effectively inform seaweed aquaculture efforts, it will be crucial to conduct larger scale experiments simulating natural environments. Also, employing a holistic approach targeting genes and proteins would be beneficial to complement the relatively well-established role of metabolites.
Collapse
Affiliation(s)
- Tomas Lang
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Scott F Cummins
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nicholas A Paul
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Alexandra H Campbell
- Seaweed Research Group, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
5
|
Xiao X, Liu S, Li L, Li R, Zhao X, Yin N, She X, Peijnenburg W, Cui X, Luo Y. Seaweeds as a major source of dietary microplastics exposure in East Asia. Food Chem 2024; 450:139317. [PMID: 38636378 DOI: 10.1016/j.foodchem.2024.139317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) occurrence in marine ecosystems is well known, but their accumulation in seaweeds and subsequent human exposure remain understudied. This research quantifies MPs presence in two commonly consumed seaweeds, kelp (Saccharina japonica) and nori (Pyropia yezoensis), in East Asia, revealing widespread contamination dominated by microfibers (<500 μm). Based on dietary patterns, human uptake through seaweed consumption was estimated and quantified. Notably, Chinese people consume an estimated 17,034 MPs/person/year through seaweed consumption, representing 13.1% of their total annual MPs intake. This seaweeds-derived exposure surpasses all other dietary sources, contributing up to 45.5% of overall MPs intake. The highest intake was in South Korea, followed by North Korea, China, and Japan. This research identifies seaweeds as a major, previously overlooked route of dietary MPs exposure. These findings are crucial for comprehensive risk assessments of seaweed consumption and the development of mitigation strategies, particularly for populations in East Asian countries.
Collapse
Affiliation(s)
- Xiangyang Xiao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyu Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Na Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Xiumin Cui
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
6
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Kajla P, Chaudhary V, Dewan A, Bangar SP, Ramniwas S, Rustagi S, Pandiselvam R. Seaweed-based biopolymers for food packaging: A sustainable approach for a cleaner tomorrow. Int J Biol Macromol 2024; 274:133166. [PMID: 38908645 DOI: 10.1016/j.ijbiomac.2024.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
With the increasing environmental and health consequences of uncontrolled plastic use, the scientific community is progressively gravitating toward biodegradable and ecofriendly packaging alternatives. Seaweed polysaccharides have attracted attention recently because of their biodegradability, nontoxicity, antioxidant properties, and superior film-forming ability. However, it has some limitations for packaging applications, such as low tensile strength, water solubility, and only modest antimicrobial properties. The incorporation of biopolymers, nanoparticles, or organic active ingredients enhances these characteristics. This review encapsulates the contemporary research landscape pivoting around the role of seaweed polysaccharides in the development of bioplastics, active packaging solutions, edible films, and protective coatings. A meticulous collation of existing literature dissects the myriad food application avenues for these marine biopolymers, emphasizing their multifaceted physical, mechanical, thermal, and functional attributes, including antimicrobial and antioxidant. A key facet of this review spotlights environmental ramifications by focusing on their biodegradability, reinforcing their potential as a beacon of sustainable innovation. This article delves into the prevalent challenges that stymie large-scale adoption and commercialization of seaweed-centric packaging, offering a comprehensive perspective on this burgeoning domain.
Collapse
Affiliation(s)
- Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India.
| | - Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, 29634, USA
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| |
Collapse
|
8
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
9
|
Li S, Sun Y, Guo T, Liu W, Tong X, Zhang Z, Sun J, Yang Y, Yang S, Li D, Min L. Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals (Basel) 2024; 14:2057. [PMID: 39061518 PMCID: PMC11274217 DOI: 10.3390/ani14142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Methane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of S. mcclurei through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried S. mcclurei at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation. The freeze-dried S. mcclurei at 2% supplementation significantly reduced CH4 emissions by 18.85% and enhanced crude protein degradability. However, total VFA and acetate concentrations were lower in both treatments compared to the control. The microbial shifts included a decrease in Lachnospiraceae_NK3A20_group and Ruminococcus and an increase in Selenomonas, Succinivibrio, and Saccharofermentans, promoting propionate production. Additionally, a significant reduction in Methanomicrobium was observed, indicating direct methane mitigation. Freeze-dried S. mcclurei at a 2% supplementation level shows potential as an effective methane mitigation strategy with minimal impact on rumen fermentation, supported by detailed insights into microbial community changes.
Collapse
Affiliation(s)
- Shuai Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yi Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Tongjun Guo
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| | - Wenyou Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Xiong Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Zhifei Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yufeng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Shuli Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Dagang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Li Min
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| |
Collapse
|
10
|
Knorr D, Augustin MA. Expanding our food supply: underutilized resources and resilient processing technologies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38989972 DOI: 10.1002/jsfa.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Many underutilized food resources have been traditionally used by regional and poor communities. The history of their consumption makes them potential new food sources for incorporation into the wider food supply. The ability to tap the potential of undervalued and underutilized food sources will reduce the world's reliance on a limited number of food sources and improve food security and sustainability. The expansion of the food diversity of the food supply to include underutilized food resources will require overcoming challenges in the efficient and profitable production of the raw material, application of suitable postharvest handling procedures to maintain the quality of perishable produce, and the use of appropriate traditional and emerging food processing technologies for conversion of the raw material into safe, nutritious and consumer-acceptable foods. Improvement of food processing technologies, particularly resource-efficient resilient food processes, are required to ensure the safety, quality and functionality of the whole food or extracts, and to develop ingredient formulations containing new foods for manufacture of consumer food products. Factors that help facilitate the social acceptance of new underutilized foods include increasing consumer knowledge and understanding of the contribution of new underutilized food resources to diet diversity for good nutrition, confidence in the safety and value of new foods, and their low environmental impact and importance for future sustainable food. The introduction of new underutilized food resources will increasingly require collaboration along the whole food value chain, including support from government and industry. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Mary Ann Augustin
- CSIRO Agriculture and Food, Werribee, Victoria, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
11
|
Hofmann LC, Strauss S, Shpigel M, Guttman L, Stengel DB, Rebours C, Gjorgovska N, Turan G, Balina K, Zammit G, Adams JMM, Ahsan U, Bartolo AG, Bolton JJ, Domingues R, Dürrani Ö, Eroldogan OT, Freitas A, Golberg A, Kremer KI, Marques F, Milia M, Steinhagen S, Sucu E, Vargas-Murga L, Zemah-Shamir S, Zemah-Shamir Z, Meléndez-Martínez AJ. The green seaweed Ulva: tomorrow's "wheat of the sea" in foods, feeds, nutrition, and biomaterials. Crit Rev Food Sci Nutr 2024:1-36. [PMID: 38979936 DOI: 10.1080/10408398.2024.2370489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Ulva, a genus of green macroalgae commonly known as sea lettuce, has long been recognized for its nutritional benefits for food and feed. As the demand for sustainable food and feed sources continues to grow, so does the interest in alternative, plant-based protein sources. With its abundance along coastal waters and high protein content, Ulva spp. have emerged as promising candidates. While the use of Ulva in food and feed has its challenges, the utilization of Ulva in other industries, including in biomaterials, biostimulants, and biorefineries, has been growing. This review aims to provide a comprehensive overview of the current status, challenges and opportunities associated with using Ulva in food, feed, and beyond. Drawing on the expertise of leading researchers and industry professionals, it explores the latest knowledge on Ulva's nutritional value, processing methods, and potential benefits for human nutrition, aquaculture feeds, terrestrial feeds, biomaterials, biostimulants and biorefineries. In addition, it examines the economic feasibility of incorporating Ulva into aquafeed. Through its comprehensive and insightful analysis, including a critical review of the challenges and future research needs, this review will be a valuable resource for anyone interested in sustainable aquaculture and Ulva's role in food, feed, biomaterials, biostimulants and beyond.
Collapse
Affiliation(s)
- Laurie C Hofmann
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Bremerhaven University of Applied Sciences, Bremerhaven, Germany
| | | | - Muki Shpigel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lior Guttman
- The National Center for Mariculture, Israel Oceanographic & Limnological Research, Eilat, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Natasha Gjorgovska
- Institute of Animal Science and Fishery, University Ss Ciril and Methodius in Skopje, Skopje, North Macedonia
| | - Gamze Turan
- Aquaculture Department, Fisheries Faculty, Ege University, Bornova, Izmir, Türkiye
| | - Karina Balina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
- Institute of Science and Innovative Technologies, Liepaja University, Liepaja, Latvia
| | - Gabrielle Zammit
- Department of Biology, Faculty of Science, University of Malta, Msida, Malta
| | - Jessica M M Adams
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, Burdur, Turkiye
- Center for Agriculture, Livestock and Food Research, Burdur Mehmet Akif Ersoy University, Burdur, Turkiye
| | | | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Rosário Domingues
- Department of Chemistry, Lipidomics Laboratory, Mass Spectrometry Centre, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Ömerhan Dürrani
- Department of Fisheries Technology Engineering, Faculty of Marine Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Orhan Tufan Eroldogan
- Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vila do Conde, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Oporto, Portugal
| | - Alexander Golberg
- Department of Environmental Studies, Faculty of Exact Sciences, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kira I Kremer
- Marine Biology, University of Bremen, Bremen, Germany
| | - Francisca Marques
- Department of Chemistry, Lipidomics Laboratory, Mass Spectrometry Centre, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Massimo Milia
- Department of Life and Environmental Science, University of Cagliari, Cagliari, Italy
| | - Sophie Steinhagen
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ekin Sucu
- Department of Animal Science, Agricultural Faculty, Bursa Uludag University, Bursa, Turkey
| | - Liliana Vargas-Murga
- Department of Chemical and Agricultural Engineering and Agrifood Technology, Polytechnic School, Universitat de Girona, Girona, Spain
| | - Shiri Zemah-Shamir
- School of Sustainability, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Ziv Zemah-Shamir
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
12
|
Bullen CD, Driscoll J, Burt J, Stephens T, Hessing-Lewis M, Gregr EJ. The potential climate benefits of seaweed farming in temperate waters. Sci Rep 2024; 14:15021. [PMID: 38951559 PMCID: PMC11217401 DOI: 10.1038/s41598-024-65408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Seaweed farming is widely promoted as an approach to mitigating climate change despite limited data on carbon removal pathways and uncertainty around benefits and risks at operational scales. We explored the feasibility of climate change mitigation from seaweed farming by constructing five scenarios spanning a range of industry development in coastal British Columbia, Canada, a temperate region identified as highly suitable for seaweed farming. Depending on growth rates and the fate of farmed seaweed, our scenarios sequestered or avoided between 0.20 and 8.2 Tg CO2e year-1, equivalent to 0.3% and 13% of annual greenhouse gas emissions in BC, respectively. Realisation of climate benefits required seaweed-based products to replace existing, more emissions-intensive products, as marine sequestration was relatively inefficient. Such products were also key to reducing the monetary cost of climate benefits, with product values exceeding production costs in only one of the scenarios we examined. However, model estimates have large uncertainties dominated by seaweed production and emissions avoided, making these key priorities for future research. Our results show that seaweed farming could make an economically feasible contribute to Canada's climate goals if markets for value-added seaweed based products are developed. Moreover, our model demonstrates the possibility for farmers, regulators, and researchers to accurately quantify the climate benefits of seaweed farming in their regional contexts.
Collapse
Affiliation(s)
- Cameron D Bullen
- SciTech Environmental Consulting, 2136 Napier Street, Vancouver, BC, Canada, V5L 2N9
| | - John Driscoll
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Jenn Burt
- Nature United, North Vancouver, BC, Canada
| | - Tiffany Stephens
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK, USA
| | - Margot Hessing-Lewis
- Hakai Institute, Campbell River, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Edward J Gregr
- SciTech Environmental Consulting, 2136 Napier Street, Vancouver, BC, Canada, V5L 2N9.
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Rombach M, Dean DL. Eating Macro-Algae (Seaweed): Understanding Factors Driving New Zealand Consumers' Willingness to Eat and Their Perceived Trust towards Country of Origin. Foods 2024; 13:1300. [PMID: 38731671 PMCID: PMC11082994 DOI: 10.3390/foods13091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Macro-algae is an umbrella term for seaweed, which is an important ingredient in many novel food products in New Zealand and other Australasian countries. While attitudes, consumption motivation, knowledge, and socio-demographic consumer profiles have been investigated in specific countries in the region, consumer behavior such as willingness to eat and factors driving this behavior have not yet been explored. Therefore, the present study fills this research gap in a New Zealand context and explores predictors of New Zealand consumers' willingness to eat macro-algae and their perceived trust towards the countries of origin of these products. The symbolic value of food, health importance, food safety concerns, and food fussiness were the factors under investigation. The work builds on an online questionnaire and a sample of 437 consumers mirroring the New Zealand population in terms of gender, age, and annual household income. Data were collected through an opt-in panel provider in November 2023. The data analysis consisted of descriptive statistics and partial least square structural equation modeling. Results show that health importance and food fussiness tendencies are the strongest predictors of willingness to eat and trustworthiness of the two countries of origin. Best practice recommendations for marketing managers in New Zealand food retail are provided.
Collapse
Affiliation(s)
- Meike Rombach
- Department of Land Management and Systems, Lincoln University, Lincoln 7647, New Zealand
- Center of Excellence-Transformative Agribusiness, Lincoln University, Lincoln 7647, New Zealand
| | - David L. Dean
- Department of Agribusiness and Markets, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
14
|
Głuchowski A, Crofton E, Inguglia ES, O’Sullivan MG, Kerry JP, Hamill RM. Incorporation of Sea Spaghetti ( Himanthalia elongata) in Low-Salt Beef Patties: Effect on Sensory Profile and Consumer Hedonic and Emotional Response. Foods 2024; 13:1197. [PMID: 38672870 PMCID: PMC11049442 DOI: 10.3390/foods13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Seaweed is a naturally rich source of nutrients and exhibits techno-functional properties that are under study for their potential as ingredients in meat products. However, seaweed is associated with a particular flavor profile, and optimization of the sensory profile should be conducted alongside technical performance. This study investigated the feasibility of the application of sea spaghetti (Himanthalia elongata) in the production of low-salt beef patties and recorded the associated sensory profile and consumer hedonic-emotional response. Eight beef patty formulations with varying salt (0-1%) and seaweed (0-5%) contents were subjected to quantitative descriptive analysis via a trained sensory panel (n = 8) and six the formulations were selected for consumer testing (liking, emotional associations, saltiness perception, and purchase intent) by a group of 105 Irish resident consumers. The trained panel results showed that the intensity of seaweed odor, flavor, and visual presence in burgers was negatively related to the intensity of beef odor and flavor and that seaweed addition (5%) significantly increased the saltiness perception of low-salt burgers. Burgers with 1% added seaweed, although perceived by consumers as less salty, could substitute NaCl in low-salt beef patties without deterioration of their liking among regular burger consumers. Consumers associated all seaweed-containing samples, especially those containing 1% of sea spaghetti, with being good, pleasant, satisfied, and warm. The higher inclusion of sea spaghetti (2.5%) led to significantly lower overall liking and reduced purchase intent, while consumers associated this formulation with emotions such as being more adventurous, aggressive, and wild. Consumers who rejected seaweed burgers had the highest level of food neophobia and avoided foods with additives. The results demonstrate that 1% sea spaghetti seaweed can be successfully incorporated into low-salt beef patties, resulting in hedonic and emotional benefits without significantly increasing the salt content.
Collapse
Affiliation(s)
- Artur Głuchowski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (E.C.)
- Food Gastronomy and Food Hygiene Department, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-776 Warsaw, Poland
| | - Emily Crofton
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (E.C.)
| | - Elena S. Inguglia
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (E.C.)
| | - Maurice G. O’Sullivan
- School of Food and Nutritional Sciences, University College Cork, T12 E138 Cork, Ireland; (M.G.O.); (J.P.K.)
| | - Joe P. Kerry
- School of Food and Nutritional Sciences, University College Cork, T12 E138 Cork, Ireland; (M.G.O.); (J.P.K.)
| | - Ruth M. Hamill
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (E.C.)
| |
Collapse
|
15
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Vázquez-Arias A, Aboal JR, Fernández JÁ. What dead seaweeds can tell us about metal uptake and their application to control marine pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132216. [PMID: 37586241 DOI: 10.1016/j.jhazmat.2023.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The mechanisms of trace element uptake by seaweeds are still unknown, despite being key to understand the impact of pollution in coastal environments. This knowledge gap, in addition to the lack of standardization, have also hindered the use of seaweeds to monitor seawater pollution. To address these shortcomings, we tested the use of devitalization as a pre-exposure treatment for brown seaweed transplants, and we compared devitalized and fresh transplants to gain some insights into the mechanisms of element uptake. We exposed four types of Fucus vesiculosus transplants in 6 sites for 4, 8 and 20 days: fresh and devitalized (dried or boiled) algal segments held in mesh bags, and whole algal thalli imitating natural conditions. We then determined he concentrations of 11 trace elements in the algal tissues. The element concentrations were highest in the devitalized transplants, but the material lost consistency and weight throughout the exposure period, limiting their use to short periods. We proposed several factors that may contribute to the different accumulation patterns between treatments, and examined the implications for the uptake mechanisms, revealing that two of the most important are surface adsorption of sediment particles and chemical bounds to extracellular components.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
17
|
Mehta A, Serventi L, Kumar L, Torrico DD. The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream. Foods 2023; 12:3152. [PMID: 37685086 PMCID: PMC10486441 DOI: 10.3390/foods12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
With the growing demand for sustainable practises, the food industry is increasingly adopting circular economy approaches. One example is recycling the symbiotic culture of bacteria and yeast (SCOBY) used in kombucha fermentation to create value-added products. However, consumer acceptance of such novel products remains unclear. To address this, the present study examined consumer attitudes towards ice cream made with SCOBY as an ingredient and how this affected their intention to consume it. Drawing on the theory of planned behaviour (TPB) and additional constructs such as emotions and food neophobia, an online survey was conducted with New Zealand consumers (N = 170). Results showed that the TPB constructs significantly predicted the intention to consume SCOBY ice cream. Moreover, by adding emotions to the constructs, the model's explanatory power was enhanced. Attitudes, subjective norms, and emotions were the main predictors of intention, which in turn was found to be the main predictor of behaviour. Participants' beliefs about the safety and taste of SCOBY ice cream were significantly correlated with their intention and behaviour, as were the opinions of nutritionists/dietitians, friends, and family. The model accounted for 21.7% of the variance in behaviour and 57.4% of the variance in intention. These findings can be used to plan marketing strategies related to waste-to-value-added products such as SCOBY ice cream.
Collapse
Affiliation(s)
| | | | | | - Damir Dennis Torrico
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (A.M.); (L.S.); (L.K.)
| |
Collapse
|
18
|
Li Z, Dong Y, Zhang Y, Zheng M, Jiang Z, Zhu Y, Deng S, Li Q, Ni H. Lactobacillus-fermentation enhances nutritional value and improves the inhibition on pancreatic lipase and oral pathogens of edible red seaweed Bangia fusco-purpurea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023; 12:antiox12030612. [PMID: 36978860 PMCID: PMC10045370 DOI: 10.3390/antiox12030612] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Seaweeds are an underutilized food in the Western world, but they are widely consumed in Asia, with China being the world’s larger producer. Seaweeds have gained attention in the food industry in recent years because of their composition, which includes polysaccharides, lipids, proteins, dietary fiber, and various bioactive compounds such as vitamins, essential minerals, phenolic compounds, and pigments. Extraction techniques, ranging from more traditional techniques such as maceration to novel technologies, are required to obtain these components. Pressurized liquid extraction (PLE) is a green technique that uses high temperatures and pressure applied in conjunction with a solvent to extract components from a solid matrix. To improve the efficiency of this technique, different parameters such as the solvent, temperature, pressure, extraction time and number of cycles should be carefully optimized. It is important to note that PLE conditions allow for the extraction of target analytes in a short-time period while using less solvent and maintaining a high yield. Moreover, the combination of PLE with other techniques has been already applied to extract compounds from different matrices, including seaweeds. In this way, the combination of PLE-SFE-CO2 seems to be the best option considering both the higher yields obtained and the economic feasibility of a scaling-up approximation. In addition, the food industry is interested in incorporating the compounds extracted from edible seaweeds into food packaging (including edible coating, bioplastics and bio-nanocomposites incorporated into bioplastics), food products and animal feed to improve their nutritional profile and technological properties. This review attempts to compile and analyze the current data available regarding the application of PLE in seaweeds to determine the use of this extraction technique as a method to obtain active compounds of interest for food industry application.
Collapse
Affiliation(s)
- Ana Perez-Vazquez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
20
|
Li S, Hu M, Tong Y, Xia Z, Tong Y, Sun Y, Cao J, Zhang J, Liu J, Zhao S, He P. A review of volatile compounds in edible macroalgae. Food Res Int 2023; 165:112559. [PMID: 36869543 DOI: 10.1016/j.foodres.2023.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Seaweeds (green algae, red algae and brown algae) are rich in nutrients, and incorporating algae into the human diet can provide important health benefits. However, consumer acceptance of food is closely related to its flavor, and in this respect, volatile compounds are key factors. This article reviews the extraction methods and composition of volatile compounds from Ulva prolifera, Ulva lactuca, Sargassum spp. and economically valuable cultured seaweeds such as Undaria pinnatifida, Laminaria japonica, Neopyropia haitanensis and Neopyropia yezoensis. Research found that the volatile compounds of the above seaweeds were composed mainly of aldehydes, ketones, alcohols, hydrocarbons, esters, acids, sulfur compounds, furans and small amounts of other compounds. Volatile compounds such as benzaldehyde, 2-octenal, octanal, β-ionone and 8-heptadecene have been identified in several macroalgae. This review argues that more research on the volatile flavor compounds of edible macroalgae is required. Such research could aid new product development or widen applications of these seaweeds in the food or beverage sectors.
Collapse
Affiliation(s)
- Shuang Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Meijuan Hu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yupei Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangyi Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yichao Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxing Cao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; The Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding 071002, China.
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Kumar A, Hanjabam MD, Kishore P, Uchoi D, Panda SK, Mohan CO, Chatterjee NS, Zynudheen AA, Ravishankar CN. Exploitation of Seaweed Functionality for the Development of Food Products. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
22
|
SATMALEE P, PANTOA T, SAAH S, PAOPUN Y, TAMTIN M, KOSAWATPAT P, THONGDANG B. Effects of pretreatment and drying methods on physical properties and bioactivity of sea lettuce (Ulva rigida). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Prapat KOSAWATPAT
- Phetchaburi Coastal Aquaculture Research and Development Center, Thailand
| | - Busaba THONGDANG
- Phetchaburi Coastal Aquaculture Research and Development Center, Thailand
| |
Collapse
|
23
|
Elvevoll EO, James D, Toppe J, Gamarro EG, Jensen IJ. Food Safety Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to Consumption of Sea Cucumbers. Foods 2022; 11:3992. [PMID: 36553734 PMCID: PMC9778379 DOI: 10.3390/foods11243992] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The global production of sea cucumbers was 245 thousand tons in 2020. Sea cucumbers are important food items in Asian and Pacific cuisines, the highest proportion being consumed in China as "bêche-de-mer" dried, gutted, boiled and salted body wall. However, consumption of sea cucumbers is expanding in China and globally, and the high demand has led to decline in populations of sea cucumbers, due to overexploitation. Aquaculture, together with novel fisheries on new species in new regions is easing the demand. Thus, an assessment of food safety is warranted. A literature search on food hazards was performed. A high proportion of the selected papers concerned heavy metals and metalloid hazards, such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). No specific maximum limits (MLs) have been set for contents of these in sea cucumbers. Thus, the contents were compared with maximum limits set for aquatic animals in general or bivalve molluscs if available. With regard to Hg and Cd levels, none of the samples exceeded limits set by the European Commission or the National Standard of China, while for Pb, samples from highly industrialised areas exceeded the limits. Surprisingly, data on contaminants such as POPs, including dioxins and dl-PCB, PAH and PFAS as well as microbial hazards were scarce. The availability of fresh sea cucumber has increased due to aquaculture. To preserve the original flavour some consumers are reported to prefer to eat raw sea cucumber products, sashimi and sushi, which inevitably causes challenges from the microbial food safety perspective. Altogether, this paper highlights specific needs for knowledge, in particular when harvesting new species of sea cucumbers or in industrialized regions. Systematic monitoring activities, appropriate guidelines and regulations are highly warranted to guide the utilization of sea cucumbers.
Collapse
Affiliation(s)
- Edel Oddny Elvevoll
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
| | - David James
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Jogeir Toppe
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Esther Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
24
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Park T, Seo J, Lee Y, Bae D, Lee SS. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front Vet Sci 2022; 9:985824. [PMID: 36467635 PMCID: PMC9709288 DOI: 10.3389/fvets.2022.985824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 06/27/2024] Open
Abstract
A series of in vitro batch culture incubations were carried out to investigate changes in rumen fermentation characteristics, methane (CH4) production, and microbial composition in response to supplementation with five different red seaweed species (Amphiroa anceps, AANC; Asparagopsis taxiformis, ATAX; Chondracanthus tenellus, CTEN; Grateloupia elliptica, GELL; and Gracilaria parvispora, GPAR). Prior to the incubations, the total flavonoid and polyphenol content of the red seaweed extracts was quantified. The incubated substrate consisted of timothy hay and corn grain [60:40 dry matter (DM) basis]. Treatments were substrate mixtures without seaweed extract (CON) or substrate mixtures supplemented with 0.25 mg/mL of red seaweed extract. Samples were incubated for 6, 12, 24, 36, and 48 h. Each sample was incubated in triplicates in three separate runs. In vitro DM degradability, fermentation parameters (i.e., pH, volatile fatty acids, and ammonia nitrogen), total gas production, and CH4 production were analyzed for all time points. Microbial composition was analyzed using 16S rRNA amplicon sequencing after 24 h of incubation. The highest CH4 reduction (mL/g DM, mL/g digested DM, and % of total gas production) was observed in ATAX (51.3, 50.1, and 51.5%, respectively, compared to CON; P < 0.001) after 12 h of incubation. The other red seaweed extracts reduced the CH4 production (mL/g DM; P < 0.001) in the range of 4.6-35.0% compared to CON after 24 h of incubation. After 24 h of incubation, supplementation with red seaweed extracts tended to increase the molar proportion of propionate (P = 0.057) and decreased the acetate to propionate ratio (P = 0.033) compared to the CON. Abundances of the genus Methanobrevibacter and total methanogens were reduced (P = 0.050 and P = 0.016) by red seaweed extract supplementation. The linear discriminant analysis effect size (P < 0.05, LDA ≥ 2.0) showed that UG Succinivibrionaceae, Anaeroplasma, and UG Ruminococcaceae, which are associated with higher propionate production, starch degradation, and amylase activity were relatively more abundant in red seaweed extracts than in the CON. Our results suggest that supplementation with red seaweed extracts altered the microbiota, leading to the acceleration of propionate production and reduction in CH4 production.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Shin Ja Lee
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| | - Hyun Sang Kim
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Jun Sik Eom
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development of Administration (RDA), Jeonju, South Korea
| | - Dongryeoul Bae
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
25
|
On the use of pulsed electric field technology as a pretreatment to reduce the content of potentially toxic elements in dried Saccharina latissima. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Yin S, Niu L, Shibata M, Liu Y, Hagiwara T. Optimization of fucoxanthin extraction obtained from natural by-products from Undaria pinnatifida stem using supercritical CO2 extraction method. Front Nutr 2022; 9:981176. [PMID: 36245524 PMCID: PMC9558218 DOI: 10.3389/fnut.2022.981176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
In the recent years, edible brown seaweed, Undaria pinnatifida, has presented beneficial effects, which may be correlated with this species containing major bioactive compounds, such as carotenoids, fatty acids, and phytosterols. Marine carotenoid fucoxanthin is abundantly present in edible Undaria pinnatifida and features strong bioactive activities. The stem of Undaria pinnatifida is very hard to gnaw off and cannot be swallowed; therefore, it is usually discarded as waste, making it an environmental issue. Hence, making full use of the waste stem of Undaria pinnatifida is an urgent motivation. The present study aims to explore the optimal preparation technology of fucoxanthin from Undaria pinnatifida stems using supercritical carbon dioxide methods and provides approaches for the extraction and preparation of bioactive compounds from a waste seaweed part. With the comprehensive optimization conditions applied in this study, the experimental yield of fucoxanthin agreed closely with the predicted value by > 99.3%. The potential of α-amylase and glucoamylase to inhibit bioactive compounds was evaluated. The results demonstrated that the inhibition activity (IC50 value) of α-amylase (0.1857 ± 0.0198 μg/ml) and glucoamylase (0.1577 ± 0.0186 μg/ml) varied with extraction conditions due to the different contents of bioactive components in the extract, especially fucoxanthin (22.09 ± 0.69 mg/g extract). Therefore, this study confirmed supercritical fluid extraction technology to be a useful sample preparation method, which can effectively be used to prepare fucoxanthin from waste marine resources. This method can potentially be applied in functional food and related industries.
Collapse
Affiliation(s)
- Shipeng Yin
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Tomoaki Hagiwara,
| |
Collapse
|
27
|
Vega-Gálvez A, Uribe E, Gómez-Pérez LS, García V, Mejias N, Pastén A. Drying Kinetic Modeling and Assessment of Mineral Content, Antimicrobial Activity, and Potential α-Glucosidase Activity Inhibition of a Green Seaweed ( Ulva spp.) Subjected to Different Drying Methods. ACS OMEGA 2022; 7:34230-34238. [PMID: 36188277 PMCID: PMC9520681 DOI: 10.1021/acsomega.2c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The green algal genus Ulva grows widely on all continents and is used for several applications such as functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals due to its nutritional characteristics. However, to increase its shelf-life and retain its bioactive components, it is necessary to apply some conservation technology, such as drying. The aim of this work is to describe the drying kinetic behavior of the green seaweed Ulva spp. by applying three dehydration methods: convective drying (CD), vacuum drying (VD), and solar drying (SD) by mathematical modeling and determining the retention of mineral content by atomic absorption spectroscopy and the antimicrobial potential against four strains such as Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, and Penicillium sp. by measurement of inhibition zones and α-glucosidase activity inhibition, as reported by IC50 determination. A freeze-dried sample was used as the control. The equilibrium moisture values calculated using the Guggenheim-Anderson-de Boer model were 0.0108, 0.0108, and 0.0290 g water/g d.m., for CD, VD and SD, respectively. The Midilli and Kucuk model showed robustness to fit all the experimental data of drying kinetic modeling. Ulva spp. is an important source of potassium with a ratio of Na/K < 0.29. Inhibition halos were observed in all samples against S. cerevisiae and Penicillium sp. with higher values than fluconazole action. An inhibitory effect on α-glucosidase activity was observed in all samples, mainly in the freeze-dried sample. Finally, dried Ulva spp. is a rich source of macro- and microminerals with antimicrobial activity and is a potential α-glucosidase inhibitor. Thus, it can be considered as a potential functional ingredient for food manufacturing.
Collapse
Affiliation(s)
- Antonio Vega-Gálvez
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Elsa Uribe
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
- Instituto
de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gómez-Pérez
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Vivian García
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Nicol Mejias
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| | - Alexis Pastén
- Department
of Food Engineering, Universidad de La Serena, Avda. Raúl Bitrán
1305, La Serena 1700000, Chile
| |
Collapse
|
28
|
New wave of flavours – On new ways of developing and processing seaweed flavours. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Hassoun A, Cropotova J, Trif M, Rusu AV, Bobiş O, Nayik GA, Jagdale YD, Saeed F, Afzaal M, Mostashari P, Khaneghah AM, Regenstein JM. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front Nutr 2022; 9:972154. [PMID: 36034919 PMCID: PMC9399420 DOI: 10.3389/fnut.2022.972154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The growing consumer awareness of climate change and the resulting food sustainability issues have led to an increasing adoption of several emerging food trends. Some of these trends have been strengthened by the emergence of the fourth industrial revolution (or Industry 4.0), and its innovations and technologies that have fundamentally reshaped and transformed current strategies and prospects for food production and consumption patterns. In this review a general overview of the industrial revolutions through a food perspective will be provided. Then, the current knowledge base regarding consumer acceptance of eight traditional animal-proteins alternatives (e.g., plant-based foods and insects) and more recent trends (e.g., cell-cultured meat and 3D-printed foods) will be updated. A special focus will be given to the impact of digital technologies and other food Industry 4.0 innovations on the shift toward greener, healthier, and more sustainable diets. Emerging food trends have promising potential to promote nutritious and sustainable alternatives to animal-based products. This literature narrative review showed that plant-based foods are the largest portion of alternative proteins but intensive research is being done with other sources (notably the insects and cell-cultured animal products). Recent technological advances are likely to have significant roles in enhancing sensory and nutritional properties, improving consumer perception of these emerging foods. Thus, consumer acceptance and consumption of new foods are predicted to continue growing, although more effort should be made to make these food products more convenient, nutritious, and affordable, and to market them to consumers positively emphasizing their safety and benefits.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Genetics and Genetic Engineering, Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Bobiş
- Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, India
| | - Yash D. Jagdale
- MIT School of Food Technology, MIT ADT University, Pune, India
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Warsaw, Poland
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
30
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
31
|
Consumer Knowledge and Acceptance of "Algae" as a Protein Alternative: A UK-Based Qualitative Study. Foods 2022; 11:foods11121703. [PMID: 35741901 PMCID: PMC9223121 DOI: 10.3390/foods11121703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Overconsumption of meat has been recognised as a key contributing factor to the climate emergency. Algae (including macroalgae and microalgae) are a nutritious and sustainable food source that may be utilised as an alternative to animal-based proteins. However, little is known about the consumer awareness and acceptance of algae as a protein alternative. The aim of this qualitative study was to develop a rich and contextualised understanding of consumer beliefs about the use of algae in novel and innovative food products. A total of 34 participants from the UK assisted with our study. Each participant engaged in one focus group, with six focus groups conducted in total. Existing consumer knowledge of algae was discussed before participants explored the idea of algae-based food products. Reflexive (inductive) thematic analysis was used to analyse these data. Results showed that consumers have limited pre-existing knowledge of algae as a food source; however, participants were open to the idea of trying to consume algae. This anticipated acceptance of algae was influenced by several product attributes, including perceived novelty, edibility, healthiness, sustainability, and affordability. These findings highlight algae as a promising protein alternative to support plant-forward diets in the UK and identify key attributes to consider in future product development and marketing strategies.
Collapse
|
32
|
Banach JL, Koch SJI, Hoffmans Y, van den Burg SWK. Seaweed Value Chain Stakeholder Perspectives for Food and Environmental Safety Hazards. Foods 2022; 11:1514. [PMID: 35627084 PMCID: PMC9141909 DOI: 10.3390/foods11101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
With a world population estimated at 10 billion people by 2050, the challenge to secure healthy and safe food is evident. Seaweed is a potential answer to this challenge. Expanding the use of seaweed in food systems requires an emphasis on safe practices to avoid adverse human health effects after consumption and irreversible damage to marine ecosystems. This study aims to evaluate relevant food safety and environmental safety hazards, monitoring measures, and mitigation strategies in the seaweed sector. For this study, a literature review, survey (n = 36), and interviews (n = 12) were conducted to identify hazards. The review and interviews aimed at pinpointing monitoring measures and mitigation strategies applied, while the survey revealed data gaps and further actions needed for the sector. Relevant food safety hazards include (inorganic) arsenic, iodine, and heavy metals, among others, such as pathogenic bacteria, while environmental hazards include environmental pathogens and parasites introduced into the ecosystem by domesticated seaweed, among others. Measures applied aim at preventing or mitigating hazards through good hygienic or manufacturing practices, food safety procedures or protocols, or pre-site farm selection. Although the future needs of the seaweed sector vary, for some, harmonized advice and protocols that align with a changing food system and hazard knowledge development as well as information on the benefits of seaweed and regulating climate and water quality may help.
Collapse
Affiliation(s)
- Jennifer L. Banach
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6700 AE Wageningen, The Netherlands;
| | - Sophie J. I. Koch
- Wageningen Economic Research, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands; (S.J.I.K.); (S.W.K.v.d.B.)
| | - Yvette Hoffmans
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6700 AE Wageningen, The Netherlands;
| | - Sander W. K. van den Burg
- Wageningen Economic Research, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands; (S.J.I.K.); (S.W.K.v.d.B.)
| |
Collapse
|
33
|
Nie J, Fu X, Wang L, Xu J, Gao X. A systematic review of fermented Saccharina japonica: Fermentation conditions, metabolites, potential health benefits and mechanisms. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Assessment of Food Quality and Safety of Cultivated Macroalgae. Foods 2021; 11:foods11010083. [PMID: 35010208 PMCID: PMC8750098 DOI: 10.3390/foods11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
|