1
|
Tenorio-Salgado S, Villalpando-Aguilar JL, Hernandez-Guerrero R, Poot-Hernández AC, Perez-Rueda E. Exploring the enzymatic repertoires of Bacteria and Archaea and their associations with metabolic maps. Braz J Microbiol 2024:10.1007/s42770-024-01462-3. [PMID: 39052173 DOI: 10.1007/s42770-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The evolution, survival, and adaptation of microbes are consequences of gene duplication, acquisition, and divergence in response to environmental challenges. In this context, enzymes play a central role in the evolution of organisms, because they are fundamental in cell metabolism. Here, we analyzed the enzymatic repertoire in 6,467 microbial genomes, including their abundances, and their associations with metabolic maps. We found that the enzymes follow a power-law distribution, in relation to the genome sizes. Therefore, we evaluated the total proportion enzymatic classes in relation to the genomes, identifying a descending-order proportion: transferases (EC:2.-), hydrolases (EC:3.-), oxidoreductases (EC:1.-), ligases (EC:6.-), lyases (EC:4.-), isomerases (EC:5.-), and translocases (EC:7-.). In addition, we identified a preferential use of enzymatic classes in metabolism pathways for xenobiotics, cofactors and vitamins, carbohydrates, amino acids, glycans, and energy. Therefore, this analysis provides clues about the functional constraints associated with the enzymatic repertoire of functions in Bacteria and Archaea.
Collapse
Affiliation(s)
- Silvia Tenorio-Salgado
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5, 97118, Merida, Yucatan, Mexico
| | - José Luis Villalpando-Aguilar
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
- Facultad Ciencias de la Salud, Universidad Vizcaya de las Américas, Prolongación Allende, Campeche, 24035, Campeche, Mexico
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Chen L, Hong T, Wu Z, Song W, Chen SX, Liu Y, Shen L. Genomic analyses reveal a low-temperature adapted clade in Halorubrum, a widespread haloarchaeon across global hypersaline environments. BMC Genomics 2023; 24:508. [PMID: 37653415 PMCID: PMC10468875 DOI: 10.1186/s12864-023-09597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.
Collapse
Affiliation(s)
- Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaoxing X Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
3
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
4
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
5
|
Ngugi DK, Acinas SG, Sánchez P, Gasol JM, Agusti S, Karl DM, Duarte CM. Abiotic selection of microbial genome size in the global ocean. Nat Commun 2023; 14:1384. [PMID: 36914646 PMCID: PMC10011403 DOI: 10.1038/s41467-023-36988-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome.
Collapse
Affiliation(s)
- David K Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Susana Agusti
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaií at Mãnoa, Honolulu, USA
| | - Carlos M Duarte
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Wilhelm RC, Amsili JP, Kurtz KSM, van Es HM, Buckley DH. Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils. ISME COMMUNICATIONS 2023; 3:1. [PMID: 37081121 PMCID: PMC9829723 DOI: 10.1038/s43705-022-00209-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Soil microbiomes are sensitive to current and previous soil conditions, and bacterial 'bioindicators' of biological, physical, and chemical soil properties have considerable potential for soil health assessment. However, the lack of ecological or physiological information for most soil microorganisms limits our ability to interpret the associations of bioindicators and, thus, their utility for guiding management. We identified bioindicators of tillage intensity and twelve soil properties used to rate soil health using a 16S rRNA gene-based survey of farmland across North America. We then inferred the genomic traits of bioindicators and evaluated their environment-wide associations (EWAS) with respect to agricultural management practice, disturbance, and plant associations with 89 studies from agroecosystems. Most bioindicators were either positively correlated with biological properties (e.g., organic matter) or negatively correlated with physical and chemical properties. Higher soil health ratings corresponded with smaller genome size and higher coding density, while lower ratings corresponded with larger genomes and higher rrn copy number. Community-weighted genome size explained most variation in health ratings. EWAS linked prominent bioindicators with the impacts of environmental disturbances. Our findings provide ecological insights into bioindicators of soil properties relevant to soil health management, illustrating the tight coupling of microbiome and soil function.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA.
| | - Joseph P Amsili
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Kirsten S M Kurtz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Harold M van Es
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Dong Y, Wu S, Fan H, Li X, Li Y, Xu S, Bai Z, Zhuang X. Ecological selection of bacterial taxa with larger genome sizes in response to polycyclic aromatic hydrocarbons stress. J Environ Sci (China) 2022; 112:82-93. [PMID: 34955225 DOI: 10.1016/j.jes.2021.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous priority pollutants that cause great damage to the natural environment and health. Average genome size in a community is critical for shedding light on microbiome's functional response to pollution stress within an environment. Here, microcosms under different concentrations were performed to evaluate the selection of PAHs stress on the average genome size in a community. We found the distinct communities of significantly larger genome size with the increase of PAHs concentration gradients in soils, and consistent trends were discovered in soils at different latitudes. The abundance of Proteobacteria and Deinococcus-Thermus with relatively larger genomes increased along with PAHs stress and well adapted to polluted environments. In contrast, the abundance of Patescibacteria with a highly streamlined and smaller genome decreased, implying complex interactions between environmental selection and functional fitness resulted in bacteria with larger genomes becoming more abundant. Moreover, we confirmed the increased capacity for horizontal transfer of degrading genes between communities by showing an increased connection number per node positively related to the nidA gene along the concentration gradients in the co-occurrence network. Our findings suggest PAHs tend to select bacterial taxa with larger genome sizes, with significant consequences for community stability and potential biodegradation strategies.
Collapse
Affiliation(s)
- Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijing Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Tahon G, Gök D, Lebbe L, Willems A. Description and functional testing of four species of the novel phototrophic genus Chioneia gen. nov., isolated from different East Antarctic environments. Syst Appl Microbiol 2021; 44:126250. [PMID: 34592543 DOI: 10.1016/j.syapm.2021.126250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Seven Gram-negative, aerobic, non-sporulating, motile strains were isolated from terrestrial (R-67880T, R-67883, R-36501 and R-36677T) and aquatic (R-39604, R-39161T and R-39594T) East Antarctic environments (i.e. soil and aquatic microbial mats), between 2007 and 2014. Analysis of near-complete 16S rRNA gene sequences revealed that the strains potentially form a novel genus in the family Sphingomonadaceae (Alphaproteobacteria). DNA-DNA reassociation and average nucleotide identity values indicated distinction from close neighbors in the family Sphingomonadaceae and showed that the seven isolates form four different species. The main central pathways present in the strains are the glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The strains can use only a limited number of carbon sources and mainly depend on ammonia and sulfate as a nitrogen and sulfur source, respectively. The novel strains showed the potential of aerobic anoxygenic phototrophy, based on the presence of bacteriochlorophyll a pigments, which was corroborated by the presence of genes for all building blocks for a type 2 photosynthetic reaction center in the annotated genomes. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the strains could be assigned four new species in the novel genus Chioneia gen. nov. in the family Sphingomonadaceae, for which the names C. frigida sp. nov. (R-67880T, R-67883 and R-36501), C. hiemis sp. nov. (R-36677T), C. brumae sp. nov. (R-39161T and R-39604) and C. algoris sp. nov. (R-39594T) are proposed.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Duygu Gök
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Marotta P, Salatiello F, Ambrosino L, Berruto F, Chiusano ML, Locascio A. The Ascidia Ciona robusta Provides Novel Insights on the Evolution of the AP-1 Transcriptional Complex. Front Cell Dev Biol 2021; 9:709696. [PMID: 34414189 PMCID: PMC8369891 DOI: 10.3389/fcell.2021.709696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Activator Protein-1 transcription factor family (AP-1) transcriptional complex is historically defined as an early response group of transcription factors formed by dimeric complexes of the Jun, Fos, Atf, and Maf bZIP proteins that control cell proliferation and differentiation by regulating gene expression. It has been greatly investigated in many model organisms across metazoan evolution. Nevertheless, its complexity and variability of action made its multiple functions difficult to be defined. Here, we place the foundations for understanding the complexity of AP-1 transcriptional members in tunicates. We investigated the gene members of this family in the ascidian Ciona robusta and identified single copies of Jun, Fos, Atf3, Atf2/7, and Maf bZIP-related factors that could have a role in the formation of the AP-1 complex. We highlight that mesenchyme is a common cellular population where all these factors are expressed during embryonic development, and that, moreover, Fos shows a wider pattern of expression including also notochord and neural cells. By ectopic expression in transgenic embryos of Jun and Fos genes alone or in combination, we investigated the phenotypic alterations induced by these factors and highlighted a degree of functional conservation of the AP-1 complex between Ciona and vertebrates. The lack of gene redundancy and the first pieces of evidence of conserved functions in the control of cell movements and structural organization exerted by these factors open the way for using Ciona as a helpful model system to uncover the multiple potentialities of this highly complex family of bZIP transcription factors.
Collapse
Affiliation(s)
- Pina Marotta
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Naples, Italy.,Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Federica Berruto
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Luisa Chiusano
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy.,Department of Agriculture, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Annamaria Locascio
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
10
|
Kim J, Silva-Rocha R, de Lorenzo V. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity. Int Microbiol 2021; 24:507-519. [PMID: 34269947 DOI: 10.1007/s10123-021-00194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Any descriptive language is necessarily metaphoric and interpretative. Two somewhat overlapping-but not identical-languages have been thoroughly employed in the last decade to address the issue of regulatory complexity in biological systems: the terminology of network theory and the jargon of electric circuitry. These approaches have found many formal equivalences between the layout of extant genetic circuits and the architecture of man-made counterparts. However, these languages still fail to describe accurately key features of biological objects, in particular the diversity of signal-transfer molecules and the diffusion that is inherent to any biochemical system. Furthermore, current formalisms associated with networks and circuits can hardly face the problem of multi-scale regulatory complexity-from single molecules to entire ecosystems. We argue that the language of economic theory might be instrumental not only to portray accurately many features of regulatory networks, but also to unveil aspects of the biological complexity problem that remain opaque to other types of analyses. The main perspective opened by the economic metaphor when applied to control of microbiological activities is a focus on metabolism, not gene selfishness, as the necessary background to make sense of regulatory phenomena. As an example, we analyse and reinterpret the widespread phenomenon of catabolite repression with the formal frame of the consumer's choice theory.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Sorensen JW, Dunivin TK, Tobin TC, Shade A. Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient. Nat Microbiol 2018; 4:55-61. [PMID: 30397342 DOI: 10.1038/s41564-018-0276-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023]
Abstract
Small bacterial and archaeal genomes provide insights into the minimal requirements for life1 and are phylogenetically widespread2. However, the precise environmental pressures that constrain genome size in free-living microorganisms are unknown. A study including isolates has shown that thermophiles and other bacteria with high optimum growth temperatures often have small genomes3. It is unclear whether this relationship extends generally to microorganisms in nature4,5 and more specifically to microorganisms that inhabit complex and highly variable environments, such as soils3,6,7. To understand the genomic traits of thermally adapted microorganisms, here we investigated metagenomes from a 45 °C gradient of temperate-to-thermal soils that lie over the ongoing Centralia, Pennsylvania (USA) coal-seam fire. We found that hot soils harboured distinct communities with small genomes and small cell sizes relative to those in ambient soils. Hot soils notably lacked genes that encode known two-component regulatory systems, and antimicrobial production and resistance genes. Our results provide field evidence for the inverse relationship between microbial genome size and temperature in a diverse, free-living community over a wide range of temperatures that support microbial life.
Collapse
Affiliation(s)
- Jackson W Sorensen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Taylor K Dunivin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA
| | - Tammy C Tobin
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA. .,Department of Plant, Soil and Microbial Sciences, Program in Ecology, Evolutionary Biology and Behavior and the Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nuñez MA, Armenta-Medina D, Sanchez I, Ibarra JA. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors. PLoS One 2018; 13:e0195332. [PMID: 29614096 PMCID: PMC5882156 DOI: 10.1371/journal.pone.0195332] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 02/04/2023] Open
Abstract
Gene regulation at the transcriptional level is a central process in all organisms, and DNA-binding transcription factors, known as TFs, play a fundamental role. This class of proteins usually binds at specific DNA sequences, activating or repressing gene expression. In general, TFs are composed of two domains: the DNA-binding domain (DBD) and an extra domain, which in this work we have named “companion domain” (CD). This latter could be involved in one or more functions such as ligand binding, protein-protein interactions or even with enzymatic activity. In contrast to DBDs, which have been widely characterized both experimentally and bioinformatically, information on the abundance, distribution, variability and possible role of the CDs is scarce. Here, we investigated these issues associated with the domain architectures of TFs in prokaryotic genomes. To this end, 19 families of TFs in 761 non-redundant bacterial and archaeal genomes were evaluated. In this regard we found four main groups based on the abundance and distribution in the analyzed genomes: i) LysR and TetR/AcrR; ii) AraC/XylS, SinR, and others; iii) Lrp, Fis, ArsR, and others; and iv) a group that included only two families, ArgR and BirA. Based on a classification of the organisms according to the life-styles, a major abundance of regulatory families in free-living organisms, in contrast with pathogenic, extremophilic or intracellular organisms, was identified. Finally, the protein architecture diversity associated to the 19 families considering a weight score for domain promiscuity evidenced which regulatory families were characterized by either a large diversity of CDs, here named as “promiscuous” families given the elevated number of variable domains found in those TFs, or a low diversity of CDs. Altogether this information helped us to understand the diversity and distribution of the 19 Prokaryotes TF families. Moreover, initial steps were taken to comprehend the variability of the extra domain in those TFs, which eventually might assist in evolutionary and functional studies.
Collapse
Affiliation(s)
- Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Departamento de Ingenieria Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, México
- * E-mail: (EPR); , (JAI)
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Martinez-Nuñez
- Laboratorio de Ecogenómica, Unidad Académica de Ciencias y Tecnología de Yucatán, Facultad de Ciencias, UNAM, Mérida, Yucatán, México
| | | | - Israel Sanchez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - J. Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- * E-mail: (EPR); , (JAI)
| |
Collapse
|
13
|
De Lazzari E, Grilli J, Maslov S, Cosentino Lagomarsino M. Family-specific scaling laws in bacterial genomes. Nucleic Acids Res 2017; 45:7615-7622. [PMID: 28605556 PMCID: PMC5737699 DOI: 10.1093/nar/gkx510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 01/21/2023] Open
Abstract
Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes.
Collapse
Affiliation(s)
- Eleonora De Lazzari
- Sorbonne Universités, UPMC Université Paris 06, UMR 7238 Computational and Quantitative Biology, Genomic Physics Group, 4 Place Jussieu, Paris 75005, France
| | - Jacopo Grilli
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th st 60637 Chicago, IL, USA
| | - Sergei Maslov
- Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- To whom correspondence should be addressed. Tel: +33 144277341; . Correspondence may also be addressed to Sergei Maslov. Tel: +1 217 265 5705;
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Université Paris 06, UMR 7238 Computational and Quantitative Biology, Genomic Physics Group, 4 Place Jussieu, Paris 75005, France
- CNRS, UMR 7238, Paris, France
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
- To whom correspondence should be addressed. Tel: +33 144277341; . Correspondence may also be addressed to Sergei Maslov. Tel: +1 217 265 5705;
| |
Collapse
|
14
|
Lear G, Lau K, Perchec AM, Buckley HL, Case BS, Neale M, Fierer N, Leff JW, Handley KM, Lewis G. Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environ Microbiol 2017; 19:3152-3162. [PMID: 28504344 DOI: 10.1111/1462-2920.13797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/11/2016] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
We sought to test whether stream bacterial communities conform to Rapoport's Rule, a pattern commonly observed for plants and animals whereby taxa exhibit decreased latitudinal range sizes closer to the equator. Using a DNA sequencing approach, we explored the biogeography of biofilm bacterial communities in 204 streams across a ∼1000 km latitudinal gradient. The range sizes of bacterial taxa were strongly correlated with latitude, decreasing closer to the equator, which coincided with a greater than fivefold increase in bacterial taxonomic richness. The relative richness and range size of bacteria were associated with spatially correlated variation in temperature and rainfall. These patterns were observed despite enormous variability in catchment environmental characteristics. Similar results were obtained when restricting the same analyses to native forest catchments, thereby controlling for spatial biases in land use. We analysed genomic data from ∼500 taxa detected in this study, for which data were available and found that bacterial communities at cooler latitudes also tended to possess greater potential metabolic potential. Collectively, these data provide the first evidence of latitudinal variation in the range size distributions of freshwater bacteria, a trend which may be determined, in part, by a trade-off between bacterial genome size and local variation in climatic conditions.
Collapse
Affiliation(s)
- Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kelvin Lau
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Anne-Marie Perchec
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Bradley S Case
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0216, USA
| | - Jonathan W Leff
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0216, USA
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Gillian Lewis
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
15
|
Baumgartner M, Roffler S, Wicker T, Pernthaler J. Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment. ISME JOURNAL 2017; 11:2258-2266. [PMID: 28585936 DOI: 10.1038/ismej.2017.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator-prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273 kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization.
Collapse
Affiliation(s)
- Michael Baumgartner
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Stefan Roffler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
16
|
Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics 2015; 16:36. [PMID: 25649291 PMCID: PMC4326396 DOI: 10.1186/s12864-015-1220-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/02/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial genus Arthrobacter are both readily cultured and commonly identified in Antarctic soil communities. Currently, relatively little is known about the physiological traits that allow these bacteria to survive in the harsh Antarctic soil environment. The aim of this study is to investigate if Antarctic strains of Arthrobacter owe their resilience to substantial genomic changes compared to Arthrobacter spp. isolated from temperate soil environments. RESULTS Quantitative PCR-based analysis revealed that up to 4% of the soil bacterial communities were comprised of Arthrobacter spp. at four locations in the Ross Sea Region. Genome analysis of the seven Antarctic Arthrobacter isolates revealed several features that are commonly observed in psychrophilic/psychrotolerant bacteria. These include genes primarily associated with sigma factors, signal transduction pathways, the carotenoid biosynthesis pathway and genes induced by cold-shock, oxidative and osmotic stresses. However, these genes were also identified in genomes of seven temperate Arthrobacter spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. Phenotypic characterisation revealed that Antarctic Arthrobacter isolates demonstrate significantly lower metabolic versatility and a narrower salinity tolerance range compared to temperate Arthrobacter species. Comparative analyses also revealed fewer protein-coding sequences and a significant decrease in genes associated with transcription and carbohydrate transport and metabolism in four of the seven Antarctic Arthrobacter isolates. Notwithstanding genome incompleteness, these differences together with the decreased metabolic versatility are indicative of genome content scaling. CONCLUSIONS The genomes of the seven Antarctic Arthrobacter isolates contained several features that may be beneficial for growth and survival in the Antarctic soil environment, although these features were not unique to the Antarctic isolates. These genome sequences allow further investigations into the expression of physiological traits that enable survival under extreme conditions and, more importantly, into the ability of these bacteria to respond to future perturbations including climate change and human impacts.
Collapse
Affiliation(s)
- Melissa Dsouza
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Susan J Turner
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- BioDiscovery New Zealand Limited, Parnell, Auckland, New Zealand.
| | | |
Collapse
|
17
|
Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus. PLoS One 2014; 9:e108009. [PMID: 25285990 PMCID: PMC4186907 DOI: 10.1371/journal.pone.0108009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/21/2014] [Indexed: 12/02/2022] Open
Abstract
Antarctic soils represent a unique environment characterised by extremes of temperature, salinity, elevated UV radiation, low nutrient and low water content. Despite the harshness of this environment, members of 15 bacterial phyla have been identified in soils of the Ross Sea Region (RSR). However, the survival mechanisms and ecological roles of these phyla are largely unknown. The aim of this study was to investigate whether strains of Paenibacillus darwinianus owe their resilience to substantial genomic changes. For this, genome-based comparative analyses were performed on three P. darwinianus strains, isolated from gamma-irradiated RSR soils, together with nine temperate, soil-dwelling Paenibacillus spp. The genome of each strain was sequenced to over 1,000-fold coverage, then assembled into contigs totalling approximately 3 Mbp per genome. Based on the occurrence of essential, single-copy genes, genome completeness was estimated at approximately 88%. Genome analysis revealed between 3,043-3,091 protein-coding sequences (CDSs), primarily associated with two-component systems, sigma factors, transporters, sporulation and genes induced by cold-shock, oxidative and osmotic stresses. These comparative analyses provide an insight into the metabolic potential of P. darwinianus, revealing potential adaptive mechanisms for survival in Antarctic soils. However, a large proportion of these mechanisms were also identified in temperate Paenibacillus spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. These analyses have also revealed that the P. darwinianus genomes contain significantly fewer CDSs and have a lower paralogous content. Notwithstanding the incompleteness of the assemblies, the large differences in genome sizes, determined by the number of genes in paralogous clusters and the CDS content, are indicative of genome content scaling. Finally, these sequences are a resource for further investigations into the expression of physiological attributes that enable survival under extreme conditions and selection processes that affect prokaryotic genome evolution.
Collapse
Affiliation(s)
- Melissa Dsouza
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael W. Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Susan J. Turner
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- BioDiscovery New Zealand Limited, Parnell, Auckland, New Zealand
| | | |
Collapse
|
18
|
Dong QJ, Wang LL, Tian ZB, Yu XJ, Jia SJ, Xuan SY. Reduced genome size of Helicobacter pylori originating from East Asia. World J Gastroenterol 2014; 20:5666-5671. [PMID: 24914326 PMCID: PMC4024775 DOI: 10.3748/wjg.v20.i19.5666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/19/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), a major pathogen colonizing the human stomach, shows great genetic variation. Comparative analysis of strains from different H. pylori populations revealed that the genome size of strains from East Asia decreased to 1.60 Mbp, which is significantly smaller than that from Europe or Africa. In parallel with the genome reduction, the number of protein coding genes was decreased, and the guanine-cytosine content was lowered to 38.9%. Elimination of non-essential genes by mutations is likely to be a major cause of the genome reduction. Bacteria with a small genome cost less energy. Thus, H. pylori strains from East Asia may have proliferation and growth advantages over those from Western countries. This could result in enhanced capacity of bacterial spreading. Therefore, the reduced genome size potentially contributes to the high prevalence of H. pylori in East Asia.
Collapse
|
19
|
Implications of streamlining theory for microbial ecology. ISME JOURNAL 2014; 8:1553-65. [PMID: 24739623 DOI: 10.1038/ismej.2014.60] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.
Collapse
|
20
|
Sabath N, Ferrada E, Barve A, Wagner A. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biol Evol 2013; 5:966-77. [PMID: 23563968 PMCID: PMC3673621 DOI: 10.1093/gbe/evt050] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prokaryotic genomes are small and compact. Either this feature is caused by neutral evolution or by natural selection favoring small genomes—genome streamlining. Three separate prior lines of evidence argue against streamlining for most prokaryotes. We find that the same three lines of evidence argue for streamlining in the genomes of thermophile bacteria. Specifically, with increasing habitat temperature and decreasing genome size, the proportion of genomic DNA in intergenic regions decreases. Furthermore, with increasing habitat temperature, generation time decreases. Genome-wide selective constraints do not decrease as in the reduced genomes of host-associated species. Reduced habitat variability is not a likely explanation for the smaller genomes of thermophiles. Genome size may be an indirect target of selection due to its association with cell volume. We use metabolic modeling to demonstrate that known changes in cell structure and physiology at high temperature can provide a selective advantage to reduce cell volume at high temperatures.
Collapse
Affiliation(s)
- Niv Sabath
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
21
|
Carroll SM, Lee MC, Marx CJ. SIGN EPISTASIS LIMITS EVOLUTIONARY TRADE-OFFS AT THE CONFLUENCE OF SINGLE- AND MULTI-CARBON METABOLISM INMETHYLOBACTERIUM EXTORQUENSAM1. Evolution 2013; 68:760-71. [DOI: 10.1111/evo.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Sean Michael Carroll
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
| | - Ming-Chun Lee
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Department of Biochemistry; University of Hong Kong; Pok Fu Lam Hong Kong
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge Massachusetts
- Faculty of Arts and Sciences Center for Systems Biology; Harvard University; Cambridge Massachusetts
| |
Collapse
|
22
|
Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 2013; 3:2101. [PMID: 23812535 PMCID: PMC3696898 DOI: 10.1038/srep02101] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023] Open
Abstract
Complex environmental conditions can significantly affect bacterial genome size by unknown mechanisms. The So0157-2 strain of Sorangium cellulosum is an alkaline-adaptive epothilone producer that grows across a wide pH range. Here, we show that the genome of this strain is 14,782,125 base pairs, 1.75-megabases larger than the largest bacterial genome from S. cellulosum reported previously. The total 11,599 coding sequences (CDSs) include massive duplications and horizontally transferred genes, regulated by lots of protein kinases, sigma factors and related transcriptional regulation co-factors, providing the So0157-2 strain abundant resources and flexibility for ecological adaptation. The comparative transcriptomics approach, which detected 90.7% of the total CDSs, not only demonstrates complex expression patterns under varying environmental conditions but also suggests an alkaline-improved pathway of the insertion and duplication, which has been genetically testified, in this strain. These results provide insights into and a paradigm for how environmental conditions can affect bacterial genome expansion.
Collapse
|
23
|
Martínez-Núñez MA, Poot-Hernandez AC, Rodríguez-Vázquez K, Perez-Rueda E. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes. PLoS One 2013; 8:e69707. [PMID: 23922780 PMCID: PMC3726781 DOI: 10.1371/journal.pone.0069707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.
Collapse
Affiliation(s)
- Mario Alberto Martínez-Núñez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
- * E-mail: (MMN); (EPR)
| | - Augusto Cesar Poot-Hernandez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Katya Rodríguez-Vázquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (MMN); (EPR)
| |
Collapse
|
24
|
Perez-Rueda E, Martinez-Nuñez MA. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons. Sci Prog 2012; 95:315-29. [PMID: 23094327 PMCID: PMC10365527 DOI: 10.3184/003685012x13420097673409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.
Collapse
Affiliation(s)
- Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62100, Mexico.
| | | |
Collapse
|
25
|
Seshasayee ASN, Luscombe NM. Comparative genomics suggests differential deployment of linear and branched signaling across bacteria. MOLECULAR BIOSYSTEMS 2011; 7:3042-9. [PMID: 21879110 DOI: 10.1039/c1mb05260h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major mode of signal transduction in bacteria is the two-component system, which involves phosphorylation of an output-generating receiver protein by a signal-sensing histidine kinase. This differs from the more common one-component system--where both signal sensing and output generation are performed by the same protein--in the spatial separation of the two activities and the obligate need for post-translational modification (phosphorylation). Many described two-component systems involve a linear structure where a single kinase phosphorylates a cognate receiver. However, inherently branched network structures are being increasingly discovered, though their prevalence is unknown. Though the simpler one-component systems are more common than two-component systems, some organisms encode a disproportionately high number of the latter; though these organisms are generally described as having 'complex' lifestyles, no systematic description of their signaling networks has been proposed. Finally, the relative contributions of the two modes of signal transduction towards achieving an optimal regulatory cost for growth and survival in an environment remain poorly understood. Here we present a comparative genomics survey of ~165,000 regulatory proteins from ~850 prokaryotic genomes and suggest that organisms with elevated occurrence of two-component systems--which generally belong to phylogenetic classes with relatively poor representation in genomic databases--also code for more complex and branched two-component networks. Such branched signaling might compensate for the apparent paucity in the total number of regulatory proteins these organisms encode. Finally, such interconnected signaling networks might be more common than anticipated, indicating the pressing need for genome-scale experimental studies of signaling networks in many understudied phylogenetic groups of organisms.
Collapse
|
26
|
Shou C, Bhardwaj N, Lam HYK, Yan KK, Kim PM, Snyder M, Gerstein MB. Measuring the evolutionary rewiring of biological networks. PLoS Comput Biol 2011; 7:e1001050. [PMID: 21253555 PMCID: PMC3017101 DOI: 10.1371/journal.pcbi.1001050] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 12/03/2010] [Indexed: 11/18/2022] Open
Abstract
We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.
Collapse
Affiliation(s)
- Chong Shou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Nitin Bhardwaj
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Hugo Y. K. Lam
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Koon-Kiu Yan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Philip M. Kim
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
27
|
Seshasayee ASN, Sivaraman K, Luscombe NM. An overview of prokaryotic transcription factors : a summary of function and occurrence in bacterial genomes. Subcell Biochem 2011; 52:7-23. [PMID: 21557077 DOI: 10.1007/978-90-481-9069-0_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional initiation is arguably the most important control point for gene expression. It is regulated by a combination of factors, including DNA sequence and its three-dimensional topology, proteins and small molecules. In this chapter, we focus on the trans-acting factors of bacterial regulation. Initiation begins with the recruitment of the RNA polymerase holoenzyme to a specific locus upstream of the gene known as its promoter. The sigma factor, which is a component of the holoenzyme, provides the most fundamental mechanisms for orchestrating broad changes in gene expression state. It is responsible for promoter recognition as well as recruiting the holoenzyme to the promoter. Distinct sigma factors compete with for binding to a common pool of RNA polymerases, thus achieving condition-dependent differential expression. Another important class of bacterial regulators is transcription factors, which activate or repress transcription of target genes typically in response to an environmental or cellular trigger. These factors may be global or local depending on the number of genes and range of cellular functions that they target. The activities of both global and local transcription factors may be regulated either at a post-transcriptional level via signal-sensing protein domains or at the level of their own expression. In addition to modulating polymerase recruitment to promoters, several global factors are considered as "nucleoid-associated proteins" that impose structural constraints on the chromosome by altering the conformation of the bound DNA, thus influencing other processes involving DNA such as replication and recombination. This chapter concludes with a discussion of how regulatory interactions between transcription factors and their target genes can be represented as a network.
Collapse
|
28
|
Trevors J, Masson L. How much cytoplasm can a bacterial genome control? J Microbiol Methods 2011; 84:147-50. [DOI: 10.1016/j.mimet.2010.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
|
29
|
Charoensawan V, Wilson D, Teichmann SA. Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 2010; 38:7364-77. [PMID: 20675356 PMCID: PMC2995046 DOI: 10.1093/nar/gkq617] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sequence-specific transcription factors (TFs) are important to genetic regulation in all organisms because they recognize and directly bind to regulatory regions on DNA. Here, we survey and summarize the TF resources available. We outline the organisms for which TF annotation is provided, and discuss the criteria and methods used to annotate TFs by different databases. By using genomic TF repertoires from ∼700 genomes across the tree of life, covering Bacteria, Archaea and Eukaryota, we review TF abundance with respect to the number of genes, as well as their structural complexity in diverse lineages. While typical eukaryotic TFs are longer than the average eukaryotic proteins, the inverse is true for prokaryotes. Only in eukaryotes does the same family of DNA-binding domain (DBD) occur multiple times within one polypeptide chain. This potentially increases the length and diversity of DNA-recognition sequence by reusing DBDs from the same family. We examined the increase in TF abundance with the number of genes in genomes, using the largest set of prokaryotic and eukaryotic genomes to date. As pointed out before, prokaryotic TFs increase faster than linearly. We further observe a similar relationship in eukaryotic genomes with a slower increase in TFs.
Collapse
|
30
|
Supek F, Škunca N, Repar J, Vlahoviček K, Šmuc T. Translational selection is ubiquitous in prokaryotes. PLoS Genet 2010; 6:e1001004. [PMID: 20585573 PMCID: PMC2891978 DOI: 10.1371/journal.pgen.1001004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/26/2010] [Indexed: 11/29/2022] Open
Abstract
Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an “adaptome” by highlighting gene functions with expression levels elevated specifically in thermophilic Bacteria and Archaea. Synonymous codons are not equally common in genomes. The main causes of unequal codon usage are varying nucleotide substitution patterns, as manifested in the wide range of genomic nucleotide compositions. However, since the first E. coli and yeast genes were sequenced, it became evident that there was also a bias towards codons that can be translated to protein faster and more accurately. This bias was stronger in highly expressed genes, and its driving force was termed translational selection. Researchers sought for effects of translational selection in microbial genomes as they became available, employing a flurry of mathematical approaches which sometimes led to contradictory conclusions. We introduce a sensitive and accurate machine learning-based methodology and find that highly expressed genes have a recognizable codon usage pattern in almost every bacterial and archaeal genome analyzed, even after accounting for large differences in background nucleotide composition. We also show that the gene functional category has a great bearing on whether that gene is subject to translational selection. Since presence of codon optimizations can be used as a purely sequence-derived proxy for expression levels, we can delineate “adaptomes” by relating predicted gene activity to organisms' phenotypes, which we demonstrate on genomes of temperature-resistant Bacteria and Archaea.
Collapse
Affiliation(s)
- Fran Supek
- Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nives Škunca
- Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Jelena Repar
- Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Kristian Vlahoviček
- Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Tomislav Šmuc
- Division of Electronics, Rudjer Boskovic Institute, Zagreb, Croatia
- * E-mail:
| |
Collapse
|
31
|
Isambert H, Stein RR. On the need for widespread horizontal gene transfers under genome size constraint. Biol Direct 2009; 4:28. [PMID: 19703318 PMCID: PMC2740843 DOI: 10.1186/1745-6150-4-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 11/20/2022] Open
Abstract
Background While eukaryotes primarily evolve by duplication-divergence expansion (and reduction) of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. Hypothesis We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i) their apparent genome size constraint compared to typical eukaryote genomes and ii) their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. Implications This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene recovery mechanisms, must have ultimately favored the emergence of more complex life styles and ecological integration of many eukaryotes. Reviewers This article was reviewed by Pierre Pontarotti, Eugene V Koonin and Sergei Maslov.
Collapse
Affiliation(s)
- Hervé Isambert
- Institut Curie, CNRS UMR168, 11 rue P, & M, Curie, 75005 Paris, France.
| | | |
Collapse
|
32
|
Abstract
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
34
|
Seshasayee ASN, Fraser GM, Babu MM, Luscombe NM. Principles of transcriptional regulation and evolution of the metabolic system in E. coli. Genome Res 2008; 19:79-91. [PMID: 18836036 DOI: 10.1101/gr.079715.108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organisms must adapt to make optimal use of the metabolic system in response to environmental changes. In the long-term, this involves evolution of the genomic repertoire of enzymes; in the short-term, transcriptional control ensures that appropriate enzymes are expressed in response to transitory extracellular conditions. Unicellular organisms are particularly susceptible to environmental changes; however, genome-scale impact of these modulatory effects has not been explored so far in bacteria. Here, we integrate genome-scale data to investigate the evolutionary trends and transcriptional control of metabolism in Escherichia coli K12. Globally, the regulatory system is organized in a clear hierarchy of general and specific transcription factors (TFs) that control differing ranges of metabolic functions. Further, catabolic, anabolic, and central metabolic pathways are targeted by distinct combinations of these TFs. Locally, enzymes catalyzing sequential reactions in a metabolic pathway are co-regulated by the same TFs. Regulation is more complex at junctions: General TFs control the overall activity of all connecting reactions, whereas specific TFs control individual enzymes. Divergent junctions play a special role in delineating metabolic pathways and decouple the regulation of incoming and outgoing reactions. We find little evidence for differential usage of isozymes, which are generally co-expressed in similar conditions, and thus are likely to reinforce the metabolic system through redundancy. Finally, we show that enzymes controlled by the same TFs have a strong tendency to co-evolve, suggesting a significant constraint to maintain similar regulatory regimes during evolution. Catabolic, anabolic, and central energy pathways evolve differently, emphasizing the role of the environment in shaping the metabolic system. Many of the observations also occur in yeast, and our findings may apply across large evolutionary distances.
Collapse
Affiliation(s)
- Aswin S N Seshasayee
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Hessen DO, Ventura M, Elser JJ. Do phosphorus requirements for RNA limit genome size in crustacean zooplankton? Genome 2008; 51:685-91. [DOI: 10.1139/g08-053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As for most other organisms, genome size in zooplankton differs widely. This may have a range of consequences for growth rate, development, and life history strategies, yet the causes of this pronounced variability are not settled. Here we propose that small genome size may be an evolutionary consequence of phosphorus (P) allocation from DNA to RNA under P deficiency. To test this hypothesis we have compared the two major groups of zooplankton, copepods and cladocerans, that have overlapping niches and body size. Relative to the cladocerans, copepods have a more complex life history and a lower mass-specific P content, while cladocerans tend to have higher P and RNA contents and higher specific growth rates and frequently experience P-limited growth, likely due to a shortage of P for ribosome synthesis. Cladocerans also generally have smaller genomes than copepods (1C = 0.17–0.63 pg DNA·cell–1vs. 1C = 0.10–10 pg DNA·cell–1). Furthermore, cladocerans have a higher slope of the relationship of body size with DNA content (1.5 vs. 0.28 in copepods) and present almost 15-fold higher RNA:DNA ratios (24.8 in cladocerans vs. 1.6 in copepods). Hence, small genome size in cladocerans could reflect an evolutionary pressure towards “efficient” genomes to conserve a key element needed to maximize growth rate. We do not claim that this is a universal cause of genome size variability, but propose that streamlining of genomes could be related to P conservation rather than energy conservation. This could be relevant for a range of organisms that may suffer P-limited growth rates.
Collapse
Affiliation(s)
- Dag O. Hessen
- University of Oslo, Department of Biology, CEES, P.O. Box 1066, Blindern, 0316 Oslo, Norway
- Department of Freshwater Ecology, National Environmental Research Institute (NERI), Vejlsøvej 25, DK-8600 Silkeborg, Denmark
- Limnology Group (CSIC-UB), Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Accés a la Cala Sant Francesc, 14, 17300 Blanes, Girona, Spain
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Marc Ventura
- University of Oslo, Department of Biology, CEES, P.O. Box 1066, Blindern, 0316 Oslo, Norway
- Department of Freshwater Ecology, National Environmental Research Institute (NERI), Vejlsøvej 25, DK-8600 Silkeborg, Denmark
- Limnology Group (CSIC-UB), Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Accés a la Cala Sant Francesc, 14, 17300 Blanes, Girona, Spain
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - James J. Elser
- University of Oslo, Department of Biology, CEES, P.O. Box 1066, Blindern, 0316 Oslo, Norway
- Department of Freshwater Ecology, National Environmental Research Institute (NERI), Vejlsøvej 25, DK-8600 Silkeborg, Denmark
- Limnology Group (CSIC-UB), Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Accés a la Cala Sant Francesc, 14, 17300 Blanes, Girona, Spain
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
36
|
Cordero OX, Hogeweg P. Large changes in regulome size herald the main prokaryotic lineages. Trends Genet 2007; 23:488-93. [PMID: 17692992 DOI: 10.1016/j.tig.2007.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 04/17/2007] [Accepted: 07/30/2007] [Indexed: 11/16/2022]
Abstract
Using a large-scale reconstruction of ancestral gene content, we show that radical changes in regulome size occur at the origins of major prokaryotic lineages. Subsequently, the duplication and deletion of regulators slows down in most lineages, except proteobacteria, significantly reducing the scaling of regulators and keeping their average proportion lineage-specific. Our results also suggest that major transitions in prokaryote evolution are related to changes in regulatory capacity rather than proteome innovations.
Collapse
Affiliation(s)
- Otto X Cordero
- Department of Theoretical Biology and Bioinformatics, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
37
|
Amoutzias GD, Pichler EE, Mian N, De Graaf D, Imsiridou A, Robinson-Rechavi M, Bornberg-Bauer E, Robertson DL, Oliver SG. A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network. BMC SYSTEMS BIOLOGY 2007; 1:34. [PMID: 17672894 PMCID: PMC1971058 DOI: 10.1186/1752-0509-1-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/31/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.
Collapse
Affiliation(s)
- Gregory D Amoutzias
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
- Department of Ecology and Evolution, University of Lausanne & Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Discovery Information, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
- Bioinformatics & Evolutionary Genomics, Department of Plant Systems Biology, VIB/Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Elgar E Pichler
- Discovery Information, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | | | - David De Graaf
- Discovery Information, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
- Pfizer RTC Cambridge, Cambridge, MA, USA
| | - Anastasia Imsiridou
- Higher Technological Educational Institute of Thessaloniki, 63200 Nea Moudania, Halkidiki, Greece
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne & Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Erich Bornberg-Bauer
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
- Bioinformatics Division, Institute for Evolution and Biodiversity, School of Biological Sciences, University of Muenster, Schlossplatz 4, D48149, Muenster, Germany
| | - David L Robertson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Stephen G Oliver
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
38
|
Abstract
The genomes of unicellular species, particularly prokaryotes, are greatly reduced in size and simplified in terms of gene structure relative to those of multicellular eukaryotes. Arguments proposed to explain this disparity include selection for metabolic efficiency and elevated rates of deletion in microbes, but the evidence in support of these hypotheses is at best equivocal. An alternative explanation based on fundamental population-genetic principles is proposed here. By increasing the mutational target sizes of associated genes, most forms of nonfunctional DNA are opposed by weak selection. Free-living microbial species have elevated effective population sizes, and the consequent reduction in the power of random genetic drift appears to be sufficient to enable natural selection to inhibit the accumulation of excess DNA. This hypothesis provides a potentially unifying explanation for the continuity in genomic scaling from prokaryotes to multicellular eukaryotes, the divergent patterns of mitochondrial evolution in animals and land plants, and various aspects of genomic modification in microbial endosymbionts.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
39
|
Ranea JAG, Sillero A, Thornton JM, Orengo CA. Protein Superfamily Evolution and the Last Universal Common Ancestor (LUCA). J Mol Evol 2006; 63:513-25. [PMID: 17021929 DOI: 10.1007/s00239-005-0289-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
By exploiting three-dimensional structure comparison, which is more sensitive than conventional sequence-based methods for detecting remote homology, we have identified a set of 140 ancestral protein domains using very restrictive criteria to minimize the potential error introduced by horizontal gene transfer. These domains are highly likely to have been present in the Last Universal Common Ancestor (LUCA) based on their universality in almost all of 114 completed prokaryotic (Bacteria and Archaea) and eukaryotic genomes. Functional analysis of these ancestral domains reveals a genetically complex LUCA with practically all the essential functional systems present in extant organisms, supporting the theory that life achieved its modern cellular status much before the main kingdom separation (Doolittle 2000). In addition, we have calculated different estimations of the genetic and functional versatility of all the superfamilies and functional groups in the prokaryote subsample. These estimations reveal that some ancestral superfamilies have been more versatile than others during evolution allowing more genetic and functional variation. Furthermore, the differences in genetic versatility between protein families are more attributable to their functional nature rather than the time that they have been evolving. These differences in tolerance to mutation suggest that some protein families have eroded their phylogenetic signal faster than others, hiding in many cases, their ancestral origin and suggesting that the calculation of 140 ancestral domains is probably an underestimate.
Collapse
Affiliation(s)
- Juan A G Ranea
- Biomolecular Structure and Modelling Group, Department of Biochemistry and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | | | | | | |
Collapse
|
40
|
|
41
|
Marsden RL, Ranea JAG, Sillero A, Redfern O, Yeats C, Maibaum M, Lee D, Addou S, Reeves GA, Dallman TJ, Orengo CA. Exploiting protein structure data to explore the evolution of protein function and biological complexity. Philos Trans R Soc Lond B Biol Sci 2006; 361:425-40. [PMID: 16524831 PMCID: PMC1609337 DOI: 10.1098/rstb.2005.1801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New directions in biology are being driven by the complete sequencing of genomes, which has given us the protein repertoires of diverse organisms from all kingdoms of life. In tandem with this accumulation of sequence data, worldwide structural genomics initiatives, advanced by the development of improved technologies in X-ray crystallography and NMR, are expanding our knowledge of structural families and increasing our fold libraries. Methods for detecting remote sequence similarities have also been made more sensitive and this means that we can map domains from these structural families onto genome sequences to understand how these families are distributed throughout the genomes and reveal how they might influence the functional repertoires and biological complexities of the organisms. We have used robust protocols to assign sequences from completed genomes to domain structures in the CATH database, allowing up to 60% of domain sequences in these genomes, depending on the organism, to be assigned to a domain family of known structure. Analysis of the distribution of these families throughout bacterial genomes identified more than 300 universal families, some of which had expanded significantly in proportion to genome size. These highly expanded families are primarily involved in metabolism and regulation and appear to make major contributions to the functional repertoire and complexity of bacterial organisms. When comparisons are made across all kingdoms of life, we find a smaller set of universal domain families (approx. 140), of which families involved in protein biosynthesis are the largest conserved component. Analysis of the behaviour of other families reveals that some (e.g. those involved in metabolism, regulation) have remained highly innovative during evolution, making it harder to trace their evolutionary ancestry. Structural analyses of metabolic families provide some insights into the mechanisms of functional innovation, which include changes in domain partnerships and significant structural embellishments leading to modulation of active sites and protein interactions.
Collapse
Affiliation(s)
- Russell L Marsden
- Department of Biochemistry, University College London Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Freilich S, Spriggs RV, George RA, Al-Lazikani B, Swindells M, Thornton JM. The complement of enzymatic sets in different species. J Mol Biol 2005; 349:745-63. [PMID: 15896806 DOI: 10.1016/j.jmb.2005.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 04/10/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
We present here a comprehensive analysis of the complement of enzymes in a large variety of species. As enzymes are a relatively conserved group there are several classification systems available that are common to all species and link a protein sequence to an enzymatic function. Enzymes are therefore an ideal functional group to study the relationship between sequence expansion, functional divergence and phenotypic changes. By using information retrieved from the well annotated SWISS-PROT database together with sequence information from a variety of fully sequenced genomes and information from the EC functional scheme we have aimed here to estimate the fraction of enzymes in genomes, to determine the extent of their functional redundancy in different domains of life and to identify functional innovations and lineage specific expansions in the metazoa lineage. We found that prokaryote and eukaryote species differ both in the fraction of enzymes in their genomes and in the pattern of expansion of their enzymatic sets. We observe an increase in functional redundancy accompanying an increase in species complexity. A quantitative assessment was performed in order to determine the degree of functional redundancy in different species. Finally, we report a massive expansion in the number of mammalian enzymes involved in signalling and degradation.
Collapse
Affiliation(s)
- Shiri Freilich
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
We can now assign about two thirds of the sequences from completed genomes to as few as 1400 domain families for which structures are known and thus more ancient evolutionary relationships established. About 200 of these domain families are common to all kingdoms of life and account for nearly 50% of domain structure annotations in the genomes. Some of these domain families have been very extensively duplicated within a genome and combined with different domain partners giving rise to different multidomain proteins. The ways in which these domain combinations evolve tend to be specific to the organism so that less than 15% of the protein families found within a genome appear to be common to all kingdoms of life. Recent analyses of completed genomes, exploiting the structural data, have revealed the extent to which duplication of these domains and modifications of their functions can expand the functional repertoire of the organism, contributing to increasing complexity.
Collapse
Affiliation(s)
- Christine A Orengo
- Department of Biochemistry and Molecular Biology, University College, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|