1
|
Liu Y, Yang H, Gan S, He L, Zeng R, Xiao T, Wu L. A novel mutation of DNA2 regulates neuronal cell membrane potential and epileptogenesis. Cell Death Discov 2024; 10:259. [PMID: 38802339 PMCID: PMC11130173 DOI: 10.1038/s41420-024-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is one of the most intractable epilepsies. Previously, we reported that mitochondrial DNA deletions were associated with epileptogenesis. While the underlying mechanism of mitochondrial DNA deletions during epileptogenesis remain unknown. In this study, a novel somatic mutation of DNA2 gene was identified in the hippocampal tissue of two MTLE patients carrying mitochondrial DNA deletions, and this mutation decreased the full-length expression of DNA2 protein significantly, aborting its normal functions. Then, we knocked down the DNA2 protein in zebrafish, and we demonstrated that zebrafish with DNA2 deficiency showed decreased expression of mitochondrial complex II-IV, and exhibited hallmarks of epileptic seizures, including abnormal development of the zebrafish and epileptiform discharge signals in brain, compared to the Cas9-control group. Moreover, our cell-based assays showed that DNA2 deletion resulted in accumulated mitochondrial DNA damage, abnormal oxidative phosphorylation and decreased ATP production in cells. Inadequate ATP generation in cells lead to declined Na+, K+-ATPase activity and change of cell membrane potential. Together, these disorders caused by DNA2 depletion increased cell apoptosis and inhibited the differentiation of SH-SY5Y into branched neuronal phenotype. In conclusion, DNA2 deficiency regulated the cell membrane potential via affecting ATP production by mitochondria and Na+, K+-ATPase activity, and also affected neuronal cell growth and differentiation. These disorders caused by DNA2 dysfunction are important causes of epilepsy. In summary, we are the first to report the pathogenic somatic mutation of DNA2 gene in the patients with MTLE disease, and we uncovered the mechanism of DNA2 regulating the epilepsy. This study provides new insight into the pathogenesis of epilepsy and underscore the value of DNA2 in epilepsy.
Collapse
Affiliation(s)
- Yuting Liu
- Pediatrics Research Institute, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China
| | - Haiyan Yang
- Department of Neurology, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China
| | - Siyi Gan
- Department of Neurology, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China
| | - Lu He
- Department of Neurology, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China
| | - Rongrong Zeng
- Department of Neurology, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China
| | - Ting Xiao
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liwen Wu
- Department of Neurology, The Affiliated Children's Hospital of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Kumar R, Harilal S, Thomas Parambi DG, Kanthlal S, Rahman MA, Alexiou A, Batiha GES, Mathew B. The Role of Mitochondrial Genes in Neurodegenerative Disorders. Curr Neuropharmacol 2022; 20:824-835. [PMID: 34503413 PMCID: PMC9881096 DOI: 10.2174/1570159x19666210908163839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial disorders are clinically heterogeneous, resulting from nuclear gene and mitochondrial mutations that disturb the mitochondrial functions and dynamics. There is a lack of evidence linking mtDNA mutations to neurodegenerative disorders, mainly due to the absence of noticeable neuropathological lesions in postmortem samples. This review describes various gene mutations in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. These abnormalities, including PINK1, Parkin, and SOD1 mutations, seem to reveal mitochondrial dysfunctions due to either mtDNA mutation or deletion, the mechanism of which remains unclear in depth.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - S.K. Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia;,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India,Address correspondence to this author at the Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India; E-mails: ;
| |
Collapse
|
3
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
4
|
Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells 2019; 8:E379. [PMID: 31027297 PMCID: PMC6523345 DOI: 10.3390/cells8040379] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrion harbors its own DNA (mtDNA), which encodes many critical proteins for the assembly and activity of mitochondrial respiratory complexes. mtDNA is packed by many proteins to form a nucleoid that uniformly distributes within the mitochondrial matrix, which is essential for mitochondrial functions. Defects or mutations of mtDNA result in a range of diseases. Damaged mtDNA could be eliminated by mitophagy, and all paternal mtDNA are degraded by endonuclease G or mitophagy during fertilization. In this review, we describe the role and mechanism of mtDNA distribution and elimination. In particular, we focus on the regulation of paternal mtDNA elimination in the process of fertilization.
Collapse
Affiliation(s)
- Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoying Duanmu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ling Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Zhao C, Zhang C, Xing Z, Ahmad Z, Li JS, Chang MW. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int J Biol Macromol 2019; 121:1160-1178. [DOI: 10.1016/j.ijbiomac.2018.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
|
6
|
Hwang IW, Kwon BN, Kim HJ, Han SH, Lee NR, Lim MH, Kwon HJ, Jin HJ. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion 2018; 47:174-178. [PMID: 30423452 DOI: 10.1016/j.mito.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 01/05/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a multifactorial disorder with multiple environmental and biological etiologies, including genetic factors. Until now, several genetic variants have been reported to be significantly associated with ADHD. Recently, the relationship between mitochondrial DNA (mtDNA) haplogroups and psychiatric disorders such as schizophrenia has also been reported. However, currently there are no reports pertaining to the genetic association between mtDNA haplogroups and ADHD. Therefore, we performed an mtDNA haplogroup analysis of a total of 472 Korean children (150 Children with ADHD and 322 controls). The 20 East Asian specific mtDNA haplogroups were determined using the SNaPshot assay. We also sequenced the displacement loop (D-loop) region, position 15,971-613. Our results showed that haplogroup B4 was significantly associated with ADHD (OR, 1.90; 95% CI, 1.055-3.429; p = 0.031). A marginally significant association was found in subjects with ADHD and haplogroup B5 (OR, 0.26; 95% CI, 0.059-1.139; p = 0.041). When stratified based on gender, an association was also observed between haplogroup B5 and boys diagnosed with ADHD (OR, 0.17; 95% CI, 0.022-1.340; p = 0.048). Compared with boys, girls with ADHD carried an excess of the haplogroup D4b (OR, 4.83; 95% CI, 1.352-17.272; p = 0.014). Stratified analysis of subtypes also showed significant results (combined: haplogroup B4, p = 0.007; inattentive: haplogroup F, p = 0.022). Our results showed a possible role of mtDNA haplogroups in the genetic etiology of ADHD and ADHD symptoms in Korean children.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Bit Na Kwon
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Hyung Jun Kim
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Seung Hun Han
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Noo Ri Lee
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, South Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, South Korea.
| |
Collapse
|
7
|
Tranah GJ, Maglione JE, Yaffe K, Katzman SM, Manini TM, Kritchevsky S, Newman AB, Harris TB, Cummings SR. Mitochondrial DNA m.13514G>A heteroplasmy is associated with depressive symptoms in the elderly. Int J Geriatr Psychiatry 2018; 33:1319-1326. [PMID: 29984425 DOI: 10.1002/gps.4928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly. METHODS We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community-based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10-point version of the Center for Epidemiologic Studies Depression Scale (CES-D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms. RESULTS Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES-D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex-stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES-D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed. CONCLUSIONS Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | - Jeanne E Maglione
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kristine Yaffe
- University of California, San Francisco, Departments of Psychiatry, Neurology, and Epidemiology, San Francisco, CA, USA.,San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, USA
| | - Stephen Kritchevsky
- Wake Forest School of Medicine, Sticht Center on Aging, Winston-Salem, NC, USA
| | - Anne B Newman
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Tamara B Harris
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
8
|
Jiang P, Dickson DW. Parkinson's disease: experimental models and reality. Acta Neuropathol 2018; 135:13-32. [PMID: 29151169 PMCID: PMC5828522 DOI: 10.1007/s00401-017-1788-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive movement disorder of adults and the second most common neurodegenerative disease after Alzheimer's disease. Neuropathologic diagnosis of PD requires moderate-to-marked neuronal loss in the ventrolateral substantia nigra pars compacta and α-synuclein (αS) Lewy body pathology. Nigrostriatal dopaminergic neurodegeneration correlates with the Parkinsonian motor features, but involvement of other peripheral and central nervous system regions leads to a wide range of non-motor features. Nigrostriatal dopaminergic neurodegeneration is shared with other parkinsonian disorders, including some genetic forms of parkinsonism, but many of these disorders do not have Lewy bodies. An ideal animal model for PD, therefore, should exhibit age-dependent and progressive dopaminergic neurodegeneration, motor dysfunction, and abnormal αS pathology. Rodent models of PD using genetic or toxin based strategies have been widely used in the past several decades to investigate the pathogenesis and therapeutics of PD, but few recapitulate all the major clinical and pathologic features of PD. It is likely that new strategies or better understanding of fundamental disease processes may facilitate development of better animal models. In this review, we highlight progress in generating rodent models of PD based on impairments of four major cellular functions: mitochondrial oxidative phosphorylation, autophagy-lysosomal metabolism, ubiquitin-proteasome protein degradation, and endoplasmic reticulum stress/unfolded protein response. We attempt to evaluate how impairment of these major cellular systems contribute to PD and how they can be exploited in rodent models. In addition, we review recent cell biological studies suggesting a link between αS aggregation and impairment of nuclear membrane integrity, as observed during cellular models of apoptosis. We also briefly discuss the role of incompetent phagocytic clearance and how this may be a factor to consider in developing new rodent models of PD.
Collapse
Affiliation(s)
- Peizhou Jiang
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
9
|
Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology 2017. [PMID: 28627407 DOI: 10.1016/j.tox.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708-0328, USA.
| | - Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA; Neuroene Therapeutics, Mt. Pleasant, SC 29464, USA.
| |
Collapse
|
10
|
MutPred mutational load analysis shows mildly deleterious mitochondrial DNA variants are not more prevalent in Alzheimer's patients, but may be under-represented in healthy older individuals. Mitochondrion 2017; 34:141-146. [DOI: 10.1016/j.mito.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
|
11
|
Mitochondrial DNA mutations in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1401-11. [PMID: 26014345 DOI: 10.1016/j.bbabio.2015.05.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in both the aging brain, and as a core feature of several neurodegenerative diseases. A central mechanism mediating this dysfunction is acquired molecular damage to mitochondrial DNA (mtDNA). In addition, inherited stable mtDNA variation (mitochondrial haplogroups), and inherited low level variants (heteroplasmy) have also been associated with the development of neurodegenerative disease and premature neural aging respectively. Herein we review the evidence for both inherited and acquired mtDNA mutations contributing to neural aging and neurodegenerative disease. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
12
|
Gaspar R, Santana I, Mendes C, Fernandes AS, Duro D, Simões M, Luís D, Santos MJ, Grazina M. Genetic Variation of MT-ND Genes in Frontotemporal Lobar Degeneration: Biochemical Phenotype-Genotype Correlation. NEURODEGENER DIS 2015; 15:70-80. [DOI: 10.1159/000380766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
|
13
|
Fachal L, Mosquera-Miguel A, Pastor P, Ortega-Cubero S, Lorenzo E, Oterino-Durán A, Toriello M, Quintáns B, Camiña-Tato M, Sesar A, Vega A, Sobrido MJ, Salas A. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:54-65. [PMID: 25349034 DOI: 10.1002/ajmg.b.32276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/25/2014] [Indexed: 11/07/2022]
Abstract
Certain mitochondrial DNA (mtDNA) variants and haplogroups have been found to be associated with neurological disorders. Several studies have suggested that mtDNA variation could have an etiologic role in these disorders by affecting the ATP production on high-energy demanding organs, such as the brain. We have analyzed 15 mtDNA SNPs (mtSNPs) in five cohorts of cases presenting Alzheimer disease (AD), Parkinson disease (PD), and migraine, and in controls, to evaluate the role mtDNA variation in disease risk. Association tests were undertaken both for mtSNPs and mitochondrial haplogroups. No significant association was detected for any mtSNP or haplogroup in AD and PD cohorts. Two mtSNPs were associated with one migraine cohort after correcting for multiple tests, namely, T4216C and G13708A and haplogroup J (FDR q-value = 0.02; Santiago's cohort). However, this association was not confirmed in a second replication migraine series. A review of the literature reveals the existence of inconsistent findings and methodological shortcomings affecting a large proportion of mtDNA association studies on AD, PD, and migraine. A detailed inspection of the literature highlights the need for performing more rigorous methodological and statistical standards in mtDNA genetic association studies aimed to avoid false positive results of association between mtDNA variants and neurological diseases.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 2014; 9:e114459. [PMID: 25486066 PMCID: PMC4259338 DOI: 10.1371/journal.pone.0114459] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
Collapse
Affiliation(s)
- Claudia P. González-Hunt
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Rakesh K. Bodhicharla
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Madeline G. McKeever
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Andrew E. Arrant
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Kathleen M. Margillo
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Technology, Duke University, Durham, North Carolina, United States of America
| | - Sara G. Kosmaczewski
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail: mailto:
| |
Collapse
|
15
|
Dai Y, Zheng K, Clark J, Swerdlow RH, Pulst SM, Sutton JP, Shinobu LA, Simon DK. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet 2013; 23:637-47. [PMID: 24101601 DOI: 10.1093/hmg/ddt450] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause a variety of mitochondrial disorders for which effective treatments are lacking. Emerging data indicate that selective mitochondrial degradation through autophagy (mitophagy) plays a critical role in mitochondrial quality control. Inhibition of mammalian target of rapamycin (mTOR) kinase activity can activate mitophagy. To test the hypothesis that enhancing mitophagy would drive selection against dysfunctional mitochondria harboring higher levels of mutations, thereby decreasing mutation levels over time, we examined the impact of rapamycin on mutation levels in a human cytoplasmic hybrid (cybrid) cell line expressing a heteroplasmic mtDNA G11778A mutation, the most common cause of Leber's hereditary optic neuropathy. Inhibition of mTORC1/S6 kinase signaling by rapamycin induced colocalization of mitochondria with autophagosomes, and resulted in a striking progressive decrease in levels of the G11778A mutation and partial restoration of ATP levels. Rapamycin-induced upregulation of mitophagy was confirmed by electron microscopic evidence of increased autophagic vacuoles containing mitochondria-like organelles. The decreased mutational burden was not due to rapamycin-induced cell death or mtDNA depletion, as there was no significant difference in cytotoxicity/apoptosis or mtDNA copy number between rapamycin and vehicle-treated cells. These data demonstrate the potential for pharmacological inhibition of mTOR kinase activity to activate mitophagy as a strategy to drive selection against a heteroplasmic mtDNA G11778A mutation and raise the exciting possibility that rapamycin may have therapeutic potential for the treatment of mitochondrial disorders associated with heteroplasmic mtDNA mutations, although further studies are needed to determine if a similar strategy will be effective for other mutations and other cell types.
Collapse
Affiliation(s)
- Ying Dai
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal 2013; 18:2444-57. [PMID: 23216311 PMCID: PMC3671662 DOI: 10.1089/ars.2012.5039] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, Bess AS. Mitochondria as a target of environmental toxicants. Toxicol Sci 2013; 134:1-17. [PMID: 23629515 PMCID: PMC3693132 DOI: 10.1093/toxsci/kft102] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mitochondrial DNA variations in myelodysplastic syndrome. Ann Hematol 2013; 92:871-6. [DOI: 10.1007/s00277-013-1706-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022]
|
19
|
Hadjixenofontos A, Schmidt MA, Whitehead PL, Konidari I, Hedges DJ, Wright HH, Abramson RK, Menon R, Williams SM, Cuccaro ML, Haines JL, Gilbert JR, Pericak-Vance MA, Martin ER, McCauley JL. Evaluating mitochondrial DNA variation in autism spectrum disorders. Ann Hum Genet 2012; 77:9-21. [PMID: 23130936 DOI: 10.1111/j.1469-1809.2012.00736.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/07/2012] [Indexed: 11/28/2022]
Abstract
Despite the increasing speculation that oxidative stress and abnormal energy metabolism may play a role in Autism Spectrum Disorders (ASD), and the observation that patients with mitochondrial defects have symptoms consistent with ASD, there are no comprehensive published studies examining the role of mitochondrial variation in autism. Therefore, we have sought to comprehensively examine the role of mitochondrial DNA (mtDNA) variation with regard to ASD risk, employing a multi-phase approach. In phase 1 of our experiment, we examined 132 mtDNA single-nucleotide polymorphisms (SNPs) genotyped as part of our genome-wide association studies of ASD. In phase 2 we genotyped the major European mitochondrial haplogroup-defining variants within an expanded set of autism probands and controls. Finally in phase 3, we resequenced the entire mtDNA in a subset of our Caucasian samples (∼400 proband-father pairs). In each phase we tested whether mitochondrial variation showed evidence of association to ASD. Despite a thorough interrogation of mtDNA variation, we found no evidence to suggest a major role for mtDNA variation in ASD susceptibility. Accordingly, while there may be attractive biological hints suggesting the role of mitochondria in ASD our data indicate that mtDNA variation is not a major contributing factor to the development of ASD.
Collapse
Affiliation(s)
- Athena Hadjixenofontos
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Borgne FL, Demarquoy J. Interaction between peroxisomes and mitochondria in fatty acid metabolism. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojmip.2012.21005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Carlesi C, Caldarazzo Ienco E, Piazza S, Lo Gerfo A, Alessi R, Pasquali L, Siciliano G. Oxidative stress modulation in neurodegenerative diseases. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2011. [DOI: 10.1007/s12349-011-0053-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Oxidative Stress and Down Syndrome: A Route toward Alzheimer-Like Dementia. Curr Gerontol Geriatr Res 2011; 2012:724904. [PMID: 22203843 PMCID: PMC3235450 DOI: 10.1155/2012/724904] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Down syndrome (DS) is one of the most frequent genetic abnormalities characterized by multiple pathological phenotypes. Indeed, currently life expectancy and quality of life for DS patients have improved, although with increasing age pathological dysfunctions are exacerbated and intellectual disability may lead to the development of Alzheimer's type dementia (AD). The neuropathology of DS is complex and includes the development of AD by middle age, altered free radical metabolism, and impaired mitochondrial function, both of which contribute to neuronal degeneration. Understanding the molecular basis that drives the development of AD is an intense field of research. Our laboratories are interested in understanding the role of oxidative stress as link between DS and AD. This review examines the current literature that showed oxidative damage in DS by identifying putative molecular pathways that play a central role in the neurodegenerative processes. In addition, considering the role of mitochondrial dysfunction in neurodegenerative phenomena, results demonstrating the involvement of impaired mitochondria in DS pathology could contribute a direct link between normal aging and development of AD-like dementia in DS patients.
Collapse
|
23
|
Buneeva OA, Medvedev AE. Mitochondrial dysfunction in Parkinson’s disease. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Inherited and somatic mitochondrial DNA mutations in Guam amyotrophic lateral sclerosis and parkinsonism-dementia. Neurol Sci 2011; 32:883-92. [PMID: 21822691 DOI: 10.1007/s10072-011-0735-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/21/2011] [Indexed: 02/04/2023]
Abstract
There is increasing evidence for mitochondrial dysfunction in neurodegenerative disorders, although the exact role of mitochondrial DNA (mtDNA) mutations in this process is unresolved. We investigated inherited and somatic mtDNA substitutions and deletions in Guam amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD). Hypervariable segment 1 sequences of Chamorro mtDNA revealed that the odds ratio of a PD or ALS diagnosis was increased for individuals in the E1 haplogroup while individuals in the E2 haplogroup had decreased odds of an ALS or PD diagnosis. Once the disorders were examined separately, it became evident that PD was responsible for these results. When the entire mitochondrial genome was sequenced for a subset of individuals, the nonsynonymous mutation at nucleotide position 9080, shared by all E2 individuals, resulted in a significantly low odds ratio for a diagnosis of ALS or PD. Private polymorphisms found in transfer and ribosomal RNA regions were found only in ALS and PD patients in the E1 haplogroup. Somatic mtDNA deletions in the entire mtDNA genome were not associated with either ALS or PD. We conclude that mtDNA haplogroup effects may result in mitochondrial dysfunction in Guam PD and reflect Guam population history. Thus it is reasonable to consider Guam ALS and PD as complex disorders with both environmental prerequisites and small genetic effects.
Collapse
|
25
|
Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC. The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 2011; 8:182-93. [PMID: 21358969 PMCID: PMC3001212 DOI: 10.2174/157015910792246245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/24/2010] [Accepted: 05/05/2010] [Indexed: 12/14/2022] Open
Abstract
Melatonin is an endogenous indoleamine present in different tissues, cellular compartments and organelles including mitochondria. When melatonin is administered orally, it is readily available to the brain where it counteracts different processes that occur during aging and age-related neurodegenerative disorders. These aging processes include oxidative stress and oxidative damage, chronic and acute inflammation, mitochondrial dysfunction and loss of neural regeneration. This review summarizes age related changes in the brain and the importance of oxidative/nitrosative stress and mitochondrial dysfunction in brain aging. The data and mechanisms of action of melatonin in relation to aging of the brain are reviewed as well.
Collapse
Affiliation(s)
- Germaine Escames
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Escames G, López LC, García JA, García-Corzo L, Ortiz F, Acuña-Castroviejo D. Mitochondrial DNA and inflammatory diseases. Hum Genet 2011; 131:161-73. [DOI: 10.1007/s00439-011-1057-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/26/2011] [Indexed: 12/21/2022]
|
27
|
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:320-30. [PMID: 20624441 DOI: 10.1016/j.pnpbp.2010.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 07/05/2010] [Indexed: 01/16/2023]
Abstract
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warszawa, Poland.
| | | |
Collapse
|
28
|
Venkateswaran S, Zheng K, Sacchetti M, Gagne D, Arnold DL, Sadovnick AD, Scherer SW, Banwell B, Bar-Or A, Simon DK. Mitochondrial DNA haplogroups and mutations in children with acquired central demyelination. Neurology 2011; 76:774-80. [PMID: 21288980 DOI: 10.1212/wnl.0b013e31820ee1bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated mitochondrial DNA (mtDNA) variants in children with a first episode of acquired demyelinating syndromes (PD-ADS) of the CNS and their relationship to disease phenotype, including subsequent diagnosis of multiple sclerosis (MS). METHODS This exploratory analysis included the initial 213 children with PD-ADS in the prospective Canadian Pediatric Demyelinating Study and 166 matched healthy sibling controls from the Canadian Autism Genome Project. A total of 31 single nucleotide polymorphisms (SNPs) were analyzed, including haplogroup-defining SNPs and mtDNA variants previously reported to be associated with MS. RESULTS Primary Leber hereditary optic neuropathy (LHON) mutations and other known pathogenic mtDNA mutations were absent in both patients with pediatric acquired demyelinating syndromes and controls. The 13708A haplogroup J-associated variant, previously linked to adult MS, was more frequent among subjects with PD-ADS (13.0%) compared to controls (6.2%; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.06 to 4.83) and haplogroup M was associated with an earlier age at onset of PD-ADS (-1.74 years; 95% CI -3.33 to -0.07). In contrast, the haplogroup cluster UKJT, as well as 3 other SNPs, were each associated with a lower risk of PD-ADS. A total of 33 subjects with PD-ADS were diagnosed with MS during a mean follow-up period of 3.11 ± 1.14 (SD) years. No single SNP was associated with the risk of subsequent diagnosis of MS. However, haplogroup H was associated with an increased risk of MS (OR 2.60; 95% CI 1.21 to 5.55). CONCLUSION These data suggest an association between mtDNA variants and the risk of PD-ADS and of a subsequent MS diagnosis. Replication of these findings in an independent population of subjects with PD-ADS is required.
Collapse
Affiliation(s)
- S Venkateswaran
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mitochondrial structural and functional abnormalities in Parkinson's disease and experimental animal models of this pathology are described. Special attention is paid to the inactivation of mitochondrial enzymes, mutations in mitochondrial and nuclear DNA, and genomic and proteomic research of mitochondrial proteins in Parkinson's disease and experimental parkinsonism of animals.
Collapse
|
30
|
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:417-426. [PMID: 20544882 DOI: 10.1002/em.20576] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 2010; 42:560-72. [PMID: 20067840 DOI: 10.1016/j.biocel.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/04/2023]
Abstract
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heng Du
- Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
32
|
Tanaka N, Goto YI, Akanuma J, Kato M, Kinoshita T, Yamashita F, Tanaka M, Asada T. Mitochondrial DNA variants in a Japanese population of patients with Alzheimer’s disease. Mitochondrion 2010; 10:32-7. [DOI: 10.1016/j.mito.2009.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 08/10/2009] [Accepted: 08/18/2009] [Indexed: 12/18/2022]
|
33
|
Howe DK, Baer CF, Denver DR. High rate of large deletions in Caenorhabditis briggsae mitochondrial genome mutation processes. Genome Biol Evol 2009; 2:29-38. [PMID: 20333220 PMCID: PMC2839355 DOI: 10.1093/gbe/evp055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2009] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations underlie a variety of human genetic disorders and are associated with the aging process. mtDNA polymorphisms are widely used in a variety of evolutionary applications. Although mtDNA mutation spectra are known to differ between distantly related model organisms, the extent to which mtDNA mutation processes vary between more closely related species and within species remains enigmatic. We analyzed mtDNA divergence in two sets of 250-generation Caenorhabditis briggsae mutation-accumulation (MA) lines, each derived from a different natural isolate progenitor: strain HK104 from Okayama, Japan, and strain PB800 from Ohio, United States. Both sets of C. briggsae MA lines accumulated numerous large heteroplasmic mtDNA deletions, whereas only one similar event was observed in a previous analysis of Caenorhabditis elegans MA line mtDNA. Homopolymer length change mutations were frequent in both sets of C. briggsae MA lines and occurred in both intergenic and protein-coding gene regions. The spectrum of C. briggsae mtDNA base substitution mutations differed from the spectrum previously observed in C. elegans. In C. briggsae, the HK104 MA lines experienced many different base substitution types, whereas the PB800 lines displayed only C:G --> T:A transitions, although the difference was not significant. Over half of the mtDNA base substitutions detected in the C. briggsae MA lines were in a heteroplasmic state, whereas all those previously characterized in C. elegans MA line mtDNA were fixed changes, indicating a narrower mtDNA bottleneck in C. elegans as compared with C. briggsae. Our results show that C. briggsae mtDNA is highly susceptible to large deletions and that the mitochondrial mutation process varies between Caenorhabditis nematode species.
Collapse
Affiliation(s)
- Dana K Howe
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, USA
| | | | | |
Collapse
|
34
|
Mitochondrial haplogroup H and Alzheimer's disease—Is there a connection? Neurobiol Aging 2009; 30:1749-55. [DOI: 10.1016/j.neurobiolaging.2008.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/05/2007] [Accepted: 01/05/2008] [Indexed: 11/20/2022]
|
35
|
tRNA recognition, processing, and disease: hypotheses around an unorthodox type of RNase P in human mitochondria. Mitochondrion 2009; 9:284-8. [PMID: 19376274 DOI: 10.1016/j.mito.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 11/24/2022]
Abstract
RNase P is the endonuclease responsible for the maturation of the 5' ends of tRNAs. A catalytic RNA component was long considered the premier attribute of the enzyme family. Ignoring this heritage, human mitochondria make their RNase P of three proteins only. While one of them appears to be the metallonuclease actually responsible for phosphodiester hydrolysis, the other two have been recruited from unrelated biochemical pathways and may be critical for substrate recognition. One of them is moreover identical to a previously identified amyloid-beta-binding protein, whereby it could link tRNA processing to mitochondrial dysfunction in Alzheimer's disease.
Collapse
|
36
|
Gribkoff VK, Bozik ME. KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2, 6-benzothiazole-diamine dihydrochloride monohydrate] for the treatment of amyotrophic lateral sclerosis. CNS Neurosci Ther 2008; 14:215-26. [PMID: 18801114 DOI: 10.1111/j.1755-5949.2008.00048.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing effective treatments for chronic neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) has proven extremely difficult. ALS is universally fatal, characterized by progressive weakness due to the degeneration of upper and lower motor neurons, and leads eventually to respiratory failure which is the usual cause of death. Only a single treatment has been approved, the modestly effective nonspecific neuroprotectant Rilutek (riluzole; 2-amino-6-(trifluoromethoxy)benzothiazole). KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine dihydrochloride, RPPX], a synthetic amino-benzothiazole with demonstrated activity in maintaining mitochondrial function, is being developed as a treatment for ALS. It has proven to be effective in multiple in vitro and in vivo assays of neuroprotection, including the G93A-SOD1 mutant mouse model; however, its specific mechanism of action remains unknown. The potential of KNS-760604 as a treatment for ALS was first suggested by studies showing that its optical enantiomer, Mirapex[(6S)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine; pramipexole dihydrochloride; PPX], a high-affinity agonist at dopamine D2, D3, and D4 receptors, exhibits important neuroprotective properties independent of its dopamine receptor agonism. In cell-based assays, both RPPX and PPX reduce the production of reactive oxygen species (ROS), attenuate the activation of apoptotic pathways, and increase cell survival in response to a variety of neurotoxins. However, PPX has limited utility as a clinical neuroprotective agent because the drug concentrations required for neuroprotection would likely produce unacceptable dopaminergic side effects. RPPX, on the other hand, while possessing the same neuroprotective potential as PPX, is a much lower-affinity dopamine receptor agonist and may therefore be more useful in the treatment of ALS. This review will examine the data supporting the hypothesis that the RPPX may have therapeutic potential for the treatment of neurodegenerative disorders including ALS. In addition, we will briefly review recent preclinical data in support of RPPX, and discuss the current status of its clinical development.
Collapse
|
37
|
Hipkiss AR. Error-protein metabolism and ageing. Biogerontology 2008; 10:523-9. [PMID: 18923917 DOI: 10.1007/s10522-008-9188-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/25/2008] [Indexed: 01/19/2023]
Abstract
Ageing and many associated pathologies are accompanied by accumulation of altered proteins. It is suggested that erroneous polypeptide biosynthesis, cytosolic and mitochondrial, is not an insignificant source of aberrant protein in growing and non-mitotic cells. It is proposed that (i) synthesis of sufficient proteases and chaperone proteins necessary for rapid elimination of altered proteins, from cytoplasmic and mitochondrial compartments, is related to cellular protein biosynthetic potential, and (ii) cells growing slowly, or not at all, automatically generate lower levels of protease/chaperone molecules than cells growing rapidly, due to decreased general rate of protein synthesis and lowered amount of error-protein produced per cell. Hence the increased vulnerability of mature organisms may be explained, at least in part, by the decline in constitutive protease/chaperone protein biosynthesis. Upregulation of mitochondria biogenesis, induced by dietary restriction or aerobic exercise, may also increase protease/chaperone protein synthesis, which would improve cellular ability to degrade both error-proteins and proteins damaged post-synthetically by reactive oxygen species etc. These proposals may help explain, in part, the latency of those age-related pathologies where altered proteins accumulate only late in life, and the beneficial effects of aerobic exercise and dietary restriction.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Bart's and the London Queen Mary's School of Medicine and Dentistry, London, UK.
| |
Collapse
|
38
|
Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 2008; 10:291-315. [PMID: 18566920 DOI: 10.1007/s12017-008-8044-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/22/2008] [Indexed: 12/22/2022]
Abstract
Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Freidriech ataxia. Further, several lines of evidence suggest that mitochondrial dysfunction is an early event in most late-onset neurodegenerative diseases. Biochemical and animal model studies of inherited neurodegenerative diseases have revealed that mutant proteins of these diseases are associated with mitochondria. Mutant proteins are reported to block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, and, ultimately, damage neurons. This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.
Collapse
|
39
|
Yamasue H, Kakiuchi C, Tochigi M, Inoue H, Suga M, Abe O, Yamada H, Sasaki T, Rogers MA, Aoki S, Kato T, Kasai K. Association between mitochondrial DNA 10398A>G polymorphism and the volume of amygdala. GENES BRAIN AND BEHAVIOR 2008; 7:698-704. [PMID: 18518927 DOI: 10.1111/j.1601-183x.2008.00408.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondrial calcium regulation plays a number of important roles in neurons. Mitochondrial DNA (mtDNA) is highly polymorphic, and its interindividual variation is associated with various neuropsychiatric diseases and mental functions. An mtDNA polymorphism, 10398A>G, was reported to affect mitochondrial calcium regulation. Volume of hippocampus and amygdala is reportedly associated with various mental disorders and mental functions and is regarded as an endophenotype of mental disorders. The present study investigated the relationship between the mtDNA 10398A>G polymorphism and the volume of hippocampus and amygdala in 118 right-handed healthy subjects. The brain morphometry using magnetic resonance images employed both manual tracing volumetry in the native space and voxel-based morphometry (VBM) in the spatially normalized space. Amygdala volume was found to be significantly larger in healthy subjects with 10398A than in those with 10398G by manual tracing, which was confirmed by the VBM. Brain volumes in the other gray matter regions and all white matter regions showed no significant differences associated with the polymorphism. These provocative findings might provide a clue to the complex relationship between mtDNA, brain structure and mental disorders.
Collapse
Affiliation(s)
- H Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Souza-Pinto NC, Wilson DM, Stevnsner TV, Bohr VA. Mitochondrial DNA, base excision repair and neurodegeneration. DNA Repair (Amst) 2008; 7:1098-109. [PMID: 18485834 DOI: 10.1016/j.dnarep.2008.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is a growing public health concern because of the rapid increase in median and maximum life expectancy in the developed world. Mitochondrial dysfunction seems to play a critical role in neurodegeneration, likely owing to the high energy demand of the central nervous system and its sole reliance on oxidative metabolism for energy production. Loss of mitochondrial function has been clearly demonstrated in several neuropathologies, most notably those associated with age, like Alzheimer's, Parkinson's and Huntington's diseases. Among the common features observed in such conditions is the accumulation of oxidative DNA damage, in particular in the mitochondrial DNA, suggesting that mitochondrial DNA instability may play a causative role in the development of these diseases. In this review we examine the evidence for the accumulation of oxidative DNA damage in mitochondria, and its relationship with loss of mitochondrial function and cell death in neural tissues. Oxidative DNA damage is repaired mainly by the base excision repair pathway. Thus, we review the molecular events and enzymes involved in base excision repair in mitochondria, and explore the possible role of alterations in mitochondrial base excision repair activities in premature aging and age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadja C de Souza-Pinto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
41
|
Pereira L, Gonçalves J, Bandelt HJ. Mutation C11994T in the mitochondrial ND4 gene is not a cause of low sperm motility in Portugal. Fertil Steril 2008; 89:738-41. [PMID: 17517394 DOI: 10.1016/j.fertnstert.2007.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/26/2022]
Abstract
It has recently been suggested that a hitherto unobserved mutation, C11994T, causes oligoasthenozoospermia in men from India but at the same time does not affect systems other than the motility of the sperm. There are good reasons to question this proposition, in view of the worldwide mtDNA database and the Indian record in particular. We have further analyzed the oligoasthenozoospermic samples from a previous systematic study of infertile Portuguese men and found no instance of C11994T.
Collapse
Affiliation(s)
- Luísa Pereira
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | |
Collapse
|
42
|
Yu X, Koczan D, Sulonen AM, Akkad DA, Kroner A, Comabella M, Costa G, Corongiu D, Goertsches R, Camina-Tato M, Thiesen HJ, Nyland HI, Mørk SJ, Montalban X, Rieckmann P, Marrosu MG, Myhr KM, Epplen JT, Saarela J, Ibrahim SM. mtDNA nt13708A variant increases the risk of multiple sclerosis. PLoS One 2008; 3:e1530. [PMID: 18270557 PMCID: PMC2217590 DOI: 10.1371/journal.pone.0001530] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/31/2007] [Indexed: 01/09/2023] Open
Abstract
Background Mitochondrial DNA (mtDNA) polymorphism is a possible factor contributing to the maternal parent-of-origin effect in multiple sclerosis (MS) susceptibility. Methods and Findings In order to investigate the role of mtDNA variations in MS, we investigated six European MS case-control cohorts comprising >5,000 individuals. Three well matched cohorts were genotyped with seven common, potentially functional mtDNA single nucleotide polymorphisms (SNPs). A SNP, nt13708 G/A, was significantly associated with MS susceptibility in all three cohorts. The nt13708A allele was associated with an increased risk of MS (OR = 1.71, 95% CI 1.28–2.26, P = 0.0002). Subsequent sequencing of the mtDNA of 50 individuals revealed that the nt13708 itself, rather than SNPs linked to it, was responsible for the association. However, the association of nt13708 G/A with MS was not significant in MS cohorts which were not well case-control matched, indicating that the significance of association was affected by the population structure of controls. Conclusions Taken together, our finding identified the nt13708A variant as a susceptibility allele to MS, which could contribute to defining the role of the mitochondrial genome in MS pathogenesis.
Collapse
Affiliation(s)
- Xinhua Yu
- Section of Immunogenetics, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Department of Immunology, University of Rostock, Rostock, Germany
| | - Anna-Maija Sulonen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | - Denis A. Akkad
- Department of Human Genetics, Ruhr University, International Graduate School of Neuroscience (IGSN), Bochum, Germany
| | - Antje Kroner
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Würzburg, Wüzburg, Germany
| | - Manuel Comabella
- Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Gianna Costa
- The Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, University of Cagliari, Cagliari, Italy
| | - Daniela Corongiu
- The Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, University of Cagliari, Cagliari, Italy
| | | | - Montserrat Camina-Tato
- Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Harald I. Nyland
- Department of Neurology, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sverre J. Mørk
- Department of Pathology, Haukeland University Hospital, Gade's Institute, University of Bergen, Bergen, Norway
| | - Xavier Montalban
- Unitat de Neuroimmunologia Clinica, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter Rieckmann
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Würzburg, Wüzburg, Germany
| | - Maria G. Marrosu
- The Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, University of Cagliari, Cagliari, Italy
| | - Kjell-Morten Myhr
- Department of Neurology, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joerg T. Epplen
- Department of Human Genetics, Ruhr University, International Graduate School of Neuroscience (IGSN), Bochum, Germany
| | - Janna Saarela
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | - Saleh M. Ibrahim
- Section of Immunogenetics, University of Rostock, Rostock, Germany
- *E-mail:
| |
Collapse
|
43
|
Fukui H, Diaz F, Garcia S, Moraes CT. Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2007; 104:14163-8. [PMID: 17715058 PMCID: PMC1955773 DOI: 10.1073/pnas.0705738104] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Defects in the mitochondrial cytochrome c oxidase (COX) have been associated with Alzheimer's Disease, in which the age-dependent accumulation of beta-amyloid plays an important role in synaptic dysfunction and neurodegeneration. To test the possibility that age-dependent decline in the mitochondrial respiratory function, especially COX activity, may participate in the formation and accumulation of beta-amyloid, we generated mice expressing mutant amyloid precursor protein and mutant presenilin 1 in a neuron-specific COX-deficient background. A neuron-specific COX-deficient mouse was generated by the Cre-loxP system, in which the COX10 gene was deleted by a CamKIIalpha promoter-driven Cre-recombinase. COX10 is a farnesyltransferase involved in the biosynthesis of heme a, required for COX assembly and function. These KO mice showed an age-dependent COX deficiency in the cerebral cortex and hippocampus. Surprisingly, COX10 KO mice exhibited significantly fewer amyloid plaques in their brains compared with the COX-competent transgenic mice. This reduction in amyloid plaques in the KO mouse was accompanied by a reduction in Abeta42 level, beta-secretase activity, and oxidative damage. Likewise, production of reactive oxygen species from cells with partial COX activity was not elevated. Collectively, our results suggest that, contrary to previous models, a defect in neuronal COX does not increase oxidative damage nor predispose for the formation of amyloidgenic amyloid precursor protein fragments.
Collapse
Affiliation(s)
| | | | | | - Carlos T. Moraes
- *Neuroscience Program and
- Departments of Neurology and
- Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136
- To whom correspondence should be addressed at:
Department of Neurology, 1095 NW 14th Terrace, Miami, FL 33136. E-mail:
| |
Collapse
|
44
|
Mukhopadhyay A, Weiner H. Delivery of drugs and macromolecules to mitochondria. Adv Drug Deliv Rev 2007; 59:729-38. [PMID: 17659805 PMCID: PMC2267434 DOI: 10.1016/j.addr.2007.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 06/12/2007] [Indexed: 01/24/2023]
Abstract
Mitochondria is where the bulk of the cell's ATP is produced. Mutations occur to genes coding for members of the complexes involved in energy production. Some are a result of damages to nuclear coded genes and others to mitochondrial coded genes. This review describes approaches to bring small molecules, proteins and RNA/DNA into mitochondria. The purpose is to repair damaged genes as well as to interrupt mitochondrial function including energy production, oxygen radical formation and the apoptotic pathway.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063, USA.
| | | |
Collapse
|
45
|
Elson J, Turnbull D, Taylor R. Testing the adaptive selection of human mtDNA haplogroups: an experimental bioenergetics approach. Biochem J 2007; 404:e3-5. [PMID: 17488234 PMCID: PMC1868807 DOI: 10.1042/bj20070524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 11/17/2022]
Abstract
The evolution of human mtDNA (mitochondrial DNA) has been characterized by the emergence of distinct haplogroups, which are associated with the major global ethnic groups and defined by the presence of specific mtDNA polymorphic variants. A recent analysis of complete mtDNA genome sequences has suggested that certain mtDNA haplogroups may have been positively selected as humans populated colder climates due to a decreased mitochondrial coupling efficiency, in turn leading to increased generation of heat instead of ATP synthesis by oxidative phosphorylation. If this is true, implying different evolutionary processes in different haplogroups, this could potentially void the usefulness of mtDNA as a genetic tool to study the timing of major events in evolutionary history. In this issue of the Biochemical Journal, Taku Amo and Martin Brand present experimental biochemical data to test this hypothesis. Measurements of the bioenergetic capacity of cybrid cells harbouring specific Arctic or tropical climate mtDNA haplogroups on a control nuclear background reveal no significant changes in coupling efficiency between the two groups, indicating that mtDNA remains a viable evolutionary tool to assess the timing of major events in the history of humans and other species.
Collapse
Affiliation(s)
- Joanna L. Elson
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K
| | - Douglass M. Turnbull
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K
| | - Robert W. Taylor
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K
| |
Collapse
|
46
|
Phoenix C, Taylor GA, Hartley J, Nixon H, Ince PG, Shaw PJ, Turnbull DM, Taylor RW. Investigation of the mitochondrial genome in patients with atypical motor neuron disease. J Neurol 2007; 254:482-7. [PMID: 17401521 DOI: 10.1007/s00415-006-0399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/05/2006] [Accepted: 08/22/2006] [Indexed: 11/29/2022]
Abstract
The molecular aetiology of many patients with motor neuron disease (MND) remains unknown. Recent evidence of mitochondrial dysfunction, in particular the finding of histochemical abnormalities and pathogenic mitochondrial DNA (mtDNA) mutations, has prompted us to investigate further the role of mtDNA abnormalities in a cohort of thirteen patients with atypical MND presentations by whole mitochondrial genome sequencing. No pathogenic mutations were detected suggesting that inherited mtDNA mutations are not a common cause of atypical MND presentations.
Collapse
Affiliation(s)
- Catherine Phoenix
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Coppedè F, Mancuso M, Siciliano G, Migliore L, Murri L. Genes and the environment in neurodegeneration. Biosci Rep 2007; 26:341-67. [PMID: 17029001 DOI: 10.1007/s10540-006-9028-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of pathologies which includes complex multifactorial diseases, monogenic disorders and disorders for which inherited, sporadic and transmissible forms are known. Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene-environment interplay. There are many identified genetic determinants for neurodegeneration, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in animal models of the disease. However, there are similarly several identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. In this review we highlight some of the major neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and prion diseases.) and discuss possible links of gene-environment interplay including, where implicated, mitochondrial genes.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Neurosciences, University of Pisa, Via Roma 67, Pisa 56126, Italy.
| | | | | | | | | |
Collapse
|
48
|
Pinkert CA, Trounce IA. Generation of Transmitochondrial Mice: Development of Xenomitochondrial Mice to Model Neurodegenerative Diseases. Methods Cell Biol 2007; 80:549-69. [PMID: 17445713 DOI: 10.1016/s0091-679x(06)80027-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
49
|
Olanow CW. The pathogenesis of cell death in Parkinson's disease – 2007. Mov Disord 2007; 22 Suppl 17:S335-42. [DOI: 10.1002/mds.21675] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
50
|
Poe BG, Navratil M, Arriaga EA. Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal Biochem 2006; 362:193-200. [PMID: 17270140 PMCID: PMC1853271 DOI: 10.1016/j.ab.2006.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/08/2006] [Accepted: 12/18/2006] [Indexed: 01/07/2023]
Abstract
Quantitation of wild-type and deleted mitochondrial DNA (mtDNA) coexisting within the same cell (a.k.a., heteroplasmy) is important in mitochondrial disease and aging. We report the development of a multiplex three-primer PCR assay that is capable of absolute quantitation of wild-type and deleted mtDNA simultaneously. Molecular beacons were designed to hybridize with either type of mtDNA molecule, allowing real-time detection during PCR amplification. The assay is specific and can detect down to six copies of mtDNA, making it suitable for single-cell analyses. The relative standard deviation in the threshold cycle number is approximately 0.6%. Heteroplasmy was quantitated in individual cytoplasmic hybrid cells (cybrids), containing a large mtDNA deletion, and bulk cell samples. Individual cybrid cells contained 100-2600 copies of wild-type mtDNA and 950-4700 copies of deleted mtDNA, and the percentage of heteroplasmy ranged from 43+/-16 to 95+/-16%. The average amount of total mtDNA was 3800+/-1600 copies/cybrid cell, and the average percentage of heteroplasmy correlated well with the bulk cell sample. The single-cell analysis also revealed that heteroplasmy in individual cells is highly heterogeneous. This assay will be useful for monitoring clonal expansions of mtDNA deletions and investigating the role of heteroplasmy in cell-to-cell heterogeneity in cellular models of mitochondrial disease and aging.
Collapse
Affiliation(s)
| | | | - Edgar A. Arriaga
- *To whom all correspondence should be addressed: Tel. (612) 624-8024, fax (612) 626-7541,
| |
Collapse
|