1
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
3
|
Velez-Aguilera G, Nkombo Nkoula S, Ossareh-Nazari B, Link J, Paouneskou D, Van Hove L, Joly N, Tavernier N, Verbavatz JM, Jantsch V, Pintard L. PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. eLife 2020; 9:59510. [PMID: 33030429 PMCID: PMC7544505 DOI: 10.7554/elife.59510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.
Collapse
Affiliation(s)
- Griselda Velez-Aguilera
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sylvia Nkombo Nkoula
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Batool Ossareh-Nazari
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Jana Link
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lucie Van Hove
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Joly
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Tavernier
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lionel Pintard
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
4
|
Chemudupati M, Johns M, Osmani SA. The mode of mitosis is dramatically modified by deletion of a single nuclear pore complex gene in Aspergillus nidulans. Fungal Genet Biol 2019; 130:72-81. [PMID: 31026588 DOI: 10.1016/j.fgb.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Nuclear pore complex (NPC) proteins (Nups) play multiple roles during mitosis. In this study we expand these roles and reveal that in Aspergillus nidulans, compromising the core Nup84-120 subcomplex of the NPC modifies the mitotic behavior of the nuclear envelope (NE). In wildtype cells, the NE undergoes simultaneous double pinching events to separate daughter nuclei during mitotic exit, whereas in Nup84-120 complex mutants, only one restriction of the NE is observed. Investigating the basis for this modified behavior of the NE in Nup deleted cells uncovered previously unrealized roles for core Nups in mitotic exit. During wildtype anaphase, the NE surrounds the two separating daughter DNA masses which typically flank the central nucleolus, to form three distinct nuclear compartments. In contrast, deletion of core Nups frequently results in early nucleolar eviction from the mitotic nucleus, in turn causing an uncharacteristic dumbbell-shaped NE morphology of anaphase nuclei with a nuclear membrane bridge connecting the two forming G1 nuclei. Importantly, the absence of the nucleolus between the separating daughter nuclei during anaphase delays chromosome segregation and progression into G1 as nuclei remain connected by chromatin bridges. Proteins localizing to late segregating chromosome arms are observed between forming daughter nuclei, and the mitotic spindle fails to resolve in a timely manner. These chromatin bridges are occupied by the Aurora kinase until nuclei have fully separated, suggesting involvement of Aurora in monitoring mitotic spindle and nuclear membrane resolution during mitotic exit. Our findings thus reveal a novel requirement for core Nups in mediating nucleolar positioning during mitosis, which dictates the pattern of NE fissions during karyokinesis and facilitates normal chromosome segregation. The findings additionally demonstrate that the mode of mitosis can be dramatically modified by deletion of a single NPC gene and reveals surprising fluidity in mitotic mechanisms.
Collapse
Affiliation(s)
- Mahesh Chemudupati
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Matthew Johns
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
5
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
6
|
Yao C, Wang C, Li Y, Zavortink M, Archambault V, Girton J, Johansen KM, Johansen J. Evidence for a role of spindle matrix formation in cell cycle progression by antibody perturbation. PLoS One 2018; 13:e0208022. [PMID: 30485354 PMCID: PMC6261614 DOI: 10.1371/journal.pone.0208022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022] Open
Abstract
In Drosophila it has recently been demonstrated that a spindle matrix in the form of a membrane-less macromolecular assembly embeds the microtubule-based spindle apparatus. In addition, two of its constituents, Megator and Chromator, were shown to function as spatial regulators of spindle checkpoint proteins. However, whether the spindle matrix plays a wider functional role in spatially regulating cell cycle progression factors was unknown. Here using a live imaging approach we provide evidence that a number of key cell cycle proteins such as Cyclin B, Polo, and Ran co-localize with the spindle matrix during mitosis. Furthermore, prevention of spindle matrix formation by injection of a function blocking antibody against the spindle matrix protein Chromator results in cell cycle arrest prior to nuclear envelope breakdown. In such embryos the spatial dynamics of Polo and Cyclin B enrichment at the nuclear rim and kinetochores is abrogated and Polo is not imported into the nucleus. This is in contrast to colchicine-arrested embryos where the wild-type dynamics of these proteins are maintained. Taken together these results suggest that spindle matrix formation may be a general requirement for the localization and proper dynamics of cell cycle factors promoting signaling events leading to cell cycle progression.
Collapse
Affiliation(s)
- Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yeran Li
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | | | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
7
|
Mela AP, Momany M. Internuclear diffusion of histone H1 within cellular compartments of Aspergillus nidulans. PLoS One 2018; 13:e0201828. [PMID: 30114268 PMCID: PMC6095493 DOI: 10.1371/journal.pone.0201828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
Histone H1 is an evolutionarily conserved linker histone protein that functions in arranging and stabilizing chromatin structure and is frequently fused to a fluorescent protein to track nuclei in live cells. In time-lapse analyses, we observed stochastic exchange of photoactivated Dendra2-histone H1 protein between nuclei within the same cellular compartment. We also observed exchange of histones between genetically distinct nuclei in a heterokaryon derived from fusion of strains carrying histone H1-RFP or H1-GFP. Subsequent analysis of the resulting uninucleate conidia containing both RFP- and GFP-labeled histone H1 proteins showed only parental genotypes, ruling out genetic recombination and diploidization. These data together suggest that the linker histone H1 protein can diffuse between non-daughter nuclei in the filamentous fungus Aspergillus nidulans.
Collapse
Affiliation(s)
- Alexander P. Mela
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
The Inner Nuclear Membrane Protein Src1 Is Required for Stable Post-Mitotic Progression into G1 in Aspergillus nidulans. PLoS One 2015; 10:e0132489. [PMID: 26147902 PMCID: PMC4492595 DOI: 10.1371/journal.pone.0132489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2015] [Indexed: 01/13/2023] Open
Abstract
How membranes and associated proteins of the nuclear envelope (NE) are assembled specifically and inclusively around segregated genomes during exit from mitosis is incompletely understood. Inner nuclear membrane (INM) proteins play key roles by providing links between DNA and the NE. In this study we have investigated the highly conserved INM protein Src1 in Aspergillus nidulans and have uncovered a novel cell cycle response during post mitotic formation of G1 nuclei. Live cell imaging indicates Src1 could have roles during mitotic exit as it preferentially locates to the NE abscission points during nucleokinesis and to the NE surrounding forming daughter G1 nuclei. Deletion analysis further supported this idea revealing that although Src1 is not required for interphase progression or mitosis it is required for stable post-mitotic G1 nuclear formation. This conclusion is based upon the observation that in the absence of Src1 newly formed G1 nuclei are structurally unstable and immediately undergo architectural modifications typical of mitosis. These changes include NPC modifications that stop nuclear transport as well as disassembly of nucleoli. More intriguingly, the newly generated G1 nuclei then cycle between mitotic- and interphase-like states. The findings indicate that defects in post-mitotic G1 nuclear formation caused by lack of Src1 promote repeated failed attempts to generate stable G1 nuclei. To explain this unexpected phenotype we suggest a type of regulation that promotes repetition of defective cell cycle transitions rather than preventing progression past the defective cell cycle transition. We suggest the term “reboot regulation” to define this mode of cell cycle regulation. The findings are discussed in relationship to recent studies showing the Cdk1 master oscillator can entrain subservient oscillators that when uncoupled cause cell cycle transitions to be repeated.
Collapse
|
9
|
Tartakoff AM. Cell biology of yeast zygotes, from genesis to budding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1702-14. [PMID: 25862405 DOI: 10.1016/j.bbamcr.2015.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
The zygote is the essential intermediate that allows interchange of nuclear, mitochondrial and cytosolic determinants between cells. Zygote formation in Saccharomyces cerevisiae is accomplished by mechanisms that are not characteristic of mitotic cells. These include shifting the axis of growth away from classical cortical landmarks, dramatically reorganizing the cell cortex, remodeling the cell wall in preparation for cell fusion, fusing with an adjacent partner, accomplishing nuclear fusion, orchestrating two steps of septin morphogenesis that account for a delay in fusion of mitochondria, and implementing new norms for bud site selection. This essay emphasizes the sequence of dependent relationships that account for this progression from cell encounters through zygote budding. It briefly summarizes classical studies of signal transduction and polarity specification and then focuses on downstream events.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology and Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Morelle C, Sterkers Y, Crobu L, MBang-Benet DE, Kuk N, Portalès P, Bastien P, Pagès M, Lachaud L. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids. Nucleic Acids Res 2015; 43:4013-27. [PMID: 25690889 PMCID: PMC4417144 DOI: 10.1093/nar/gkv056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.
Collapse
Affiliation(s)
- Christelle Morelle
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Yvon Sterkers
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Lucien Crobu
- CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| | - Diane-Ethna MBang-Benet
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France
| | - Nada Kuk
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France
| | - Pierre Portalès
- Department of Immunology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Patrick Bastien
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Michel Pagès
- CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| | - Laurence Lachaud
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| |
Collapse
|
11
|
Markossian S, Suresh S, Osmani AH, Osmani SA. Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region. Mol Biol Cell 2014; 26:605-21. [PMID: 25540430 PMCID: PMC4325833 DOI: 10.1091/mbc.e14-09-1359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among nuclear pore proteins, Nup2 is unique because it transfers to the mitotic chromatin region to fulfill unknown functions. Analysis of Nup2 and a novel targeting partner, NupA, shows that they are required for normal anaphase and nucleokinesis. Their functions also involve an import pathway for Mad1 but apparently not general nuclear protein import. Chromatin and nuclear pore complexes (NPCs) undergo dramatic changes during mitosis, which in vertebrates and Aspergillus nidulans involves movement of Nup2 from NPCs to the chromatin region to fulfill unknown functions. This transition is shown to require the Cdk1 mitotic kinase and be promoted prematurely by ectopic expression of the NIMA kinase. Nup2 localizes with a copurifying partner termed NupA, a highly divergent yet essential NPC protein. NupA and Nup2 locate throughout the chromatin region during prophase but during anaphase move to surround segregating DNA. NupA function is shown to involve targeting Nup2 to its interphase and mitotic locations. Deletion of either Nup2 or NupA causes identical mitotic defects that initiate a spindle assembly checkpoint (SAC)–dependent mitotic delay and also cause defects in karyokinesis. These mitotic problems are not caused by overall defects in mitotic NPC disassembly–reassembly or general nuclear import. However, without Nup2 or NupA, although the SAC protein Mad1 locates to its mitotic locations, it fails to locate to NPCs normally in G1 after mitosis. Collectively the study provides new insight into the roles of Nup2 and NupA during mitosis and in a surveillance mechanism that regulates nucleokinesis when mitotic defects occur after SAC fulfillment.
Collapse
Affiliation(s)
- Sarine Markossian
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | - Aysha H Osmani
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
Figueroa R, Gudise S, Larsson V, Hallberg E. A transmembrane inner nuclear membrane protein in the mitotic spindle. Nucleus 2014. [DOI: 10.4161/nucl.11740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Restraint of the G2/M transition by the SR/RRM family mRNA shuttling binding protein SNXAHRB1 in Aspergillus nidulans. Genetics 2014; 198:617-33. [PMID: 25104516 DOI: 10.1534/genetics.114.167445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Control of the eukaryotic G2/M transition by CDC2/CYCLINB is tightly regulated by protein-protein interactions, protein phosphorylations, and nuclear localization of CDC2/CYCLINB. We previously reported a screen, in Aspergillus nidulans, for extragenic suppressors of nimX2(cdc2) that resulted in the identification of the cold-sensitive snxA1 mutation. We demonstrate here that snxA1 suppresses defects in regulators of the CDK1 mitotic induction pathway, including nimX2(cdc) (2), nimE6(cyclinB), and nimT23(cdc) (25), but does not suppress G2-arresting nimA1/nimA5 mutations, the S-arresting nimE10(cyclinB) mutation, or three other G1/S phase mutations. snxA encodes the A. nidulans homolog of Saccharomyces cerevisiae Hrb1/Gbp2; nonessential shuttling messenger RNA (mRNA)-binding proteins belonging to the serine-arginine-rich (SR) and RNA recognition motif (RRM) protein family; and human heterogeneous ribonucleoprotein-M, a spliceosomal component involved in pre-mRNA processing and alternative splicing. snxA(Hrb) (1) is nonessential, its deletion phenocopies the snxA1 mutation, and its overexpression rescues snxA1 and ΔsnxA mutant phenotypes. snxA1 and a second allele isolated in this study, snxA2, are hypomorphic mutations that result from decreased transcript and protein levels, suggesting that snxA acts normally to restrain cell cycle progression. SNXA(HRB1) is predominantly nuclear, but is not retained in the nucleus during the partially closed mitosis of A. nidulans. We show that the snxA1 mutation does not suppress nimX2 by altering NIMX2(CDC2)/NIME(CYCLINB) kinase activity and that snxA1 or ΔsnxA alter localization patterns of NIME(CYCLINB) at the restrictive temperatures for snxA1 and nimX2. Together, these findings suggest a novel and previously unreported role of an SR/RRM family protein in cell cycle regulation, specifically in control of the CDK1 mitotic induction pathway.
Collapse
|
14
|
The spindle matrix protein, Chromator, is a novel tubulin binding protein that can interact with both microtubules and free tubulin. PLoS One 2014; 9:e103855. [PMID: 25072297 PMCID: PMC4114980 DOI: 10.1371/journal.pone.0103855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs.
Collapse
|
15
|
Schweizer N, Weiss M, Maiato H. The dynamic spindle matrix. Curr Opin Cell Biol 2014; 28:1-7. [DOI: 10.1016/j.ceb.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
16
|
O'Day DH, Budniak A. Nucleocytoplasmic protein translocation during mitosis in the social amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2014; 90:126-41. [PMID: 24618050 DOI: 10.1111/brv.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/03/2023]
Abstract
Mitosis is a fundamental and essential life process. It underlies the duplication and survival of all cells and, as a result, all eukaryotic organisms. Since uncontrolled mitosis is a dreaded component of many cancers, a full understanding of the process is critical. Evolution has led to the existence of three types of mitosis: closed, open, and semi-open. The significance of these different mitotic species, how they can lead to a full understanding of the critical events that underlie the asexual duplication of all cells, and how they may generate new insights into controlling unregulated cell division remains to be determined. The eukaryotic microbe Dictyostelium discoideum has proved to be a valuable biomedical model organism. While it appears to utilize closed mitosis, a review of the literature suggests that it possesses a form of mitosis that lies in the middle between truly open and fully closed mitosis-it utilizes a form of semi-open mitosis. Here, the nucleocytoplasmic translocation patterns of the proteins that have been studied during mitosis in the social amoebozoan D. discoideum are detailed followed by a discussion of how some of them provide support for the hypothesis of semi-open mitosis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
17
|
Fichtman B, Harel A. Stress and aging at the nuclear gateway. Mech Ageing Dev 2014; 135:24-32. [PMID: 24447784 DOI: 10.1016/j.mad.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The nuclear pore complex (NPC) is a massive molecular machine embedded in the nuclear envelope and controlling traffic into and out of the cell nucleus. Here, we describe some of the outstanding research questions concerning the NPC, its assembly and functions. We also discuss recent findings that link the NPC and its immediate surroundings to the process of cellular aging. Scaffold and barrier nucleoporins are two major types of protein building blocks that make up the NPC. Surprisingly, these two groups of nucleoporins differ dramatically in their turnover rates. Recent work identifies some of the scaffold nucleoporins as the most extremely long-lived proteins in rat brain. Some of the consequences of these findings and new open questions arising from them are discussed. We also consider the evidence for a perturbed permeability barrier in nuclei from old cells and the alteration of nuclear transport pathways under stress conditions. Finally, we describe the connection between premature aging syndromes and the nuclear lamina, a filamentous protein network which underlies the nuclear envelope.
Collapse
Affiliation(s)
- Boris Fichtman
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Amnon Harel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel.
| |
Collapse
|
18
|
Insights into dynamic mitotic chromatin organization through the NIMA kinase suppressor SonC, a chromatin-associated protein involved in the DNA damage response. Genetics 2013; 196:177-95. [PMID: 24214344 DOI: 10.1534/genetics.113.156745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear pore complex proteins SonA and SonB, the orthologs of mammalian RAE1 and NUP98, respectively, were identified in Aspergillus nidulans as cold-sensitive suppressors of a temperature-sensitive allele of the essential mitotic NIMA kinase (nimA1). Subsequent analyses found that sonB1 mutants exhibit temperature-dependent DNA damage sensitivity. To understand this pathway further, we performed a genetic screen to isolate additional conditional DNA damage-sensitive suppressors of nimA1. We identified two new alleles of SonA and four intragenic nimA mutations that suppress the temperature sensitivity of the nimA1 mutant. In addition, we identified SonC, a previously unstudied binuclear zinc cluster protein involved with NIMA and the DNA damage response. Like sonA and sonB, sonC is an essential gene. SonC localizes to nuclei and partially disperses during mitosis. When the nucleolar organizer region (NOR) undergoes mitotic condensation and removal from the nucleolus, nuclear SonC and histone H1 localize in a mutually exclusive manner with H1 being removed from the NOR region and SonC being absent from the end of the chromosome beyond the NOR. This region of chromatin is adjacent to a cluster of nuclear pore complexes to which NIMA localizes last during its progression around the nuclear envelope during initiation of mitosis. The results genetically extend the NIMA regulatory system to include a protein with selective large-scale chromatin location observed during mitosis. The data suggest a model in which NIMA and SonC, its new chromatin-associated suppressor, might help to orchestrate global chromatin states during mitosis and the DNA damage response.
Collapse
|
19
|
The NIMA kinase is required to execute stage-specific mitotic functions after initiation of mitosis. EUKARYOTIC CELL 2013; 13:99-109. [PMID: 24186954 DOI: 10.1128/ec.00231-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events.
Collapse
|
20
|
Narula K, Datta A, Chakraborty N, Chakraborty S. Comparative analyses of nuclear proteome: extending its function. FRONTIERS IN PLANT SCIENCE 2013; 4:100. [PMID: 23637696 PMCID: PMC3636469 DOI: 10.3389/fpls.2013.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/30/2013] [Indexed: 05/20/2023]
Abstract
Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10-20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect.
Collapse
Affiliation(s)
| | | | | | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali MargNew Delhi, India
| |
Collapse
|
21
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
22
|
Yao C, Rath U, Maiato H, Sharp D, Girton J, Johansen KM, Johansen J. A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Mol Biol Cell 2012; 23:3532-41. [PMID: 22855526 PMCID: PMC3442402 DOI: 10.1091/mbc.e12-06-0429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/12/2012] [Accepted: 07/26/2012] [Indexed: 01/03/2023] Open
Abstract
The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.
Collapse
Affiliation(s)
- Changfu Yao
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Uttama Rath
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - David Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jack Girton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Kristen M. Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Jørgen Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
23
|
Abstract
The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
24
|
Cohen S, Etingov I, Panté N. Effect of viral infection on the nuclear envelope and nuclear pore complex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:117-59. [PMID: 22959302 DOI: 10.1016/b978-0-12-394310-1.00003-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear envelope (NE) is a vital structure that separates the nucleus from the cytoplasm. Because the NE is such a critical cellular barrier, many viral pathogens have evolved to modulate its permeability. They do this either by breaching the NE or by disrupting the integrity and functionality of the nuclear pore complex (NPC). Viruses modulate NE permeability for different reasons. Some viruses disrupt NE to deliver the viral genome into the nucleus for replication, while others cause NE disruption during nuclear egress of newly assembled capsids. Yet, other viruses modulate NE permeability and affect the compartmentalization of host proteins or block the nuclear transport of host proteins involved in the host antiviral response. Recent scientific advances demonstrated that other viruses use proteins of the NPC for viral assembly or disassembly. Here we review the ways in which various viruses affect NE and NPC during infection.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
25
|
Asakawa H, Hiraoka Y, Haraguchi T. Physical breakdown of the nuclear envelope is not necessary for breaking its barrier function. Nucleus 2011; 2:523-6. [PMID: 22064471 PMCID: PMC3324341 DOI: 10.4161/nucl.2.6.16117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During mitosis in higher eukaryotic cells, nuclear envelope breakdown (NEBD) occurs and leads to the disassembly of the nuclear membrane and nuclear pore complexes (NPC). This brings about a mixing of nuclear and cytoplasmic macromolecules (open mitosis). On the other hand, in many fungi, mitosis occurs without NEBD (closed mitosis). In a recent study, we reported a novel phenomenon in a closed mitosis organism, Schizosaccharomyces pombe: mixing of nuclear and cytoplasmic proteins occurred in meiosis without breakdown of the nuclear membrane or disassembly of nuclear pore complexes. We designated this event virtual nuclear envelope breakdown (V-NEBD). The key event in V-NEBD is nuclear translocation of Rna1, a RanGAP1 homolog in S. pombe. This leads to collapse of the Ran-GTP gradient across the nuclear envelope (NE) and occurs coincidently with V-NEBD. Thus, the barrier function of the NE can be abated without its physical breakdown through modulation of the Ran-GTP gradient.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
26
|
Regulated inactivation of the spindle assembly checkpoint without functional mitotic spindles. EMBO J 2011; 30:2648-61. [PMID: 21642954 DOI: 10.1038/emboj.2011.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/09/2011] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) arrests mitosis until bipolar attachment of spindle microtubules to all chromosomes is accomplished. However, when spindle formation is prevented and the SAC cannot be satisfied, mammalian cells can eventually overcome the mitotic arrest while the checkpoint is still activated. We find that Aspergillus nidulans cells, which are unable to satisfy the SAC, inactivate the checkpoint after a defined period of mitotic arrest. Such SAC inactivation allows normal nuclear reassembly and mitotic exit without DNA segregation. We demonstrate that the mechanisms, which govern such SAC inactivation, require protein synthesis and can occur independently of inactivation of the major mitotic regulator Cdk1/Cyclin B or mitotic exit. Moreover, in the continued absence of spindle function cells transit multiple cell cycles in which the SAC is reactivated each mitosis before again being inactivated. Such cyclic activation and inactivation of the SAC suggests that it is subject to cell-cycle regulation that is independent of bipolar spindle function.
Collapse
|
27
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
28
|
Asakawa H, Hiraoka Y, Haraguchi T. Nuclear translocation of RanGAP1 coincides with virtual nuclear envelope breakdown in fission yeast meiosis. Commun Integr Biol 2011; 4:312-4. [PMID: 21980566 DOI: 10.4161/cib.4.3.14808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 01/30/2023] Open
Abstract
In higher eukaryotes, mitosis proceeds with nuclear envelope breakdown (NEBD) and disassembly of the nuclear pore complex (NPC); this is designated "open" mitosis. On the other hand, in many fungi, mitosis and chromosome segregation takes place without NEBD; this is designated "closed" mitosis. In a recent study on Schizosaccharomyces pombe, a closed mitosis organism, we reported a novel phenomenon that is equivalent to NEBD: a mixing of nuclear proteins and cytoplasmic proteins occurred transiently for a few minutes in meiosis without physical breakdown of the nuclear envelope. We designated this event virtual nuclear envelope breakdown (V-NEBD). In S. pombe, nuclear translocation of Rna1, a RanGAP1 homolog in S. pombe, occurs during meiosis, and this translocation of Rna1 leads to collapse of the Ran-GTP gradient across the nuclear envelope and occurs coincidently with V-NEBD. Here, we describe possible roles of RanGAP1 in V-NEBD in S. pombe and provide insights into the roles V-NEBD may play in meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences; Osaka University; Suita, Japan
| | | | | |
Collapse
|
29
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
30
|
Abstract
Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes.
Collapse
|
31
|
Johansen KM, Forer A, Yao C, Girton J, Johansen J. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res 2011; 19:345-65. [DOI: 10.1007/s10577-011-9187-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Asakawa H, Kojidani T, Mori C, Osakada H, Sato M, Ding DQ, Hiraoka Y, Haraguchi T. Virtual breakdown of the nuclear envelope in fission yeast meiosis. Curr Biol 2010; 20:1919-25. [PMID: 20970342 DOI: 10.1016/j.cub.2010.09.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/01/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Eukaryotic cell division uses morphologically different forms of mitosis, referred to as open, partially open and closed mitosis, for accurate chromosome segregation and proper partitioning of other cellular components such as endomembranes and cell fate determinants. Recent studies suggest that the spindle matrix provides a conserved strategy to coordinate the segregation of genetic material and the partitioning of the rest of the cellular contents in all three forms of mitosis.
Collapse
Affiliation(s)
- Yixian Zheng
- Department of Embryology, Carnegie Institute for Science, Baltimore, Maryland 21218, USA.
| |
Collapse
|
34
|
Johnson NA. Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet 2010; 26:317-25. [PMID: 20621759 DOI: 10.1016/j.tig.2010.04.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 01/10/2023]
Abstract
Hybrid incompatibility (including sterility, lethality, and less extreme negative effects) interests evolutionary biologists because of its role in speciation as a reproductive isolating barrier. It also has unusual genetic properties, being mainly due to interactions between at least two genes. Recent studies have identified some of the interacting genes that underlie hybrid incompatibility. These genes represent a wide array of functions, including those involved in oxidative respiration, nuclear trafficking, DNA-binding, and plant defense. Accumulating evidence suggests genomic conflict frequently drives the divergence causing incompatibilities in hybrids. The evidence bearing on this genomic conflict hypothesis is assessed and ways to test it conclusively are suggested.
Collapse
Affiliation(s)
- Norman A Johnson
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
35
|
Schmitt HD. Dsl1p/Zw10: common mechanisms behind tethering vesicles and microtubules. Trends Cell Biol 2010; 20:257-68. [PMID: 20226673 DOI: 10.1016/j.tcb.2010.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/20/2010] [Accepted: 02/02/2010] [Indexed: 12/21/2022]
Abstract
Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved.
Collapse
Affiliation(s)
- Hans Dieter Schmitt
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
36
|
Figueroa R, Gudise S, Larsson V, Hallberg E. A transmembrane inner nuclear membrane protein in the mitotic spindle. NUCLEUS (AUSTIN, TEX.) 2010; 1:249-53. [PMID: 21327071 DOI: 10.4161/nucl.1.3.11740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/19/2022]
Abstract
We have recently characterized a novel transmembrane protein of the inner nuclear membrane of mammalian cells. The protein has two very interesting features. First, despite being an integral membrane protein it is able to concentrate in the membranes colocalizing with the mitotic spindle in metaphase and anaphase. Hence, the protein was named Samp1, Spindle associated membrane protein 1. Secondly, it displays a functional connection to centrosomes. This article discusses various aspects of Samp1 in relation to possible cellular function(s).
Collapse
|