1
|
Rueda-Alaña E, Grillo M, Vázquez E, Salas SM, Senovilla-Ganzo R, Escobar L, Quintas A, Benguría A, Aransay AM, Bengoa-Vergniory N, Dopazo A, Encinas JM, Nilsson M, García-Moreno F. BirthSeq, a new method to isolate and analyze dated cells in different vertebrates. Development 2024; 151:dev202429. [PMID: 38856078 DOI: 10.1242/dev.202429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, 17165, Solna, Sweden
| | - Enrique Vázquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, 17165, Solna, Sweden
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Laura Escobar
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Quintas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ana María Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 BilbaoSpain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 BilbaoSpain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, 17165, Solna, Sweden
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 BilbaoSpain
| |
Collapse
|
2
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
3
|
Campos Eusebi W, Iorii T, Presti A, Grimson R, Vázquez-Borsetti P. Divergent Pattern of Development in Rats and Humans. Neurotox Res 2023; 42:7. [PMID: 38147261 DOI: 10.1007/s12640-023-00683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Rattus norvegicus is the second most used laboratory species and the most widely used model in neuroscience. Nonetheless, there is still no agreement regarding the temporal relationship of development between humans and rats. We addressed this question by examining the time required to reach a set of homologous developmental milestones in both species. With this purpose, a database was generated with data collected through a bibliographic survey. This database was in turn compared with other databases about the same topic present in the literature. Finally, the databases were combined, covering for the first time the entire development of the rat including the prenatal, perinatal, and postnatal periods. This combined database includes 362 dates of 181 developmental events for each species. The developmental relationship between humans and rats was better fit by a logarithmic function than by a linear function. As development progresses, an increase in the dispersion of the data is observed. Developmental relationships should not be interpreted as a univocal equivalence. In this work is proposed an alternative interpretation where the age of one species is translated into a range of ages in the other.
Collapse
Affiliation(s)
- Wanda Campos Eusebi
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Tomas Iorii
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Antonella Presti
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina
| | - Rafael Grimson
- 3iA (Instituto de Investigación e Ingeniería Ambiental), UNSAM/CONICET, Buenos Aires, Argentina
| | - Pablo Vázquez-Borsetti
- Facultad de Medicina-UBA, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), UBA/CONICET, Paraguay 2155 piso 3, 1121 Buenos Aires, Argentina.
| |
Collapse
|
4
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Vinogradov AE, Anatskaya OV. Systemic Alterations of Cancer Cells and Their Boost by Polyploidization: Unicellular Attractor (UCA) Model. Int J Mol Sci 2023; 24:ijms24076196. [PMID: 37047167 PMCID: PMC10094663 DOI: 10.3390/ijms24076196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential features of the ‘atavistic reversal’, ‘cancer attractor’, ‘somatic mutation’, ‘genome chaos’, and ‘tissue organization field’ theories. The ‘atavistic reversal’ theory is taken as a keystone. We propose a possible mechanism of this reversal, its refinement called ‘gradual atavism’, and evidence for the ‘serial atavism’ model. We showed the gradual core-to-periphery evolutionary growth of the human interactome resulting in the higher protein interaction density and global interactome centrality in the UC center. In addition, we revealed that UC genes are more actively expressed even in normal cells. The modeling of random walk along protein interaction trajectories demonstrated that random alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further gradual activation of the UC center. These changes can be induced and accelerated by cellular stress that additionally activates UC genes (especially during cell proliferation), because the genes involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression of multicellular genes involved in communication with the extracellular environment (especially immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an understanding of oncogenesis and promote the development of therapeutic strategies.
Collapse
|
6
|
Gradistics: An underappreciated dimension in evolutionary space. Biosystems 2023; 224:104844. [PMID: 36736879 DOI: 10.1016/j.biosystems.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The growth of complexity is an unsolved and underappreciated problem. We consider possible causes of this growth, hypotheses testing, molecular mechanisms, complexity measures, cases of simplification, and significance for biomedicine. We focus on a general ability of regulation, which is based on the growing information storage and processing capacities, as the main proxy of complexity. Natural selection is indifferent to complexity. However, complexification can be inferred from the same first principle, on which natural selection is founded. Natural selection depends on potentially unlimited reproduction under limited environmental conditions. Because of the demographic pressure, the simple ecological niches become fulfilled and diversified (due to species splitting and divergence). Diversification increases complexity of biocenoses. After the filling and diversification of simple niches, the more complex niches can arise. This is the 'atomic orbitals' (AO) model. Complexity has many shortcomings but it has an advantage. This advantage is ability to regulatory adaptation, including behavioral, formed in the evolution by means of genetic adaptation. Regulatory adaptation is much faster than genetic one because it is based on the information previously accumulated via genetic adaptation and learning. Regulatory adaptation further increases complexity of biocenoses. This is the 'regulatory advantage' (RA) model. The comparison of both models allows testable predictions. We focus on the animal evolution because of the appearance of higher regulatory level (nervous system), which is absent in other lineages, and relevance to humans (including biomedical aspects).
Collapse
|
7
|
Ksepka D. Developmental biology: A dinosaur in a quail egg. Curr Biol 2022; 32:R964-R967. [PMID: 36167048 DOI: 10.1016/j.cub.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental biology and paleontology have a long history of reciprocal illumination. New research reveals that the embryonic development of the bird pelvis parallels the evolutionary transition from archosaurs to birds.
Collapse
Affiliation(s)
- Daniel Ksepka
- Bruce Museum, Greenwich, CT 06614, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA; Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
8
|
Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BAS. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 2022; 608:346-352. [PMID: 35896745 DOI: 10.1038/s41586-022-04982-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - João F Botelho
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Departamento Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Nagaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Ryan M Carney
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | - Shiro Egawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Timothy B Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
| | | | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Richardson MK, Keuck G. The revolutionary developmental biology of Wilhelm His, Sr. Biol Rev Camb Philos Soc 2022; 97:1131-1160. [PMID: 35106889 PMCID: PMC9304566 DOI: 10.1111/brv.12834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Swiss-born embryologist Wilhelm His, Sr. (1831-1904) was the first scientist to study embryos using paraffin histology, serial sectioning and three-dimensional modelling. With these techniques, His made many important discoveries in vertebrate embryology and developmental neurobiology, earning him two Nobel Prize nominations. He also developed several theories of mechanical and evolutionary developmental biology. His argued that adult form is determined by the differential growth of developmental primordia. Furthermore, he suggested that changes in the growth parameters of those primordia are responsible for generating new phenotypes during evolution. His developed these theories in his book 'Our Bodily Form' (Unsere Körperform). Here, we review His's work with special emphasis on its potential importance to the disciplines of evolutionary developmental biology (evo-devo) and mechanobiology.
Collapse
Affiliation(s)
- Michael K. Richardson
- Institute of Biology, University of Leiden, Sylvius LaboratorySylviusweg 72Leiden2333 BEThe Netherlands
| | | |
Collapse
|
10
|
Essay the (unusual) heuristic value of Hox gene clusters; a matter of time? Dev Biol 2022; 484:75-87. [PMID: 35182536 DOI: 10.1016/j.ydbio.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.
Collapse
|
11
|
López-Romero FA, Berio F, Abed-Navandi D, Kriwet J. Early shape divergence of developmental trajectories in the jaw of galeomorph sharks. Front Zool 2022; 19:7. [PMID: 35123488 PMCID: PMC8818243 DOI: 10.1186/s12983-022-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype.
Results
Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages.
Conclusions
The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.
Collapse
|
12
|
Kopania EEK, Larson EL, Callahan C, Keeble S, Good JM. Molecular Evolution across Mouse Spermatogenesis. Mol Biol Evol 2022; 39:6517785. [PMID: 35099536 PMCID: PMC8844503 DOI: 10.1093/molbev/msac023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
13
|
Richardson MK. Theories, laws, and models in evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:36-61. [PMID: 34570438 PMCID: PMC9292786 DOI: 10.1002/jez.b.23096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary developmental biology (evo-devo) is the study of the evolution of developmental mechanisms. Here, I review some of the theories, models, and laws in evo-devo, past and present. Nineteenth-century evo-devo was dominated by recapitulation theory and archetypes. It also gave us germ layer theory, the vertebral theory of the skull, floral organs as modified leaves, and the "inverted invertebrate" theory, among others. Newer theories and models include the frameshift theory, the genetic toolkit for development, the ABC model of flower development, the developmental hourglass, the zootype, Urbilateria, and the hox code. Some of these new theories show the influence of archetypes and recapitulation. Interestingly, recent studies support the old "primordial leaf," "inverted invertebrate," and "segmented head" theories. Furthermore, von Baer's first three laws may now need to be rehabilitated, and the hourglass model modified, in view of what Abzhanov has pointed out about the maternal-zygotic transition. There are many supposed "laws" of evo-devo but I argue that these are merely generalizations about trends in particular lineages. I argue that the "body plan" is an archetype, and is often used in such a way that it lacks any scientific meaning. Looking to the future, one challenge for evo-devo will be to develop new theories and models to accommodate the wealth of new data from high-throughput sequencing, including single-cell sequencing. One step in this direction is the use of sophisticated in silico analyses, as in the "transcriptomic hourglass" models.
Collapse
|
14
|
Dobreva MP, Camacho J, Abzhanov A. Time to synchronize our clocks: Connecting developmental mechanisms and evolutionary consequences of heterochrony. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:87-106. [PMID: 34826199 DOI: 10.1002/jez.b.23103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Heterochrony, defined as a change in the timing of developmental events altering the course of evolution, was first recognized by Ernst Haeckel in 1866. Haeckel's original definition was meant to explain the observed parallels between ontogeny and phylogeny, but the interpretation of his work became a source of controversy over time. Heterochrony took its modern meaning following the now classical work in the 1970-80s by Steven J. Gould, Pere Alberch, and co-workers. Predicted and described heterochronic scenarios emphasize the many ways in which developmental changes can influence evolution. However, while important examples of heterochrony detected with comparative morphological methods have multiplied, the more mechanistic understanding of this phenomenon lagged conspicuously behind. Considering the rapid progress in imaging and molecular tools available now for developmental biologists, this review aims to stress the need to take heterochrony research to the next level. It is time to synchronize the different levels of heterochrony research into a single analysis flow: from studies on organismal-level morphology to cells to molecules and genes, using complementary techniques. To illustrate how to achieve a more comprehensive understanding of phyletic morphological diversification associated with heterochrony, we discuss several recent case studies at various phylogenetic scales that combine morphological, cellular, and molecular analyses. Such a synergistic approach offers to more fully integrate phylogenetic and ontogenetic dimensions of the fascinating evolutionary phenomenon of heterochrony.
Collapse
Affiliation(s)
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
15
|
Rust J. Von Baer, the intensification of uniqueness, and historical explanation. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:122. [PMID: 34807328 DOI: 10.1007/s40656-021-00473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
This paper aims to uncover the explanatory profile of an idealized version of Karl Ernst von Baer's notion of individuation, wherein the special develops from the general. First, because such sequences can only be exemplified by a multiplicity of causally-related events, they should be seen as the topics of historical why-questions, rather than initial condition why-questions. Second, because historical why-questions concern the diachronic unity or genidentity of the events under consideration, I argue that the von Baerian pattern elicits a distinctive response to such questions, wherein we are inclined to simultaneously affirm and reject the temporal unity of these events. I buttress this claim by considering non-biological expressions of the von Baerian principle, drawn from institutional history and literature. In the second half of the paper, I consider the implications of my findings for ontogenetic and phylogenetic sequences. I argue that the explanatory profile of von Baer's principle neatly describes the distinctive speciation events that characterize deep metazoan phylogeny, as described by Stuart Newman. I also argue that parallel considerations should move us to accept a sense in which ontogenetic stages are not diachronically unified.
Collapse
Affiliation(s)
- Joshua Rust
- Department of Philosophy, Stetson University, DeLand, FL, USA.
| |
Collapse
|
16
|
Morris ZS, Vliet KA, Abzhanov A, Pierce SE. Developmental origins of the crocodylian skull table and platyrostral face. Anat Rec (Hoboken) 2021; 305:2838-2853. [PMID: 34694063 DOI: 10.1002/ar.24802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022]
Abstract
The dorsoventrally flattened skull typifies extant Crocodylia perhaps more than any other anatomical feature and is generally considered an adaptation for semi-aquatic feeding. Although the evolutionary origins of caniofacial flattening have been extensively studied, the developmental origins have yet to be explored. To understand how the skull table and platyrostral snout develop, we quantified embryonic development and post-hatching growth (ontogeny) of the crocodylian skull in lateral view using geometric morphometrics. Our dataset (n = 103) includes all but one extant genus and all of the major ecomorphs, including the extremely slender-snouted Gavialis and Tomistoma. Our analysis reveals that the embryonic development of the flattened skull is remarkably similar across ecomorphs, including the presence of a conserved initial embryonic skull shape, similar to prior analysis of dorsal snout shape. Although differences during posthatching ontogeny are recovered among ecomorphs, embryonic patterns are not distinct, revealing an important shift in developmental rate near hatching. In particular, the flattened skull table is achieved by the end of embryonic development with no changes after hatching. Further, the rotation of skull roof and facial bones during development is critical for the stereotypical flatness of the crocodylian skull. Our results suggest selection on hatchling performance and constraints on embryonic skull shape may have been important in this pattern of developmental conservation. The appearance of aspects of cranial flatness among Jurassic stem crocodylians suggests key aspects of these cranial developmental patterns may have been conserved for over 200 million years.
Collapse
Affiliation(s)
- Zachary S Morris
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Berkshire, UK.,Natural History Museum, Cromwell Road, London, UK
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Steventon B, Busby L, Arias AM. Establishment of the vertebrate body plan: Rethinking gastrulation through stem cell models of early embryogenesis. Dev Cell 2021; 56:2405-2418. [PMID: 34520764 DOI: 10.1016/j.devcel.2021.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
A striking property of vertebrate embryos is the emergence of a conserved body plan across a wide range of organisms through the process of gastrulation. As the body plan unfolds, gene regulatory networks (GRNs) and multicellular interactions (cell regulatory networks, CRNs) combine to generate a conserved set of morphogenetic events that lead to the phylotypic stage. Interrogation of these multilevel interactions requires manipulation of the mechanical environment, which is difficult in vivo. We review recent studies of stem cell models of early embryogenesis from different species showing that, independent of species origin, cells in culture form similar structures. The main difference between embryos and in vitro models is the boundary conditions of the multicellular ensembles. We discuss these observations and suggest that the mechanical and geometric boundary conditions of different embryos before gastrulation hide a morphogenetic ground state that is revealed in the stem-cell-based models of embryo development.
Collapse
Affiliation(s)
| | - Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
18
|
Lu MR, Lai CK, Liao BY, Tsai IJ. Comparative Transcriptomics across Nematode Life Cycles Reveal Gene Expression Conservation and Correlated Evolution in Adjacent Developmental Stages. Genome Biol Evol 2021; 12:1019-1030. [PMID: 32467980 PMCID: PMC7353954 DOI: 10.1093/gbe/evaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Nematodes are highly abundant animals with diverse habitats and lifestyles. Some are free living whereas others parasitize animals or plants, and among the latter, infection abilities change across developmental stages to infect hosts and complete life cycles. To determine the relationship between transcriptome evolution and morphological divergences among nematodes, we compared 48 transcriptomes of different developmental stages across eight nematode species. The transcriptomes were clustered broadly into embryo, larva, and adult stages, with the developmental plastic stages were separated from common larval stages within the larval branch. This suggests that development was the major determining factor after lifestyle changes, such as parasitism, during transcriptome evolution. Such patterns were partly accounted for by tissue-specific genes—such as those in oocytes and the hypodermis—being expressed at different proportions. Although nematodes typically have 3–5 larval stages, the transcriptomes for these stages were found to be highly correlated within each species, suggesting high similarity among larval stages across species. For the Caenorhabditis elegans–Caenorhabditis briggsae and Strongyloides stercoralis–Strongyloides venezuelensis comparisons, we found that ∼50% of genes were expressed at multiple stages, whereas half of their orthologs were also expressed in multiple but different stages. Such frequent changes in expression have resulted in concerted transcriptome evolution across adjacent stages, thus generating species-specific transcriptomes over the course of nematode evolution. Our study provides a first insight into the evolution of nematode transcriptomes beyond embryonic development.
Collapse
Affiliation(s)
- Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Chan ME, Bhamidipati PS, Goldsby HJ, Hintze A, Hofmann HA, Young RL. Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biol Evol 2021; 13:6319027. [PMID: 34247223 PMCID: PMC8358226 DOI: 10.1093/gbe/evab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Despite life's diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the "phylotypic" stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
Collapse
Affiliation(s)
- Megan E Chan
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Pranav S Bhamidipati
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Heather J Goldsby
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA.,Institute for Cellular and Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Texas, USA
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
20
|
Gorfinkiel N, Martinez Arias A. The cell in the age of the genomic revolution: Cell Regulatory Networks. Cells Dev 2021; 168:203720. [PMID: 34252599 DOI: 10.1016/j.cdev.2021.203720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs). We begin to do this by suggesting elements for building Cell Regulatory Networks (CRNs). In the same manner that GRNs create schedules of gene expression that result in the emergence of cell fates over time, CRNs create tissues and organs i.e. space. We also suggest how GRNs and CRNs might interact in the building of embryos through feedback loops involving mechanics and tissue tectonics.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC Biológicas, Universidad Complutense, José Antonio Nováis 12, Madrid, Spain.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, ICREA (Institució Catalana de Recerca i Estudis Avançats), Doctor Aiguader 88, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
21
|
Lineweaver CH, Bussey KJ, Blackburn AC, Davies PCW. Cancer progression as a sequence of atavistic reversions. Bioessays 2021; 43:e2000305. [PMID: 33984158 DOI: 10.1002/bies.202000305] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
It has long been recognized that cancer onset and progression represent a type of reversion to an ancestral quasi-unicellular phenotype. This general concept has been refined into the atavistic model of cancer that attempts to provide a quantitative analysis and testable predictions based on genomic data. Over the past decade, support for the multicellular-to-unicellular reversion predicted by the atavism model has come from phylostratigraphy. Here, we propose that cancer onset and progression involve more than a one-off multicellular-to-unicellular reversion, and are better described as a series of reversionary transitions. We make new predictions based on the chronology of the unicellular-eukaryote-to-multicellular-eukaryote transition. We also make new predictions based on three other evolutionary transitions that occurred in our lineage: eukaryogenesis, oxidative phosphorylation and the transition to adaptive immunity. We propose several modifications to current phylostratigraphy to improve age resolution to test these predictions. Also see the video abstract here: https://youtu.be/3unEu5JYJrQ.
Collapse
Affiliation(s)
- Charles H Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics & Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.,Mt Stromlo Observatory, Canberra, ACT, Australia
| | - Kimberly J Bussey
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA.,Precision Medicine, Midwestern University, Glendale, Arizona, USA
| | - Anneke C Blackburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
22
|
Xu Z, Kang Q, Yu Z, Tian L, Zhang J, Wang T. Research on the Species Difference of the Hepatotoxicity of Medicine Based on Transcriptome. Front Pharmacol 2021; 12:647084. [PMID: 33995060 PMCID: PMC8115263 DOI: 10.3389/fphar.2021.647084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, several drugs have been withdrawn from use by regulatory bodies owing to hepatotoxicity; therefore, studies on drug-induced liver injury (DILI) are being actively pursued. Most studies evaluating DILI use rats or mice as animal models to determine drug toxicity; however, the toxicity of a drug can vary between rats or mice. These inconsistencies in in vivo studies among different animal models affect the extrapolation of experimental results to humans. Thus, it is particularly important to choose the most suitable animal model to determine drug hepatotoxicity owing to the genomic differences between rats and mice resulting from evolution. In this study, genome-wide transcriptome analysis was used to explore hepatotoxicity caused by differences in species. Our findings provide the preclinical basis to further study the mechanisms of drug hepatotoxicity and aid in the selection of animal models to determine drug safety. We used murine models (Sprague-Dawley and Wistar rats, ICR and Kunming mice) in this study and by using transcriptome sequencing with the differentially expressed genes in rat and mouse livers as the entry point, we explored the mechanism of oxidative stress and the difference in gene expression in the lipid-metabolism pathway between rats and mice. The clinically established hepatotoxic drugs, fructus psoraleae and acetaminophen were used to validate our study. Using pathological studies, we confirmed that oxidative stress in mice was more serious than that in rats, and that Kunming mice were more suited for the study of oxidative stress-related DILI. The validity of our findings was further verified based on gene expression. Thus, our study could serve as a valuable reference for the evaluation of potential preclinical hepatotoxicity. Moreover, it could be used in the prediction and early diagnosis of drug-induced liver injury caused by traditional Chinese medicine or synthetic drugs, thereby providing a new avenue for drug-toxicity studies.
Collapse
Affiliation(s)
- Ziying Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianjun Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Yu
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Fujimoto S, Yamanaka K, Tanegashima C, Nishimura O, Kuraku S, Kuratani S, Irie N. Measuring potential effects of the developmental burden associated with the vertebrate notochord. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:129-136. [PMID: 33689235 PMCID: PMC9291948 DOI: 10.1002/jez.b.23032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
The notochord functions primarily as a supporting tissue to maintain the anteroposterior axis of primitive chordates, a function that is replaced entirely by the vertebral column in many vertebrates. The notochord still appears during vertebrate embryogenesis and plays a crucial role in the developmental pattern formation of surrounding structures, such as the somites and neural tube, providing the basis for the vertebrate body plan. The indispensable role of the notochord has often been referred to as the developmental burden and used to explain the evolutionary conservation of notochord; however, the existence of this burden has not been successfully exemplified so far. Since the adaptive value of target tissues appears to result in the evolutionary conservation of upstream structures through the developmental burden, we performed comparative gene expression profiling of the notochord, somites, and neural tube during the mid‐embryonic stages in turtles and chicken to measure their evolutionary conservation. When compared with the somites and neural tube, overall gene expression profiles in the notochord showed significantly lower or merely comparable levels of conservation. However, genes involved in inductive signalings, such as the sonic hedgehog (Shh) cascade and the formation of functional primary cilia, showed relatively higher levels of conservation in all the three structures analyzed. Collectively, these results suggest that shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Potential evolutionary effects toward notochord by developmental burden was evaluated by Laser Micro Dissection RNAseq (LMDseq). Notochord was less conserved than neural tube and somites; however, genes in sonic hedgehog (shh) signaling cascade was found to be evolutionarily conserved (not only in notochord but also in somites and neural tube). These results suggest that Shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Further studies that directly measure the burden required to verify the hypothesis are awaited.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naoki Irie
- Department of Biological SciencesThe University of TokyoTokyoJapan
- Universal Biology InstituteThe University of TokyoTokyoJapan
| |
Collapse
|
24
|
Uesaka M, Kuratani S, Irie N. The developmental hourglass model and recapitulation: An attempt to integrate the two models. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:76-86. [PMID: 33503326 PMCID: PMC9292893 DOI: 10.1002/jez.b.23027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Recapitulation is a hypothetical concept that assumes embryogenesis of an animal parallels its own phylogenetic history, sequentially developing from more ancestral features to more derived ones. This concept predicts that the earliest developmental stage of various animals should represent the most evolutionarily conserved patterns. Recent transcriptome‐based studies, on the other hand, have reported that mid‐embryonic, organogenetic periods show the highest level of conservation (the developmental hourglass model). This, however, does not rule out the possibility that recapitulation would still be detected after the mid‐embryonic period. In accordance with this, recapitulation‐like morphological features are enriched in late developmental stages. Moreover, our recent chromatin accessibility‐based study provided molecular evidence for recapitulation in the mid‐to‐late embryogenesis of vertebrates, as newly evolved gene regulatory elements tended to be activated at late embryonic stages. In this review, we revisit the recapitulation hypothesis, together with recent molecular‐based studies that support the developmental hourglass model. We contend that the recapitulation hypothesis does not entirely contradict the developmental hourglass model and that these two may even coexist in later embryonic stages of vertebrates. Finally, we review possible mechanisms underlying the recapitulation pattern of chromatin accessibility together with the hourglass‐like evolutionary conservation in vertebrate embryogenesis. Recapitulation pattern has been reported for chromatin accessibility during the mid‐to‐late embryogenesis. The observed recapitulation pattern and the developmental hourglass model may coexist. The possible evolutionary mechanisms underlying tendencies of embryonic evolution were discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, Kobe, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Heading for higher ground: Developmental origins and evolutionary diversification of the amniote face. Curr Top Dev Biol 2021; 141:241-277. [PMID: 33602490 DOI: 10.1016/bs.ctdb.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amniotes, a clade of terrestrial vertebrates, which includes all of the descendants of the last common ancestor of the reptiles (including dinosaurs and birds) and mammals, is one of the most successful group of animals on our planet. In addition to having an egg equipped with an amnion, an adaptation to lay eggs on land, amniotes possess a number of other major morphological characteristics. Chief among them is the amniote skull, which can be classified into several major types distinguished by the presence and number of temporal fenestrae (windows) in the posterior part. Amniotes evolved from ancestors who possessed a skull composed of a complex mosaic of small bones separated by sutures. Changes in skull composition underlie much of the large-scale evolution of amniotes with many lineages showing a trend in reduction of cranial elements known as the "Williston's Law." The skull of amniotes is also arranged into a set of modules of closely co-evolving bones as revealed by modularity and integration tests. One of the most consistently recovered and at the same time most versatile modules is the "face," anatomically defined as the anterior portion of the head. The faces of amniotes display extraordinary amount of variation, with many adaptive radiations showing parallel tendencies in facial scaling, e.g., changes in length or width. This review explores the natural history of the amniote face and discusses how a better understanding of its anatomy and developmental biology helps to explain the outstanding scale of adaptive facial diversity. We propose a model for facial evolution in the amniotes, based on the differential rate of cranial neural crest cell proliferation and the timing of their skeletal differentiation.
Collapse
|
26
|
Futo M, Opašić L, Koska S, Čorak N, Široki T, Ravikumar V, Thorsell A, Lenuzzi M, Kifer D, Domazet-Lošo M, Vlahoviček K, Mijakovic I, Domazet-Lošo T. Embryo-Like Features in Developing Bacillus subtilis Biofilms. Mol Biol Evol 2021; 38:31-47. [PMID: 32871001 PMCID: PMC7783165 DOI: 10.1093/molbev/msaa217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that the ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using time-resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures, in a way that evolutionary younger and more diverged genes were increasingly expressed toward later timepoints of biofilm growth. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos. Together, this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants, and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely adopted vision of the first life as a single-cell and free-living organism needs rethinking.
Collapse
Affiliation(s)
- Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Vaishnavi Ravikumar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maša Lenuzzi
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics Group, Division of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- School of Biosciences, University of Skövde, Skövde, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
27
|
Hatleberg WL, Hinman VF. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Curr Top Dev Biol 2021; 141:39-73. [DOI: 10.1016/bs.ctdb.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Kuratani S, Uesaka M, Irie N. How can recapitulation be reconciled with modern concepts of evolution? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 338:28-35. [PMID: 33382203 DOI: 10.1002/jez.b.23020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
To understand Haeckel's idea of recapitulation with modern evolutionary biology, one has to realize how evolutionarily conserved embryonic stages appear sequentially in developmental processes as chains of causality. Whether the idea of evolution was accepted or not, Haeckel and von Baer commonly saw an importance of a particularly conserved mid-embryonic stage in biphasic development of metazoans, the phylotype, that defines an animal phylum as the developmental source of a basic body plan. In an evolutionary context, the phylotypic stage was once understood by Haeckel to reflect the common ancestor of animal phyla, which went through hypermorphosis independently into various phyla. Recent comprehensive molecular studies, however, accumulated data to refute this idea. The conserved embryonic pattern does not reflect an ancestral adult morphology but appears to have arisen primarily as an embodiment of developmental constraints established through evolutionary processes. How the developmental burden results in a nested series of constraints will solve the recapitulative tendency of developmental programs.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Naoki Irie
- Department of Biological Sciences and Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
García-Moreno F, Molnár Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog Neurobiol 2020; 194:101865. [PMID: 32526253 PMCID: PMC7656292 DOI: 10.1016/j.pneurobio.2020.101865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Charles Darwin stated, "community in embryonic structure reveals community of descent". Thus, to understand how the neocortex emerged during mammalian evolution we need to understand the evolution of the development of the pallium, the source of the neocortex. In this article, we review the variations in the development of the pallium that enabled the production of the six-layered neocortex. We propose that an accumulation of subtle modifications from very early brain development accounted for the diversification of vertebrate pallia and the origin of the neocortex. Initially, faint differences of expression of secretable morphogens promote a wide variety in the proportions and organization of sectors of the early pallium in different vertebrates. It prompted different sectors to host varied progenitors and distinct germinative zones. These cells and germinative compartments generate diverse neuronal populations that migrate and mix with each other through radial and tangential migrations in a taxon-specific fashion. Together, these early variations had a profound influence on neurogenetic gradients, lamination, positioning, and connectivity. Gene expression, hodology, and physiological properties of pallial neurons are important features to suggest homologies, but the origin of cells and their developmental trajectory are fundamental to understand evolutionary changes. Our review compares the development of the homologous pallial sectors in sauropsids and mammals, with a particular focus on cell lineage, in search of the key changes that led to the appearance of the mammalian neocortex.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013, Bilbao, Spain; Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
30
|
Tian L, Benton MJ. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr Biol 2020; 30:R744-R749. [PMID: 32634410 DOI: 10.1016/j.cub.2020.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Models for future environmental change all involve global warming, whether slow or fast. Predicting how plants and animals will respond to such warming can be aided by using ecogeographic biological 'rules', some long-established, that make predictions based on observations in nature, as well as plausible physiological and ecological expectations. Bergmann's rule is well known, namely that warm-blooded animals are generally smaller in warm climates, but six further temperature-related rules - Allen's rule, Gloger's rule, Hesse's rule, Jordan's rule, Rapoport's rule and Thorson's rule - are also worth considering as predictive tools. These rules have been discussed in the recent ecological and physiological literature, and in some cases meta-analytical studies of multiple studies show how they are applicable across taxa and in particular physical environmental situations.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
31
|
van Putten K. Trees, Coral, and Seaweed: An Interpretation of Sketches Found in Darwin's Papers. JOURNAL OF THE HISTORY OF BIOLOGY 2020; 53:5-44. [PMID: 32020497 PMCID: PMC7110947 DOI: 10.1007/s10739-019-09591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sole diagram in On the Origin of Species is generally considered to be merely an illustration of Darwin's ideas, but such an interpretation ignores the fact that Darwin himself expressly stated that the diagram helped him to discover and express his ideas. This article demonstrates that developing the so-called "tree diagram" substantially aided Darwin's heuristics. This demonstration is based on an interpretation of the diagram and of 17 sketches found in Darwin's scientific papers. The key to this interpretation is the meaning that Darwin assigned to the graphic elements (points, lines, and spaces) he used to construct the preliminary sketches and the diagram. I argue that each of the sketches contributed to the shaping of Darwin's ideas and that, in their succession, each added new elements that ultimately resulted in the fully developed published diagram.
Collapse
Affiliation(s)
- Kees van Putten
- Faculty of Philosophy, Theology and Religious Studies, Radboud University, Houtlaan 4, 6525 XZ, Nijmegen, The Netherlands.
- , Snoeksloot 14, 3993HL, Houten, The Netherlands.
| |
Collapse
|
32
|
Hayden L, Lochovska K, Sémon M, Renaud S, Delignette-Muller ML, Vilcot M, Peterkova R, Hovorakova M, Pantalacci S. Developmental variability channels mouse molar evolution. eLife 2020; 9:50103. [PMID: 32048989 PMCID: PMC7182435 DOI: 10.7554/elife.50103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022] Open
Abstract
Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance. Over time species develop random mutations in their genetic sequence that causes their form to change. If this new form increases the survival of a species it will become favored through natural selection and is more likely to get passed on to future generations. But, the evolution of these new traits also depends on what happens during development. Developmental mechanisms control how an embryo progresses from a single cell to an adult organism made of many cells. Mutations that alter these processes can influence the physical outcome of development, and cause a new trait to form. This means that if many different mutations alter development in a similar way, this can lead to the same physical change, making it ‘easy’ for a new trait to repeatedly occur. Most of the research has focused on finding the mutations that underlie repeated evolution, but rarely on identifying the role of the underlying developmental mechanisms. To bridge this gap, Hayden et al. investigated how changes during development influence the shape and size of molar teeth in mice. In some wild species of mice, the front part of the first upper molar is longer than in other species. This elongation, which is repeatedly found in mice from different islands, likely came from developmental mechanisms. Tooth development in mice has been well-studied in the laboratory, and Hayden et al. started by identifying two strains of laboratory mice that mimic the teeth seen in their wild cousins, one with elongated upper first molars and another with short ones. Comparing how these two strains of mice developed their elongated or short teeth revealed key differences in the embryonic structures that form the upper molar and cause it to elongate. Further work showed that variations in these embryonic structures can even cause mice that are genetically identical to have longer or shorter upper first molars. These findings show how early differences during development can lead to small variations in form between adult species of mice. This study highlights how studying developmental differences as well as genetic sequences can further our understanding of how different species evolved.
Collapse
Affiliation(s)
- Luke Hayden
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, INSERM U1210, Lyon, France.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Katerina Lochovska
- 1st Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marie Sémon
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, INSERM U1210, Lyon, France
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, VetAgro Sup, Villeurbanne, France
| | - Marie-Laure Delignette-Muller
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, VetAgro Sup, Villeurbanne, France
| | - Maurine Vilcot
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, INSERM U1210, Lyon, France
| |
Collapse
|
33
|
Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kliver S, Tinker MT, Murray MJ, Johnson J, Lindblad-Toh K, Karlsson EK, Lohmueller KE, Wayne RK. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Mol Biol Evol 2019; 36:2631-2655. [PMID: 31212313 PMCID: PMC7967881 DOI: 10.1093/molbev/msz101] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Gang Li
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Pasha Dobrynin
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Martin T Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | | | - Jeremy Johnson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kerstin Lindblad-Toh
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor K Karlsson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| |
Collapse
|
34
|
Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 2019; 576:102-105. [DOI: 10.1038/s41586-019-1792-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
|
35
|
Camacho J, Heyde A, Bhullar BAS, Haelewaters D, Simmons NB, Abzhanov A. Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity. Dev Dyn 2019; 248:1129-1143. [PMID: 31348570 DOI: 10.1002/dvdy.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The neotropical leaf-nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes. RESULTS In this study, we use three-dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis. CONCLUSION These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists.
Collapse
Affiliation(s)
- Jasmin Camacho
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Alexander Heyde
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.,Department of Geology and Geophysics, Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut
| | - Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
36
|
Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, Liechti A, Ascenção K, Rummel C, Ovchinnikova S, Mazin PV, Xenarios I, Harshman K, Mort M, Cooper DN, Sandi C, Soares MJ, Ferreira PG, Afonso S, Carneiro M, Turner JMA, VandeBerg JL, Fallahshahroudi A, Jensen P, Behr R, Lisgo S, Lindsay S, Khaitovich P, Huber W, Baker J, Anders S, Zhang YE, Kaessmann H. Gene expression across mammalian organ development. Nature 2019; 571:505-509. [PMID: 31243369 PMCID: PMC6658352 DOI: 10.1038/s41586-019-1338-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.
Collapse
Affiliation(s)
- Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Jean Halbert
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Delphine Valloton
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Angélica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Kelly Ascenção
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Coralie Rummel
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Pavel V Mazin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute) RAS, Moscow, Russia
- Faculty of Computer Science, HSE University, Moscow, Russia
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Keith Harshman
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Departments of Pathology and Laboratory Medicine and Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA
- Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, MO, USA
| | - Paula G Ferreira
- Departamento de Anatomia, Universidade do Porto, Porto, Portugal
- ICBAS (Instituto de Ciências Biomédicas Abel Salazar), UMIB (Unidade Multidisciplinar de Investigação Biomédica), Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Harlingen and Edinburg, TX, USA
- The Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Harlingen and Edinburg, TX, USA
| | - Amir Fallahshahroudi
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research (DPZ), Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Susan Lindsay
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julie Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
| |
Collapse
|
37
|
Morris ZS, Vliet KA, Abzhanov A, Pierce SE. Heterochronic shifts and conserved embryonic shape underlie crocodylian craniofacial disparity and convergence. Proc Biol Sci 2019; 286:20182389. [PMID: 30963831 PMCID: PMC6408887 DOI: 10.1098/rspb.2018.2389] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022] Open
Abstract
The distinctive anatomy of the crocodylian skull is intimately linked with dietary ecology, resulting in repeated convergence on blunt- and slender-snouted ecomorphs. These evolutionary shifts depend upon modifications of the developmental processes which direct growth and morphogenesis. Here we examine the evolution of cranial ontogenetic trajectories to shed light on the mechanisms underlying convergent snout evolution. We use geometric morphometrics to quantify skeletogenesis in an evolutionary context and reconstruct ancestral patterns of ontogenetic allometry to understand the developmental drivers of craniofacial diversity within Crocodylia. Our analyses uncovered a conserved embryonic region of morphospace (CER) shared by all non-gavialid crocodylians regardless of their eventual adult ecomorph. This observation suggests the presence of conserved developmental processes during early development (before Ferguson stage 20) across most of Crocodylia. Ancestral state reconstruction of ontogenetic trajectories revealed heterochrony, developmental constraint, and developmental systems drift have all played essential roles in the evolution of ecomorphs. Based on these observations, we conclude that two separate, but interconnected, developmental programmes controlling craniofacial morphogenesis and growth enabled the evolutionary plasticity of skull shape in crocodylians.
Collapse
Affiliation(s)
- Zachary S. Morris
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kent A. Vliet
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Uesaka M, Kuratani S, Takeda H, Irie N. Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. ZOOLOGICAL LETTERS 2019; 5:33. [PMID: 31807314 PMCID: PMC6857340 DOI: 10.1186/s40851-019-0148-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/06/2019] [Indexed: 05/09/2023]
Abstract
The relationship between development and evolution has been a central theme in evolutionary developmental biology. Across the vertebrates, the most highly conserved gene expression profiles are found at mid-embryonic, organogenesis stages, whereas those at earlier and later stages are more diverged. This hourglass-like pattern of divergence does not necessarily rule out the possibility that gene expression profiles that are more evolutionarily derived appear at later stages of development; however, no molecular-level evidence of such a phenomenon has been reported. To address this issue, we compared putative gene regulatory elements among different species within a phylum. We made a genome-wide assessment of accessible chromatin regions throughout embryogenesis in three vertebrate species (mouse, chicken, and medaka) and estimated the evolutionary ages of these regions to define their evolutionary origins on the phylogenetic tree. In all the three species, we found that genomic regions tend to become accessible in an order that parallels their phylogenetic history, with evolutionarily newer gene regulations activated at later developmental stages. This tendency was restricted only after the mid-embryonic, phylotypic periods. Our results imply a phylogenetic hierarchy of putative regulatory regions, in which their activation parallels the phylogenetic order of their appearance. One evolutionary mechanism that may explain this phenomenon is that newly introduced regulatory elements are more likely to survive if activated at later stages of embryogenesis. Possible relationships between this phenomenon and the so-called recapitulation are discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Yang D, Xu A, Shen P, Gao C, Zang J, Qiu C, Ouyang H, Jiang Y, He F. A two-level model for the role of complex and young genes in the formation of organism complexity and new insights into the relationship between evolution and development. EvoDevo 2018; 9:22. [PMID: 30455862 PMCID: PMC6231269 DOI: 10.1186/s13227-018-0111-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/25/2018] [Indexed: 11/14/2022] Open
Abstract
Background How genome complexity affects organismal phenotypic complexity is a fundamental question in evolutionary developmental biology. Previous studies proposed various contributing factors of genome complexity and tried to find the connection between genomic complexity and organism complexity. However, a general model to answer this question is lacking. Here, we introduce a ‘two-level’ model for the realization of genome complexity at phenotypic level. Results Five representative species across Protostomia and Deuterostomia were involved in this study. The intrinsic gene properties contributing to genome complexity were classified into two generalized groups: the complexity and age degree of both protein-coding and noncoding genes. We found that young genes tend to be simpler; however, the mid-age genes, rather than the oldest genes, show the highest proportion of high complexity. Complex genes tend to be utilized preferentially in each stage of embryonic development, with maximum representation during the late stage of organogenesis. This trend is mainly attributed to mid-age complex genes. In contrast, young genes tend to be expressed in specific spatiotemporal states. An obvious correlation between the time point of the change in over- and under-representation and the order of gene age was observed, which supports the funnel-like model of the conservation pattern of development. In addition, we found some probable causes for the seemingly contradictory ‘funnel-like’ or ‘hourglass’ model. Conclusions These results indicate that complex and young genes contribute to organismal complexity at two different levels: Complex genes contribute to the complexity of individual proteomes in certain states, whereas young genes contribute to the diversity of proteomes in different spatiotemporal states. This conclusion is valid across the five species investigated, indicating it is a conserved model across Protostomia and Deuterostomia. The results in this study also support ‘funnel-like model’ from a new viewpoint and explain why there are different evo–devo relation models. Electronic supplementary material The online version of this article (10.1186/s13227-018-0111-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Jiayin Zang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Chen Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Hongsheng Ouyang
- 2Animal Sciences College of Jilin University, Changchun, 130062 The People's Republic of China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 The People's Republic of China
| |
Collapse
|
40
|
Attardi A, Fulton T, Florescu M, Shah G, Muresan L, Lenz MO, Lancaster C, Huisken J, van Oudenaarden A, Steventon B. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 2018; 145:dev166728. [PMID: 30333213 PMCID: PMC6240315 DOI: 10.1242/dev.166728] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
During gastrulation, embryonic cells become specified into distinct germ layers. In mouse, this continues throughout somitogenesis from a population of bipotent stem cells called neuromesodermal progenitors (NMps). However, the degree of self-renewal associated with NMps in the fast-developing zebrafish embryo is unclear. Using a genetic clone-tracing method, we labelled early embryonic progenitors and found a strong clonal similarity between spinal cord and mesoderm tissues. We followed individual cell lineages using light-sheet imaging, revealing a common neuromesodermal lineage contribution to a subset of spinal cord tissue across the anterior-posterior body axis. An initial population subdivides at mid-gastrula stages and is directly allocated to neural and mesodermal compartments during gastrulation. A second population in the tailbud undergoes delayed allocation to contribute to the neural and mesodermal compartment only at late somitogenesis. Cell tracking and retrospective cell fate assignment at late somitogenesis stages reveal these cells to be a collection of mono-fated progenitors. Our results suggest that NMps are a conserved population of bipotential progenitors, the lineage of which varies in a species-specific manner due to vastly different rates of differentiation and growth.
Collapse
Affiliation(s)
- Andrea Attardi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90133, Italy
| | - Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- European Molecular Biology Laboratory, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, Cambridge CB2 3EH, UK
| | - Martin O Lenz
- Cambridge Advanced Imaging Centre, Cambridge CB2 3EH, UK
| | | | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | | |
Collapse
|
41
|
Liu J, Robinson-Rechavi M. Developmental Constraints on Genome Evolution in Four Bilaterian Model Species. Genome Biol Evol 2018; 10:2266-2277. [PMID: 30137380 PMCID: PMC6130771 DOI: 10.1093/gbe/evy177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Developmental constraints on genome evolution have been suggested to follow either an early conservation model or an "hourglass" model. Both models agree that late development strongly diverges between species, but debate on which developmental period is the most conserved. Here, based on a modified "Transcriptome Age Index" approach, that is, weighting trait measures by expression level, we analyzed the constraints acting on three evolutionary traits of protein coding genes (strength of purifying selection on protein sequences, phyletic age, and duplicability) in four species: Nematode worm Caenorhabditis elegans, fly Drosophila melanogaster, zebrafish Danio rerio, and mouse Mus musculus. In general, we found that both models can be supported by different genomic properties. Sequence evolution follows an hourglass model, but the evolution of phyletic age and of duplicability follow an early conservation model. Further analyses indicate that stronger purifying selection on sequences in the middle development are driven by temporal pleiotropy of these genes. In addition, we report evidence that expression in late development is enriched with retrogenes, which usually lack efficient regulatory elements. This implies that expression in late development could facilitate transcription of new genes, and provide opportunities for acquisition of function. Finally, in C. elegans, we suggest that dosage imbalance could be one of the main factors that cause depleted expression of high duplicability genes in early development.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
42
|
Anthwal N, Urban DJ, Luo ZX, Sears KE, Tucker AS. Meckel's cartilage breakdown offers clues to mammalian middle ear evolution. Nat Ecol Evol 2017; 1:93. [PMID: 28459103 DOI: 10.1038/s41559-017-0093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key transformation in mammalian ear evolution was incorporation of the primary jaw joint of premammalian synapsids into the definitive mammalian middle ear of living mammals. This evolutionary transition occurred in two-steps, starting with a partial or "transitional" mammalian middle ear in which the ectotympanic and malleus were still connected to the mandible by an ossified Meckel's Cartilage (MC), as observed in many Mesozoic mammals. This was followed by MC breakdown, freeing the ectotympanic and the malleus from the mandible and creating the definitive mammalian middle ear. Here we report novel findings on the role of chondroclasts in MC breakdown, shedding light on how therian mammals lost MC connecting the ear to the jaw. Genetic or pharmacological loss of clast cells in mice and opossums leads to persistence of embryonic MC beyond juvenile stages, with MC ossification in mutant mice. The persistent MC causes a distinctive postnatal groove on the mouse dentary. This morphology phenocopies the ossified MC and Meckelian groove observed in Mesozoic mammals. Clast cell recruitment to MC is not observed in reptiles, where MC persists as a cartilaginous structure. We hypothesize that ossification of MC is an ancestral feature of mammaliaforms, and that a shift in the timing of clast cell recruitment to MC prior to its ossification is a key developmental mechanism for the evolution of the definitive mammalian middle ear in extant therians.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Daniel J Urban
- School of Integrative Biology, 505 S Goodwin Avenue, University of Illinois, Urbana IL USA
| | - Zhe Xi Luo
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago IL USA
| | - Karen E Sears
- School of Integrative Biology, 505 S Goodwin Avenue, University of Illinois, Urbana IL USA.,Carl Woese Institute for Genomic Biology, 1206 W Gregory Drive, University of Illinois, Urbana IL USA
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| |
Collapse
|
43
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
44
|
Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, Senderovich N, Kovalev E, Silver DH, Feder M, Fernandez-Valverde SL, Nakanishi N, Simmons D, Simakov O, Larsson T, Liu SY, Jerafi-Vider A, Yaniv K, Ryan JF, Martindale MQ, Rink JC, Arendt D, Degnan SM, Degnan BM, Hashimshony T, Yanai I. The mid-developmental transition and the evolution of animal body plans. Nature 2016; 531:637-641. [PMID: 26886793 PMCID: PMC4817236 DOI: 10.1038/nature16994] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.
Collapse
Affiliation(s)
- Michal Levin
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Leon Anavy
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Alison G Cole
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Eitan Winter
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Natalia Mostov
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Sally Khair
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Naftalie Senderovich
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Ekaterina Kovalev
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - David H Silver
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Martin Feder
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | | | - Nagayasu Nakanishi
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St Augustine, Florida 32080-8610 USA
| | - Oleg Simakov
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tomas Larsson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shang-Yun Liu
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ayelet Jerafi-Vider
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St Augustine, Florida 32080-8610 USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd, St Augustine, Florida 32080-8610 USA
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sandie M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Tamar Hashimshony
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| | - Itai Yanai
- Department of Biology, Technion - Israel Institute of Technion, Haifa 32000, Israel
| |
Collapse
|
45
|
Sharma PP, Clouse RM, Wheeler WC. Hennig's semaphoront concept and the use of ontogenetic stages in phylogenetic reconstruction. Cladistics 2016; 33:93-108. [DOI: 10.1111/cla.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Prashant P. Sharma
- Department of Zoology; University of Wisconsin-Madison; 430 Lincoln Drive Madison WI USA
| | - Ronald M. Clouse
- Division of Invertebrate Zoology; American Museum of Natural History; Central Park West at 79th Street New York NY USA
| | - Ward C. Wheeler
- Department of Zoology; University of Wisconsin-Madison; 430 Lincoln Drive Madison WI USA
| |
Collapse
|
46
|
Koziol U, Jarero F, Olson PD, Brehm K. Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biol 2016; 14:10. [PMID: 26941070 PMCID: PMC4778295 DOI: 10.1186/s12915-016-0233-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
Background Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. Results By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. Conclusions The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Uriel Koziol
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. .,University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany.
| | - Francesca Jarero
- Department of Life Sciences, The Natural History Museum, London, UK.
| | - Peter D Olson
- Department of Life Sciences, The Natural History Museum, London, UK.
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Würzburg, Germany.
| |
Collapse
|
47
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
48
|
Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn 2015; 244:1357-74. [DOI: 10.1002/dvdy.24336] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | | | - Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC
| |
Collapse
|
49
|
Martinez-Morales JR. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief Funct Genomics 2015; 15:315-21. [PMID: 26293604 DOI: 10.1093/bfgp/elv032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan.
Collapse
|
50
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|