1
|
Tanaka T, Chung HL. Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 2025; 20:21-28. [PMID: 38767473 PMCID: PMC11246155 DOI: 10.4103/nrr.nrr-d-23-01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare neurological diseases, while individually are rare, collectively impact millions globally, leading to diverse and often severe neurological symptoms. Often attributed to genetic mutations that disrupt protein function or structure, understanding their genetic basis is crucial for accurate diagnosis and targeted therapies. To investigate the underlying pathogenesis of these conditions, researchers often use non-mammalian model organisms, such as Drosophila (fruit flies), which is valued for their genetic manipulability, cost-efficiency, and preservation of genes and biological functions across evolutionary time. Genetic tools available in Drosophila, including CRISPR-Cas9, offer a means to manipulate gene expression, allowing for a deep exploration of the genetic underpinnings of rare neurological diseases. Drosophila boasts a versatile genetic toolkit, rapid generation turnover, and ease of large-scale experimentation, making it an invaluable resource for identifying potential drug candidates. Researchers can expose flies carrying disease-associated mutations to various compounds, rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and, ultimately, clinical trials. In this comprehensive review, we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis, pathophysiology, and potential therapeutic implications. We discuss rare diseases associated with both neuron-expressed and glial-expressed genes. Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay, mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay, and mutations in IRF2BPL causing seizures, a neurodevelopmental disorder with regression, loss of speech, and abnormal movements. And we explore mutations in EMC1 related to cerebellar atrophy, visual impairment, psychomotor retardation, and gain-of-function mutations in ACOX1 causing Mitchell syndrome. Loss-of-function mutations in ACOX1 result in ACOX1 deficiency, characterized by very-long-chain fatty acid accumulation and glial degeneration. Notably, this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology, offering a platform for the rapid identification of potential therapeutic interventions. Rare neurological diseases involve a wide range of expression systems, and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia. Furthermore, mutations within the same gene may result in varying functional outcomes, such as complete loss of function, partial loss of function, or gain-of-function mutations. The phenotypes observed in patients can differ significantly, underscoring the complexity of these conditions. In conclusion, Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases. By facilitating the modeling of these conditions, Drosophila contributes to a deeper understanding of their genetic basis, pathophysiology, and potential therapies. This approach accelerates the discovery of promising drug candidates, ultimately benefiting patients affected by these complex and understudied diseases.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Ray J, Banerjee D, Wang Q, Girirajan S. Flynotyper 2.0: An updated tool for rapid quantitative assessment of Drosophila eye phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588481. [PMID: 39185196 PMCID: PMC11343096 DOI: 10.1101/2024.04.07.588481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
About two-thirds of the genes in the Drosophila melanogaster genome are also involved in its eye development, making the Drosophila eye an ideal system for genetic studies. We previously developed Flynotyper, a software that uses image processing operations to identify and quantify the degree of roughness by measuring disorderliness of ommatidial arrangement in the fly eye. This software has enabled researchers to quantify morphological defects of thousands of eye images caused by genetic perturbations. Here, we present Flynotyper 2.0, a software that has an updated computer vision library, improved performance, and a streamlined pipeline for high-throughput analysis of multiple eye images. We also tested several batches of Drosophila eye images to ensure robustness and reproducibility of the updated Flynotyper 2.0 software. Availability and implementation The source code for Flynotyper 2.0 can be downloaded and installed from https://github.com/girirajanlab/flynotyper-desktop-application.
Collapse
Affiliation(s)
- Johnathan Ray
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
| | - Qingyu Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
- Department of Anthropology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
3
|
Adedayo BC, Akinniyi ST, Ogunsuyi OB, Oboh G. In the quest for the ideal sweetener: Aspartame exacerbates selected biomarkers in the fruit fly ( Drosophila melanogaster) model of Alzheimer's disease more than sucrose. AGING BRAIN 2023; 4:100090. [PMID: 37559954 PMCID: PMC10407236 DOI: 10.1016/j.nbas.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
This study evaluated the effect of dietary inclusions of aspartame and sucrose on some selected behavioral and biochemical indices linked with Alzheimer's disease in a transgenic fruit fly (Drosophila melanogaster) model expressing human amyloid precursor protein and secretase. Flies were raised on a diet supplemented with sucrose and aspartame for 14 days. Thereafter, the flies were assessed for their survival rate, learning and memory, as well as locomotor performance, 14 days post-treatment. This was followed by homogenising the fly heads, and the homogenates were assayed for acetylcholinesterase and monoamine oxidase activities, as well as levels of lipid peroxidation, reactive oxygen species, and total thiol. The results showed aspartame at all levels of dietary intake and a high proportion of sucrose significantly aggravated the mortality rate, locomotor deficiency, and impaired biomarkers of oxidative stress and antioxidant status in the transgenic flies, while no significant effect was found on acetylcholinesterase activity or memory function. These findings therefore suggest that while low dietary inclusions of sucrose are tolerable under AD-like phenotypes in the flies, high inclusions of sucrose and all proportions of aspartame tested aggravated mortality rate, locomotion and oxidative stress in the flies.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Stephanie Tolulope Akinniyi
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Department of Biomedical Technology, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| | - Ganiyu Oboh
- Biochemistry Department, The Federal University of Technology, Akure P.M.B. 704, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure P.M.B. 704, Nigeria
| |
Collapse
|
4
|
Zarubin M, Azorskaya T, Kuldoshina O, Alekseev S, Mitrofanov S, Kravchenko E. The tardigrade Dsup protein enhances radioresistance in Drosophila melanogaster and acts as an unspecific repressor of transcription. iScience 2023; 26:106998. [PMID: 37534176 PMCID: PMC10391675 DOI: 10.1016/j.isci.2023.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/13/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
The tardigrade-unique damage suppressor protein (Dsup) can protect DNA from ionizing radiation and reactive oxygen species (ROS). In this study, we generated Dsup-expressing lines of Drosophila melanogaster and demonstrated that Dsup increased the survival rate after γ-ray irradiation and hydrogen peroxide treatment in flies too, but reduced the level of their locomotor activity. The transcriptome analyses of Dsup-expressing lines revealed a significant number of DEGs, >99% of which were down-regulated. Moreover, Dsup could bind RNA. These findings suggest that Dsup can act not only as a DNA protector but also as a non-specific transcriptional repressor and RNA-binding protein, that may lead to disturbance of a number of biological processes in D. melanogaster. The obtained data demonstrate features of the Dsup protein action in non-tardigrade organisms and can be used to understand the impact of other unspecific DNA/RNA-binding proteins on ROS and radiation resistance, gene expression, and epigenetic processes.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Talyana Azorskaya
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Olga Kuldoshina
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Sergey Alekseev
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Semen Mitrofanov
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research, Dubna 141980, Russia
| |
Collapse
|
5
|
Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG. A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. Exp Biol Med (Maywood) 2023; 248:545-552. [PMID: 37208922 PMCID: PMC10350799 DOI: 10.1177/15353702231165025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
One of the unsolved mysteries of medicine is how do volatile anesthetics (VAs) cause a patient to reversibly lose consciousness. In addition, identifying mechanisms for the collateral effects of VAs, including anesthetic-induced neurotoxicity (AiN) and anesthetic preconditioning (AP), has proven challenging. Multiple classes of molecules (lipids, proteins, and water) have been considered as potential VA targets, but recently proteins have received the most attention. Studies targeting neuronal receptors or ion channels had limited success in identifying the critical targets of VAs mediating either the phenotype of "anesthesia" or their collateral effects. Recent studies in both nematodes and fruit flies may provide a paradigm shift by suggesting that mitochondria may harbor the upstream molecular switch activating both primary and collateral effects. The disruption of a specific step of electron transfer within the mitochondrion causes hypersensitivity to VAs, from nematodes to Drosophila and to humans, while also modulating the sensitivity to collateral effects. The downstream effects from mitochondrial inhibition are potentially legion, but inhibition of presynaptic neurotransmitter cycling appears to be specifically sensitive to the mitochondrial effects. These findings are perhaps of even broader interest since two recent reports indicate that mitochondrial damage may well underlie neurotoxic and neuroprotective effects of VAs in the central nervous system (CNS). It is, therefore, important to understand how anesthetics interact with mitochondria to affect CNS function, not just for the desired facets of general anesthesia but also for significant collateral effects, both harmful and beneficial. A tantalizing possibility exists that both the primary (anesthesia) and secondary (AiN, AP) mechanisms may at least partially overlap in the mitochondrial electron transport chain (ETC).
Collapse
Affiliation(s)
- Misha Perouansky
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Laboratory of Genetics, School of Medicine and Public Health and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dena Johnson-Schlitz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
6
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
7
|
Palumbo RJ, Belkevich AE, Pascual HG, Knutson BA. A clinically-relevant residue of POLR1D is required for Drosophila development. Dev Dyn 2022; 251:1780-1797. [PMID: 35656583 PMCID: PMC10723622 DOI: 10.1002/dvdy.505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND POLR1D is a subunit of RNA Polymerases I and III, which synthesize ribosomal RNAs. Dysregulation of these polymerases cause several types of diseases, including ribosomopathies. The craniofacial disorder Treacher Collins Syndrome (TCS) is a ribosomopathy caused by mutations in several subunits of RNA Polymerase I, including POLR1D. Here, we characterized the effect of a missense mutation in POLR1D and RNAi knockdown of POLR1D on Drosophila development. RESULTS We found that a missense mutation in Drosophila POLR1D (G30R) reduced larval rRNA levels, slowed larval growth, and arrested larval development. Remarkably, the G30R substitution is at an orthologous glycine in POLR1D that is mutated in a TCS patient (G52E). We showed that the G52E mutation in human POLR1D, and the comparable substitution (G30E) in Drosophila POLR1D, reduced their ability to heterodimerize with POLR1C in vitro. We also found that POLR1D is required early in the development of Drosophila neural cells. Furthermore, an RNAi screen revealed that POLR1D is also required for development of non-neural Drosophila cells, suggesting the possibility of defects in other cell types. CONCLUSIONS These results establish a role for POLR1D in Drosophila development, and present Drosophila as an attractive model to evaluate the molecular defects of TCS mutations in POLR1D.
Collapse
Affiliation(s)
- Ryan J Palumbo
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alana E Belkevich
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Haleigh G Pascual
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
9
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
10
|
Siddique YH, Rahul, Ara G, Afzal M, Varshney H, Gaur K, Subhan I, Mantasha I, Shahid M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2022; 366:110120. [PMID: 36027948 DOI: 10.1016/j.cbi.2022.110120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The available drugs improve the symptoms but do not play role in modifying disease effects. Currently, the treatment strategies focus on inhibiting the production of Aβ-42 aggregates and tau filaments. In this context the natural plant products could act as a potent candidate. Therefore, we decided to study the effect of apigenin on the transgenic Drosophila model of AD i.e., expressing Aβ-42 in the neurons. The AD flies were allowed to feed on the diet having 25, 50, 75 and 100μM of apigenin for 30 days. The exposure of AD flies to apigenin showed a dose dependent significant decrease in the oxidative stress and delay in the loss of climbing ability. Apigenin also inhibits the activity of acetylcholinesterase. The immunostaining and molecular docking studies suggest that apigenin inhibits the formation of Aβ-42 aggregates. Apigenin is potent in reducing the AD symptoms being mimicked in the transgenic Drosophila model of AD.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gulshan Ara
- Women's College, Zoology Section, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Kajal Gaur
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Iqra Subhan
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - I Mantasha
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - M Shahid
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
11
|
Johnson-Schlitz D, Fischer JA, Schiffman HJ, Scharenbrock AR, Olufs ZPG, Wassarman DA, Perouansky M. Anesthetic Preconditioning of Traumatic Brain Injury Is Ineffective in a Drosophila Model of Obesity. J Pharmacol Exp Ther 2022; 381:229-235. [PMID: 35347062 PMCID: PMC9190232 DOI: 10.1124/jpet.121.000997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/21/2022] [Indexed: 07/09/2024] Open
Abstract
We tested the hypothesis that obesity influences the pharmacodynamics of volatile general anesthetics (VGAs) by comparing effects of anesthetic exposure on mortality from traumatic brain injury (TBI) in lean and obese Drosophila melanogaster We induced TBI with a high-impact trauma device. Starvation-selection over multiple generations resulted in an obese phenotype (SS flies). Fed flies served as lean controls (FC flies). Adult (1-8-day-old) SS and FC flies were exposed to equianesthetic doses of isoflurane or sevoflurane either before or after TBI. The principal outcome was percent mortality 24 hours after injury, expressed as the Mortality Index at 24 hours (MI24). TBI resulted in a lower MI24 in FC than in SS flies [21 (2.35) and 57.8 (2.14), respectively n = 12, P = 0.0001]. Pre-exposure to isoflurane or sevoflurane preconditioned FC flies to TBI, reducing the risk of death to 0.53 (0.25 to 1.13) and 0.82 (0.43 to 1.58), respectively, but had no preconditioning effect in SS flies. Postexposure to isoflurane or sevoflurane increased the risk of death in SS flies, but only postexposure to isoflurane increased the risk in FC flies [1.39 (0.81 to 2.38)]. Thus, obesity affects the pharmacodynamics of VGAs, thwarting the preconditioning effect of isoflurane and sevoflurane in TBI. SIGNIFICANCE STATEMENT: Inadvertent preconditioning in models of traumatic brain injury (TBI) is a recognized confounder. The findings in a fruit fly (Drosophila melanogaster) model of closed-head TBI indicate that anesthetic pharmacodynamics are profoundly affected by obesity. Specifically, obesity thwarts the brain-protective effect of anesthetic preconditioning. This finding is important for experimental studies of TBI and supports the versatility of the fruit fly as a model for the exploration of anesthetic pharmacodynamics in a wide parameter space.
Collapse
Affiliation(s)
- Dena Johnson-Schlitz
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Julie A Fischer
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Hannah J Schiffman
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Amanda R Scharenbrock
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Zachariah P G Olufs
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - David A Wassarman
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Misha Perouansky
- Department of Anesthesiology (D.J.-S., J.A.F., H.J.S., A.R.S., Z.P.G.O., M.P.) and Department of Medical Genetics (D.A.W.), University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
12
|
Palu RAS, Owings KG, Garces JG, Nicol A. A natural genetic variation screen identifies insulin signaling, neuronal communication, and innate immunity as modifiers of hyperglycemia in the absence of Sirt1. G3 (BETHESDA, MD.) 2022; 12:jkac090. [PMID: 35435227 PMCID: PMC9157059 DOI: 10.1093/g3journal/jkac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
Variation in the onset, progression, and severity of symptoms associated with metabolic disorders such as diabetes impairs the diagnosis and treatment of at-risk patients. Diabetes symptoms, and patient variation in these symptoms, are attributed to a combination of genetic and environmental factors, but identifying the genes and pathways that modify diabetes in humans has proven difficult. A greater understanding of genetic modifiers and the ways in which they interact with metabolic pathways could improve the ability to predict a patient's risk for severe symptoms, as well as enhance the development of individualized therapeutic approaches. In this study, we use the Drosophila Genetic Reference Panel to identify genetic variation influencing hyperglycemia associated with loss of Sirt1 function. Through analysis of individual candidate functions, physical interaction networks, and gene set enrichment analysis, we identify not only modifiers involved in canonical glucose metabolism and insulin signaling, but also genes important for neuronal signaling and the innate immune response. Furthermore, reducing the expression of several of these candidates suppressed hyperglycemia, making them potential candidate therapeutic targets. These analyses showcase the diverse processes contributing to glucose homeostasis and open up several avenues of future investigation.
Collapse
Affiliation(s)
- Rebecca A S Palu
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John G Garces
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| | - Audrey Nicol
- Department of Biological Sciences, Purdue University-Fort Wayne, Fort Wayne, IN 46818, USA
| |
Collapse
|
13
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
14
|
Spierer AN, Yoon D, Zhu CT, Rand DM. FreeClimber: automated quantification of climbing performance in Drosophila. J Exp Biol 2021; 224:jeb229377. [PMID: 33188065 PMCID: PMC7823161 DOI: 10.1242/jeb.229377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Negative geotaxis (climbing) performance is a useful metric for quantifying Drosophila health. Manual methods to quantify climbing performance are tedious and often biased, while many available computational methods have challenging hardware or software requirements. We present an alternative: FreeClimber. This open source, Python-based platform subtracts a video's static background to improve detection for flies moving across heterogeneous backgrounds. FreeClimber calculates a cohort's velocity as the slope of the most linear portion of a mean vertical position versus time curve. It can run from a graphical user interface for optimization or a command line interface for high-throughput and automated batch processing, improving accessibility for users with different expertise. FreeClimber outputs calculated slopes, spot locations for follow-up analyses (e.g. tracking), and several visualizations and plots. We demonstrate FreeClimber's utility in a longitudinal study for endurance exercise performance in Drosophila mitonuclear genotypes using six distinct mitochondrial haplotypes paired with a common D. melanogaster nuclear background.
Collapse
Affiliation(s)
- Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Denise Yoon
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chen-Tseh Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- Global Plant Breeding, Bayer Crop Science, Chesterfield, MO 63017, USA
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
16
|
Link N, Bellen HJ. Using Drosophila to drive the diagnosis and understand the mechanisms of rare human diseases. Development 2020; 147:dev191411. [PMID: 32988995 PMCID: PMC7541339 DOI: 10.1242/dev.191411] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has greatly accelerated the discovery of rare human genetic diseases. Nearly 45% of patients have variants associated with known diseases but the unsolved cases remain a conundrum. Moreover, causative mutations can be difficult to pinpoint because variants frequently map to genes with no previous disease associations and, often, only one or a few patients with variants in the same gene are identified. Model organisms, such as Drosophila, can help to identify and characterize these new disease-causing genes. Importantly, Drosophila allow quick and sophisticated genetic manipulations, permit functional testing of human variants, enable the characterization of pathogenic mechanisms and are amenable to drug tests. In this Spotlight, focusing on microcephaly as a case study, we highlight how studies of human genes in Drosophila have aided our understanding of human genetic disorders, allowing the identification of new genes in well-established signaling pathways.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| |
Collapse
|
17
|
Shimizu J, Kasai T, Yoshida H, Huynh AM, Nakao-Azuma Y, Shinomoto M, Tokuda T, Mizuno T, Yamaguchi M. Novel Drosophila model for parkinsonism by targeting phosphoglycerate kinase. Neurochem Int 2020; 139:104816. [PMID: 32758590 DOI: 10.1016/j.neuint.2020.104816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Patients with Parkinson's disease (PD) show a common progressive neurodegenerative movement disorder characterized by rigidity, tremors, postural instability, and bradykinesia due to the loss of dopaminergic neurons in the substantia nigra, and is often accompanied by several non-motor symptoms, called parkinsonism. Several lines of recent evidence support the hypothesis that mutations in the gene encoding phosphoglycerate kinase (PGK) play an important role in the PD mechanism. PGK is a key enzyme in the glycolytic pathway that catalyzes the reaction from 1,3-diphosphoglycerate to 3-phosphoglycerate. We herein established a parkinsonism model targeting Drosophila Pgk. Dopaminergic (DA) neuron-specific Pgk knockdown lead to locomotive defects in both young and aged adult flies and was accompanied by progressive DA neuron loss with aging. Pgk knockdown in DA neurons decreased dopamine levels in the central nervous system (CNS) of both young and aged adult flies. These phenotypes are similar to the defects observed in human PD patients, suggesting that the Pgk knockdown flies established herein are a promising model for parkinsonism. Furthermore, pan-neuron-specific Pgk knockdown induced low ATP levels and the accumulation of reactive oxygen species (ROS) in the CNS of third instar larvae. Collectively, these results indicate that a failure in the energy production system of Pgk knockdown flies causes locomotive defects accompanied by neuronal dysfunction and degeneration in DA neurons.
Collapse
Affiliation(s)
- Joe Shimizu
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan.
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Anh M Huynh
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yumiko Nakao-Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makiko Shinomoto
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan; Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
18
|
Dutta D, Briere LC, Kanca O, Marcogliese PC, Walker MA, High FA, Vanderver A, Krier J, Carmichael N, Callahan C, Taft RJ, Simons C, Helman G, Network UD, Wangler MF, Yamamoto S, Sweetser DA, Bellen HJ. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum Mol Genet 2020; 29:1568-1579. [PMID: 32356556 PMCID: PMC7268787 DOI: 10.1093/hmg/ddaa081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lauren C Briere
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frances A High
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel Krier
- Brigham Genomic Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nikkola Carmichael
- Brigham Genomic Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Christine Callahan
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Sweetser
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Ali MS, Suda K, Kowada R, Ueoka I, Yoshida H, Yamaguchi M. Neuron-specific knockdown of solute carrier protein SLC25A46a induces locomotive defects, an abnormal neuron terminal morphology, learning disability, and shortened lifespan. IBRO Rep 2020; 8:65-75. [PMID: 32140609 PMCID: PMC7047145 DOI: 10.1016/j.ibror.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/21/2023] Open
Abstract
Various mutations in the SLC25A46 gene have been reported in mitochondrial diseases that are sometimes classified as type 2 Charcot-Marie-Tooth disease, optic atrophy, and Leigh syndrome. Although human SLC25A46 is a well-known transporter that acts through the mitochondrial outer membrane, the relationship between neurodegeneration in these diseases and the loss-of-function of SLC25A46 remains unclear. Two Drosophila genes, CG8931 (dSLC25A46a) and CG5755 (dSLC25A46b) have been identified as candidate homologs of human SLC25A46. We previously characterized the phenotypes of pan-neuron-specific dSLC25A46b knockdown flies. In the present study, we developed pan-neuron-specific dSLC25A46a knockdown flies and examined their phenotypes. Neuron-specific dSLC25A46a knockdown resulted in reduced mobility in larvae as well as adults. An aberrant morphology for neuromuscular junctions (NMJs), such as a reduced synaptic branch length and decreased number and size of boutons, was observed in dSLC25A46a knockdown flies. Learning ability was also reduced in the larvae of knockdown flies. In dSLC25A46a knockdown flies, mitochondrial hyperfusion was detected in NMJ synapses together with the accumulation of reactive oxygen species and reductions in ATP. These phenotypes were very similar to those of dSLC25A46b knockdown flies, suggesting that dSLC25A46a and dSLC25A46b do not have redundant roles in neurons. Collectively, these results show that the depletion of SLC25A46a leads to mitochondrial defects followed by an aberrant synaptic morphology, resulting in locomotive defects and learning disability. Thus, the dSLC25A46a knockdown fly summarizes most of the phenotypes in patients with mitochondrial diseases, offering a useful tool for studying these diseases.
Collapse
Affiliation(s)
- Md Saheb Ali
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Faculty of Agriculture, Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka, 1207, Bangladesh
| | - Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryosuke Kowada
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ibuki Ueoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
20
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
21
|
Palu RAS, Ong E, Stevens K, Chung S, Owings KG, Goodman AG, Chow CY. Natural Genetic Variation Screen in Drosophila Identifies Wnt Signaling, Mitochondrial Metabolism, and Redox Homeostasis Genes as Modifiers of Apoptosis. G3 (BETHESDA, MD.) 2019; 9:3995-4005. [PMID: 31570502 PMCID: PMC6893197 DOI: 10.1534/g3.119.400722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
Apoptosis is the primary cause of degeneration in a number of neuronal, muscular, and metabolic disorders. These diseases are subject to a great deal of phenotypic heterogeneity in patient populations, primarily due to differences in genetic variation between individuals. This creates a barrier to effective diagnosis and treatment. Understanding how genetic variation influences apoptosis could lead to the development of new therapeutics and better personalized treatment approaches. In this study, we examine the impact of the natural genetic variation in the Drosophila Genetic Reference Panel (DGRP) on two models of apoptosis-induced retinal degeneration: overexpression of p53 or reaper (rpr). We identify a number of known apoptotic, neural, and developmental genes as candidate modifiers of degeneration. We also use Gene Set Enrichment Analysis (GSEA) to identify pathways that harbor genetic variation that impact these apoptosis models, including Wnt signaling, mitochondrial metabolism, and redox homeostasis. Finally, we demonstrate that many of these candidates have a functional effect on apoptosis and degeneration. These studies provide a number of avenues for modifying genes and pathways of apoptosis-related disease.
Collapse
Affiliation(s)
- Rebecca A S Palu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Elaine Ong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Kaitlyn Stevens
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Shani Chung
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alan G Goodman
- School of Molecular Biosciences, and
- Paul G. Allen School for Global Animal Health, Washington State University College of Veterinary Medicine, Pullman, WA 99164
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112,
| |
Collapse
|
22
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
23
|
Bellosta P, Soldano A. Dissecting the Genetics of Autism Spectrum Disorders: A Drosophila Perspective. Front Physiol 2019; 10:987. [PMID: 31481894 PMCID: PMC6709880 DOI: 10.3389/fphys.2019.00987] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex group of multi-factorial developmental disorders that leads to communication and behavioral defects. Genetic alterations have been identified in around 20% of ASD patients and the use of genetic models, such as Drosophila melanogaster, has been of paramount importance in deciphering the significance of these alterations. In fact, many of the ASD associated genes, such as FMR1, Neurexin, Neuroligins and SHANK encode for proteins that have conserved functions in neurons and during synapse development, both in humans and in the fruit fly. Drosophila is a prominent model in neuroscience due to the conserved genetic networks that control neurodevelopmental processes and to the ease of manipulating its genetics. In the present review we will describe recent advances in the field of ASD with a particular focus on the characterization of genes where the use of Drosophila has been fundamental to better understand their function.
Collapse
Affiliation(s)
- Paola Bellosta
- Laboratory of Metabolism of Cell Growth and Neuronal Survival, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy.,Department of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBio), University of Trento, Trento, Italy
| |
Collapse
|
24
|
Kanca O, Andrews JC, Lee PT, Patel C, Braddock SR, Slavotinek AM, Cohen JS, Gubbels CS, Aldinger KA, Williams J, Indaram M, Fatemi A, Yu TW, Agrawal PB, Vezina G, Simons C, Crawford J, Lau CC, Chung WK, Markello TC, Dobyns WB, Adams DR, Gahl WA, Wangler MF, Yamamoto S, Bellen HJ, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, Fogel BL, Forghani I, Fresard L, Gahl WA, Godfrey RA, Goldman AM, Goldstein DB, Gourdine JPF, Grajewski A, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Hayes N, High F, Holm IA, Hom J, Huang A, Huang Y, Isasi R, Jamal F, Jiang YH, Johnston JM, Jones AL, Karaviti L, Kelley EG, Kiley D, Koeller DM, Kohane IS, Kohler JN, Krakow D, Krasnewich DM, Korrick S, Koziura M, Krier JB, Kyle JE, Lalani SR, Lam B, Lanpher BC, Lanza IR, Lau CC, Lazar J, LeBlanc K, Lee BH, Lee H, Levitt R, Levy SE, Lewis RA, Lincoln SA, Liu P, Liu XZ, Longo N, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Mao R, Markello TC, Marom R, Marth G, Martin BA, Martin MG, Martínez-Agosto JA, Marwaha S, May T, McCauley J, McConkie-Rosell A, McCormack CE, McCray AT, Metz TO, Might M, Morava-Kozicz E, Moretti PM, Morimoto M, Mulvihill JJ, Murdock DR, Nath A, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Oglesbee D, Orengo JP, Pace L, Pak S, Pallais JC, Palmer CG, Papp JC, Parker NH, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Quinlan A, Raja AN, Renteria G, Reuter CM, Rives L, Robertson AK, Rodan LH, Rosenfeld JA, Rowley RK, Ruzhnikov M, Sacco R, Sampson JB, Samson SL, Saporta M, Schaechter J, Schedl T, Schoch K, Scott DA, Shakachite L, Sharma P, Shashi V, Shields K, Shin J, Signer R, Sillari CH, Silverman EK, Sinsheimer JS, Sisco K, Smith KS, Solnica-Krezel L, Spillmann RC, Stoler JM, Stong N, Sullivan JA, Sutton S, Sweetser DA, Tabor HK, Tamburro CP, Tan QKG, Tekin M, Telischi F, Thorson W, Tifft CJ, Toro C, Tran AA, Urv TK, Velinder M, Viskochil D, Vogel TP, Wahl CE, Walley NM, Walsh CA, Walker M, Wambach J, Wan J, Wang LK, Wangler MF, Ward PA, Waters KM, Webb-Robertson BJM, Wegner D, Westerfield M, Wheeler MT, Wise AL, Wolfe LA, Woods JD, Worthey EA, Yamamoto S, Yang J, Yoon AJ, Yu G, Zastrow DB, Zhao C, Zuchner S. De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. Am J Hum Genet 2019; 105:413-424. [PMID: 31327508 PMCID: PMC6699142 DOI: 10.1016/j.ajhg.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.
Collapse
|
25
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
26
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
27
|
Wang Y, Moussian B, Schaeffeler E, Schwab M, Nies AT. The fruit fly Drosophila melanogaster as an innovative preclinical ADME model for solute carrier membrane transporters, with consequences for pharmacology and drug therapy. Drug Discov Today 2018; 23:1746-1760. [PMID: 29890226 DOI: 10.1016/j.drudis.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/13/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Solute carrier membrane transporters (SLCs) control cell exposure to small-molecule drugs, thereby contributing to drug efficacy and failure and/or adverse effects. Moreover, SLCs are genetically linked to various diseases. Hence, in-depth knowledge of SLC function is fundamental for a better understanding of disease pathophysiology and the drug development process. Given that the model organism Drosophila melanogaster (fruit fly) expresses SLCs, such as for the excretion of endogenous and toxic compounds by the hindgut and Malpighian tubules, equivalent to human intestine and kidney, this system appears to be a promising preclinical model to use to study human SLCs. Here, we systematically compare current knowledge of SLCs in Drosophila and humans and describe the Drosophila model as an innovative tool for drug development.
Collapse
Affiliation(s)
- Yiwen Wang
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Animal Genetics, University of Tübingen, Germany
| | - Bernard Moussian
- Animal Genetics, University of Tübingen, Germany; Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France; Applied Zoology, TU Dresden, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany; Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Morciano P, Cipressa F, Porrazzo A, Esposito G, Tabocchini MA, Cenci G. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS). Radiat Res 2018; 190:217-225. [PMID: 29863430 DOI: 10.1667/rr15083.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.
Collapse
Affiliation(s)
- Patrizia Morciano
- a Dipartimento Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Rome, Italy
| | - Francesca Cipressa
- a Dipartimento Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Rome, Italy.,c Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Antonella Porrazzo
- a Dipartimento Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Rome, Italy
| | - Giuseppe Esposito
- b Istituto Superiore di Sanita (ISS) and Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, Rome, Italy
| | - Maria Antonella Tabocchini
- b Istituto Superiore di Sanita (ISS) and Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, Rome, Italy.,c Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Giovanni Cenci
- a Dipartimento Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Rome, Italy.,c Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| |
Collapse
|
29
|
O'Keefe L, Denton D. Using Drosophila Models of Amyloid Toxicity to Study Autophagy in the Pathogenesis of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5195416. [PMID: 29888266 PMCID: PMC5985114 DOI: 10.1155/2018/5195416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
Autophagy is a conserved catabolic pathway that involves the engulfment of cytoplasmic components such as large protein aggregates and organelles that are delivered to the lysosome for degradation. This process is important in maintaining neuronal function and raises the possibility of a role for autophagy in neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent form of these diseases and is characterized by the accumulation of amyloid plaques in the brain which arise due to the misfolding and aggregation of toxic peptides, including amyloid beta (Aβ). There is substantial evidence from both AD patients and animal models that autophagy is dysregulated in this disease. However, it remains to be determined whether this is protective or pathogenic as there is evidence that autophagy can act to promote the degradation as well as function in the generation of toxic Aβ peptides. Understanding the molecular details of the extensive crosstalk that occurs between the autophagic and endolysosomal cellular pathways is essential for identifying the molecular details of amyloid toxicity. Drosophila models that express the toxic proteins that aggregate in AD have been generated and have been shown to recapitulate hallmarks of the disease. Here we focus on what is known about the role of autophagy in amyloid toxicity in AD from mammalian models and how Drosophila models can be used to further investigate AD pathogenesis.
Collapse
Affiliation(s)
- Louise O'Keefe
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, P.O. Box 11060, Adelaide, SA 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| |
Collapse
|
30
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
31
|
Novel Drosophila model for mitochondrial diseases by targeting of a solute carrier protein SLC25A46. Brain Res 2018; 1689:30-44. [PMID: 29604258 DOI: 10.1016/j.brainres.2018.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/26/2023]
Abstract
Mutations in SLC25A46 gene have been identified in mitochondrial diseases that are sometimes classified as Charcot-Marie-Tooth disease type 2, optic atrophy and Leigh syndrome. Human SLC25A46 functions as a transporter across the outer mitochondrial membrane. However, it is still unknown how the neurodegeneration occurring in these diseases relates to the loss of SLC25A46 function. Drosophila has CG5755 (dSLC25A46) as a single human SLC25A46 homolog. Here we established pan-neuron specific dSLC25A46 knockdown flies, and examined their phenotypes. Neuron specific knockdown of dSLC25A46 resulted in an impaired motility in both larvae and adults. Defects at neuromuscular junctions (NMJs), such as reduced synaptic branch length, decreased number and size of bouton, reduced density and size of active zone were also observed with the dSLC25A46 knockdown flies. Mitochondrial hyperfusion in synapse at NMJ, accumulation of reactive oxygen species and reduction of ATP were also observed in the dSLC25A46 knockdown flies. These results indicate that depletion of SLC25A46 induces mitochondrial defects accompanied with aberrant morphology of motoneuron and reduction of active zone that results in defect in locomotive ability. In addition, it is known that SLC25A46 mutations in human cause optic atrophy and knockdown of dSLC25A46 induces aberrant morphology of optic stalk of photoreceptor neurons in third instar larvae. Morphology and development of optic stalk of photoreceptor neurons in Drosophila are precisely regulated via cell proliferation and migration. Immunocytochemical analyses of subcellular localization of dSLC25A46 revealed that dSLC25A46 localizes not only in mitochondria, but also in plasma membrane. These observations suggest that in addition to the role in mitochondrial function, plasma membrane-localized dSLC25A46 plays a role in cell proliferation and/or migration to control optic stalk formation. The dSLC25A46 knockdown fly thus recapitulates most of the phenotypes in mitochondrial disease patients, providing a useful tool to study these diseases.
Collapse
|
32
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
33
|
Ueoka I, Kawashima H, Konishi A, Aoki M, Tanaka R, Yoshida H, Maeda T, Ozaki M, Yamaguchi M. Novel Drosophila model for psychiatric disorders including autism spectrum disorder by targeting of ATP-binding cassette protein A. Exp Neurol 2017; 300:51-59. [PMID: 29092799 DOI: 10.1016/j.expneurol.2017.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by persistent deficits in social communication and social interactions, as well as restricted, stereotyped patterns of behavior and interests. In addition, alterations in circadian sleep-wake rhythm are common in young children with ASD. Mutations in ATP binding cassette subfamily A member 13 (ABCA13) have been recently identified in a monkey that displays behavior associated with ASD. ABCA13, a member of the ABCA family of proteins, is predicted to transport lipid molecules and is expressed in the human trachea, testis, bone marrow, hippocampus, cortex, and other tissues. However, its physiological function remains unknown. Drosophila CG1718 shows high homology to human ABCA genes including ABCA13 and is thus designated as Drosophila ABCA (dABCA). To elucidate the physiological role of dABCA, we specifically knocked down dABCA in all neurons of flies and investigated their phenotypes. The pan-neuron-specific knockdown of dABCA resulted in increased social space with the closest neighbor in adult male flies but exerted no effect on their climbing ability, indicating that the increase in social space is not due to a defect in their climbing ability. An activity assay with adult male flies revealed that knockdown of dABCA in all neurons induces early onset of evening activity in adult flies followed by relatively high activity during morning peaks, evening peaks, and midday siesta. These phenotypes are similar to defects observed in human ASD patients, suggesting that the established dABCA knockdown flies are a promising model for ASD. In addition, an increase in satellite boutons in presynaptic terminals of motor neurons was observed in dABCA knockdown third instar larvae, suggesting that dABCA regulates the formation and/or maintenance of presynaptic terminals of motor neurons.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hitoshi Kawashima
- Genomic Science Laboratories, Drug Research Division, Sumitomo Dainippon Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Atsushi Konishi
- Genomic Science Laboratories, Drug Research Division, Sumitomo Dainippon Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Mikio Aoki
- Genomic Science Laboratories, Drug Research Division, Sumitomo Dainippon Pharma Co. Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Toru Maeda
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|