1
|
Zhang Y, Tang X, Wang C, Wang M, Li M, Li X, Yao L, Xu Y. Zinc finger protein 593 promotes breast cancer development by ensuring DNA damage repair and cell-cycle progression. iScience 2024; 27:111513. [PMID: 39758980 PMCID: PMC11699609 DOI: 10.1016/j.isci.2024.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer, a common malignancy and top cause of female cancer deaths globally, urgently requires new biomarkers and insights into its progression and chemoresistance. In this study, we identify ZNF593, a member of the zinc finger protein family, as an understudied oncogene in breast cancer. ZNF593 is significantly upregulated in breast cancer tissues compared to adjacent normal tissues, which is linked to poor prognosis and advanced clinicopathological features. In vitro experiments demonstrate that ZNF593 enhances the proliferation and migration capabilities of breast cancer cells. Comprehensive analyses reveal that ZNF593 is associated with DNA damage repair, cell-cycle regulation, and immunity-related pathways. Mechanistically, ZNF593 protects DNA repair and influences sensitivity to the associated chemotherapy. Furthermore, ZNF593 modulates CCND1, CCNE1, and CCNA2, genes encoding cyclins that facilitate the G1/S transition, resulting in cell-cycle progression. Collectively, our findings identify ZNF593 as a potential therapeutic target for breast cancer, affecting progression and chemoresistance.
Collapse
Affiliation(s)
- Yingfan Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowen Tang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenxin Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Li
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Xiang Li
- Department of Ultrasound, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Yin M, Guan L, Zhang M, Li X, Qian P. ZFP36 Facilitates Senecavirus A (SVA) replication by inhibiting the production of type I interferon. Virus Res 2024; 350:199498. [PMID: 39547416 DOI: 10.1016/j.virusres.2024.199498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Zinc finger proteins (ZFPs) play an important role in the host-virus interplay. Zinc finger protein 36 is a member of the zinc finger protein 36 family, which includes two other paralogs, namely ZFP36L1 and ZFP36L2. Studies have demonstrated that ZFP36L1 acts as a host defender against influenza A virus and flaviviruses. However, the role of ZFP36 in host-virus interactions has not been thoroughly investigated. Here, we demonstrated that human zinc finger protein 36 (hZFP36) exhibited potent pro-viral activity during Senecavirus A infection. Overexpression of ZFP36 facilitated Senecavirus A infection, while hZFP36 knockdown inhibited viral replication. The ZF motifs of hZFP36 are key for promoting viral proliferation. hZFP36 stabilized Senecavirus A VP1 by binding to it. Furthermore, hZFP36 inhibited SeV-mediated IFN-β production through inducing caspase-dependent cleavage for MAVS. These findings provide insights into the mechanism of action of ZFP36 in host-virus interactions.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingyu Guan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Sayaman RW, Miyano M, Carlson EG, Senapati P, Zirbes A, Shalabi SF, Todhunter ME, Seewaldt VE, Neuhausen SL, Stampfer MR, Schones DE, LaBarge MA. Luminal epithelial cells integrate variable responses to aging into stereotypical changes that underlie breast cancer susceptibility. eLife 2024; 13:e95720. [PMID: 39545637 DOI: 10.7554/elife.95720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.
Collapse
Affiliation(s)
- Rosalyn W Sayaman
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Center for Cancer and Aging, Beckman Research Institute, Duarte, United States
- City of Hope, Cancer Metabolism Training Program, Beckman Research Institute, Duarte, United States
- Lawrence Berkeley National Lab, Biological Sciences and Engineering, Berkeley, United States
| | - Masaru Miyano
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Center for Cancer and Aging, Beckman Research Institute, Duarte, United States
| | - Eric G Carlson
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Irell and Manella Graduate School of Biological Sciences, Duarte, United States
| | - Parijat Senapati
- City of Hope, Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Arrianna Zirbes
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Irell and Manella Graduate School of Biological Sciences, Duarte, United States
| | - Sundus F Shalabi
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Irell and Manella Graduate School of Biological Sciences, Duarte, United States
| | - Michael E Todhunter
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Center for Cancer and Aging, Beckman Research Institute, Duarte, United States
| | - Victoria E Seewaldt
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
| | - Susan L Neuhausen
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
| | - Martha R Stampfer
- Lawrence Berkeley National Lab, Biological Sciences and Engineering, Berkeley, United States
| | - Dustin E Schones
- City of Hope, Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Mark A LaBarge
- City of Hope, Department of Population Sciences, Beckman Research Institute, Duarte, United States
- City of Hope, Center for Cancer and Aging, Beckman Research Institute, Duarte, United States
- Center for Cancer Biomarkers Research, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Azanjac N, Milisavljevic M, Stanovcic S, Kojic M. Suppressors of Blm-deficiency identify three novel proteins that facilitate DNA repair in Ustilago maydis. DNA Repair (Amst) 2024; 140:103709. [PMID: 38861762 DOI: 10.1016/j.dnarep.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
To identify new molecular components of the Brh2-governed homologous recombination (HR)-network in the highly radiation-resistant fungus Ustilago maydis, we undertook a genetic screen for suppressors of blm-KR hydroxyurea (HU)-sensitivity. Twenty DNA-damage sensitive mutants were obtained, three of which showing slow-growth phenotypes. Focusing on the "normally" growing candidates we identified five mutations, two in previously well-defined genes (Rec2 and Rad51) and the remaining three in completely uncharacterized genes (named Rec3, Bls9 and Zdr1). A common feature among these novel factors is their prominent role in DNA repair. Rec3 contains the P-loop NTPase domain which is most similar to that found in U. maydis Rec2 protein, and like Rec2, Rec3 plays critical roles in induced allelic recombination, is crucial for completion of meiosis, and with regard to DNA repair Δrec3 and Δrec2 are epistatic to one another. Importantly, overexpression of Brh2 in Δrec3 can effectively restore DNA-damage resistance, indicating a close functional connection between Brh2 and Rec3. The Bls9 does not seem to have any convincing domains that would give a clue as to its function. Nevertheless, we present evidence that, besides being involved in DNA-repair, Bls9 is also necessary for HR between chromosome homologs. Moreover, Δbls9 showed epistasis with Δbrh2 with respect to killing by DNA-damaging agents. Both, Rec3 and Bls9, play an important role in protecting the genome from mutations. Zdr1 is Cys2-His2 zinc finger (C2H2-ZF) protein, whose loss does not cause a detectable change in HR. Also, the functions of both Bls9 and Zdr1 genes are dispensable in meiosis and sporulation. However, Zdr1 appears to have overlapping activities with Blm and Mus81 in protecting the organism from methyl methanesulfonate- and diepoxybutane-induced DNA-damage. Finally, while deletion of Rec3 and Zdr1 can suppress HU-sensitivity of blm-KR, Δgen1, and Δmus81 mutants, interestingly loss of Bls9 does not rescue HU-sensitivity of Δgen1.
Collapse
Affiliation(s)
- Natalija Azanjac
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Mira Milisavljevic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Stefan Stanovcic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia
| | - Milorad Kojic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Republic of Serbia.
| |
Collapse
|
5
|
Kamaliyan Z, Clarke TL. Zinc finger proteins: guardians of genome stability. Front Cell Dev Biol 2024; 12:1448789. [PMID: 39119040 PMCID: PMC11306022 DOI: 10.3389/fcell.2024.1448789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Zinc finger proteins (ZNF), a unique yet diverse group of proteins, play pivotal roles in fundamental cellular mechanisms including transcription regulation, chromatin remodeling, protein/RNA homeostasis, and DNA repair. Consequently, the mis regulation of ZNF proteins can result in a variety of human diseases, ranging from neurodevelopmental disorders to several cancers. Considering the promising results of DNA damage repair (DDR) inhibition in the clinic, as a therapeutic strategy for patients with homologous recombination (HR) deficiency, identifying other potential targetable DDR proteins as emerged vulnerabilities in resistant tumor cells is essential, especially when considering the burden of acquired drug resistance. Importantly, there are a growing number of studies identifying new ZNFs and revealing their significance in several DDR pathways, highlighting their great potential as new targets for DDR-inhibition therapy. Although, there are still many uncharacterized ZNF-containing proteins with unknown biological function. In this review, we highlight the major classes and observed biological functions of ZNF proteins in mammalian cells. We briefly introduce well-known and newly discovered ZNFs and describe their molecular roles and contributions to human health and disease, especially cancer. Finally, we discuss the significance of ZNFs in DNA repair mechanisms, their potential in cancer therapy and advances in exploiting ZNF proteins as future therapeutic targets for human disease.
Collapse
Affiliation(s)
| | - Thomas L. Clarke
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Xie ZQ, Chen DF, He J, Zhong L, Luo G, Fang M. MiR-371-5p regulates trophoblast cell proliferation, migration, and invasion by directly targeting ZNF516. Aging (Albany NY) 2024; 16:8585-8598. [PMID: 38761180 PMCID: PMC11164490 DOI: 10.18632/aging.205826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/20/2024]
Abstract
Despite its prevalence, preeclampsia (PE) remains unclear as to its etiology. Here, we aimed to investigate the mechanisms regulating differences in the gene expression of zinc-finger protein 516 (ZNF516) in the placenta. The expression of the placental ZNF516 gene and its association with critical clinical markers were verified, and a rigorous correlation analysis was conducted. With a dual-luciferase reporter gene assay, microRNA targeting the ZNF516 gene was predicted and confirmed. Finally, the molecular processes associated with ZNF516 were explored via microarray and bioinformatic analyses. In hypoxic conditions, miR-371-5p expression was reduced, resulting in ZNF516 expression being induced. Moreover, ZNF516 was shown to hinder trophoblast cell migration and invasion while enhancing trophoblast cell death in various in vitro cellular assays, such as cell counting kit-8, colony formation, wound healing, and Transwell assays. Our findings reveal a new regulatory network facilitated by ZNF516. ZNF516 overexpression inhibits trophoblast growth, movement, and penetration, potentially causing problems with placenta formation with the help of miR-371-5p suppression.
Collapse
Affiliation(s)
- Zhi Qiu Xie
- Electrocardiogram Room, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - De Fang Chen
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Jie He
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Linsheng Zhong
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Guanzheng Luo
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Ming Fang
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- University of South China’s Teaching Hospital, Guangdong Second Provincial General Hospital, Hengyang 421000, China
| |
Collapse
|
7
|
Khashei Varnamkhasti K, Moghanibashi M, Naeimi S. Implications of ZNF334 gene in lymph node metastasis of lung SCC: potential bypassing of cellular senescence. J Transl Med 2024; 22:372. [PMID: 38637790 PMCID: PMC11025273 DOI: 10.1186/s12967-024-05115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The primary goal of this work is to identify biomarkers associated with lung squamous cell carcinoma and assess their potential for early detection of lymph node metastasis. METHODS This study investigated gene expression in lymph node metastasis of lung squamous cell carcinoma using data from the Cancer Genome Atlas and R software. Protein-protein interaction networks, hub genes, and enriched pathways were analyzed. ZNF334 and TINAGL1, two less explored genes, were further examined through in vitro, ex vivo, and in vivo experiments to validate the findings from bioinformatics analyses. The role of ZNF334 and TINAGL1 in senescence induction was assessed after H2O2 and UV induced senescence phenotype determined using β-galactosidase activity and cell cycle status assay. RESULTS We identified a total of 611 up- and 339 down-regulated lung squamous cell carcinoma lymph node metastasis-associated genes (FDR < 0.05). Pathway enrichment analysis highlighted the central respiratory pathway within mitochondria for the subnet genes and the nuclear DNA-directed RNA polymerases for the hub genes. Significantly down regulation of ZNF334 gene was associated with malignancy lymph node progression and senescence induction has significantly altered ZNF334 expression (with consistency in bioinformatics, in vitro, ex vivo, and in vivo results). Deregulation of TINAGL1 expression with inconsistency in bioinformatics, in vitro (different types of lung squamous cancer cell lines), ex vivo, and in vivo results, was also associated with malignancy lymph node progression and altered in senescence phenotype. CONCLUSIONS ZNF334 is a highly generalizable gene to lymph node metastasis of lung squamous cell carcinoma and its expression alter certainly under senescence conditions.
Collapse
Affiliation(s)
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
8
|
Shi Y, Yao M, Shen S, Wang L, Yao D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon 2024; 10:e28292. [PMID: 38560274 PMCID: PMC10979174 DOI: 10.1016/j.heliyon.2024.e28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer still is one of the most common malignancy tumors in the world. However, the mechanisms of its occurrence and development have not been fully elucidated. Zinc finger protein family (ZNFs) is the largest transcription factor family in human genome. Recently, the more and more basic and clinical evidences have confirmed that ZNFs/Krüppel-like factors (KLFs) refer to a group of conserved zinc finger-containing transcription factors that are involved in lung cancer progression, with the functions of promotion, inhibition, dual roles and unknown classifications. Based on the recent literature, some of the oncogenic KLFs are promising molecular biomarkers for diagnosis, prognosis or therapeutic targets of lung cancer. Interestingly, a novel computational approach has been proposed by using machine learning on features calculated from primary sequences, the XGBoost-based model with accuracy of 96.4 % is efficient in identifying KLF proteins. This paper reviews the recent some progresses of the oncogenic KLFs with their potential values for diagnosis, prognosis and molecular target in lung cancer.
Collapse
Affiliation(s)
- Yang Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, First People's Hospital of Yancheng, Yancheng 224001, China
| | - Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Shuijie Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
9
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq revealed heterogeneous responses and functional differentiation of hemocytes against white spot syndrome virus infection in Litopenaeus vannamei. J Virol 2024; 98:e0180523. [PMID: 38323810 PMCID: PMC10949519 DOI: 10.1128/jvi.01805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
He J, Li Q, Zhang Q. rvTWAS: identifying gene-trait association using sequences by utilizing transcriptome-directed feature selection. Genetics 2024; 226:iyad204. [PMID: 38001381 DOI: 10.1093/genetics/iyad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Toward the identification of genetic basis of complex traits, transcriptome-wide association study (TWAS) is successful in integrating transcriptome data. However, TWAS is only applicable for common variants, excluding rare variants in exome or whole-genome sequences. This is partly because of the inherent limitation of TWAS protocols that rely on predicting gene expressions. Our previous research has revealed the insight into TWAS: the 2 steps in TWAS, building and applying the expression prediction models, are essentially genetic feature selection and aggregations that do not have to involve predictions. Based on this insight disentangling TWAS, rare variants' inability of predicting expression traits is no longer an obstacle. Herein, we developed "rare variant TWAS," or rvTWAS, that first uses a Bayesian model to conduct expression-directed feature selection and then uses a kernel machine to carry out feature aggregation, forming a model leveraging expressions for association mapping including rare variants. We demonstrated the performance of rvTWAS by thorough simulations and real data analysis in 3 psychiatric disorders, namely schizophrenia, bipolar disorder, and autism spectrum disorder. We confirmed that rvTWAS outperforms existing TWAS protocols and revealed additional genes underlying psychiatric disorders. Particularly, we formed a hypothetical mechanism in which zinc finger genes impact all 3 disorders through transcriptional regulations. rvTWAS will open a door for sequence-based association mappings integrating gene expressions.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
| | - Qingrun Zhang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
11
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
O’Sullivan J, Kothari C, Caron MC, Gagné JP, Jin Z, Nonfoux L, Beneyton A, Coulombe Y, Thomas M, Atalay N, Meng X, Milano L, Jean D, Boisvert FM, Kaufmann S, Hendzel M, Masson JY, Poirier G. ZNF432 stimulates PARylation and inhibits DNA resection to balance PARPi sensitivity and resistance. Nucleic Acids Res 2023; 51:11056-11079. [PMID: 37823600 PMCID: PMC10639050 DOI: 10.1093/nar/gkad791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.
Collapse
Affiliation(s)
- Julia O’Sullivan
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Zhigang Jin
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| | - Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Yan Coulombe
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Mélissa Thomas
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - X Wei Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Larissa Milano
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QCG1R 3S3, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QCG1V 4G2, Canada
| |
Collapse
|
13
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
14
|
Rosspopoff O, Trono D. Take a walk on the KRAB side. Trends Genet 2023; 39:844-857. [PMID: 37716846 DOI: 10.1016/j.tig.2023.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.
Collapse
Affiliation(s)
- Olga Rosspopoff
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
16
|
Li D, Quan Z, Ni J, Li H, Qing H. The many faces of the zinc finger protein 335 in brain development and immune system. Biomed Pharmacother 2023; 165:115257. [PMID: 37541176 DOI: 10.1016/j.biopha.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.
Collapse
Affiliation(s)
- Danyang Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
17
|
Osipovich AB, Dudek KD, Trinh LT, Kim LH, Shrestha S, Cartailler JP, Magnuson MA. ZFP92, a KRAB domain zinc finger protein enriched in pancreatic islets, binds to B1/Alu SINE transposable elements and regulates retroelements and genes. PLoS Genet 2023; 19:e1010729. [PMID: 37155670 PMCID: PMC10166502 DOI: 10.1371/journal.pgen.1010729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Repressive KRAB domain-containing zinc-finger proteins (KRAB-ZFPs) are abundant in mammalian genomes and contribute both to the silencing of transposable elements (TEs) and to the regulation of developmental stage- and cell type-specific gene expression. Here we describe studies of zinc finger protein 92 (Zfp92), an X-linked KRAB-ZFP that is highly expressed in pancreatic islets of adult mice, by analyzing global Zfp92 knockout (KO) mice. Physiological, transcriptomic and genome-wide chromatin binding studies indicate that the principal function of ZFP92 in mice is to bind to and suppress the activity of B1/Alu type of SINE elements and modulate the activity of surrounding genomic entities. Deletion of Zfp92 leads to changes in expression of select LINE and LTR retroelements and genes located in the vicinity of ZFP92-bound chromatin. The absence of Zfp92 leads to altered expression of specific genes in islets, adipose and muscle that result in modest sex-specific alterations in blood glucose homeostasis, body mass and fat accumulation. In islets, Zfp92 influences blood glucose concentration in postnatal mice via transcriptional effects on Mafb, whereas in adipose and muscle, it regulates Acacb, a rate-limiting enzyme in fatty acid metabolism. In the absence of Zfp92, a novel TE-Capn11 fusion transcript is overexpressed in islets and several other tissues due to de-repression of an IAPez TE adjacent to ZFP92-bound SINE elements in intron 3 of the Capn11 gene. Together, these studies show that ZFP92 functions both to repress specific TEs and to regulate the transcription of specific genes in discrete tissues.
Collapse
Affiliation(s)
- Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karrie D. Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lily H. Kim
- College of Arts and Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jean-Philippe Cartailler
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Li H, Chatla S, Liu X, Vekariya U, Kim D, Walt M, Lian Z, Morton G, Feng Z, Yang D, Liu H, Reed K, Childers W, Yu X, Madzo J, Chitrala KN, Skorski T, Huang J. Haploinsufficiency of ZNF251 causes DNA-PKcs-dependent resistance to PARP inhibitors in BRCA1-mutated cancer cells. RESEARCH SQUARE 2023:rs.3.rs-2688694. [PMID: 37066268 PMCID: PMC10104263 DOI: 10.21203/rs.3.rs-2688694/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those that carry BRCA1/2 mutations. The cancer associated BRCA1/2 mutations disrupt DNA double strand break (DSB) repair by homologous recombination (HR). PARP inhibitors (PARPis) have been applied to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or the stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPi resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our study revealed that ZNF251, a transcription factor, is a novel gene whose haploinsufficiency confers PARPi resistance in multiple breast and ovarian cancer lines harboring BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to constitutive stimulation of DNA-PKcs-dependent non-homologous end joining (NHEJ) repair of DSBs and DNA-PKcs-mediated fork protection in BRCA1-mutated cancer cells (BRCA1mut + ZNF251KD). Moreover, we demonstrated that DNA-PKcs inhibitors can restore PARPi sensitivity in BRCA1mut + ZNF251KD cells ex vivo and in vivo. Our findings provide important insights into the mechanisms underlying PARPi resistance and highlight the unexpected role of DNA-PKcs in this phenomenon.
Collapse
Affiliation(s)
- Huan Li
- Coriell Institue for Medical Research
| | | | - Xiaolei Liu
- University of Pennsylavania School of Medecine
| | | | | | | | | | | | - Zijie Feng
- University of Pennsylavania School of Medecine
| | - Dan Yang
- Coriell Institue for Medical Research
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Momin T, Villasenor A, Singh A, Darweesh M, Singh A, Rajput M. ZFP36 ring finger protein like 1 significantly suppresses human coronavirus OC43 replication. PeerJ 2023; 11:e14776. [PMID: 36846448 PMCID: PMC9948753 DOI: 10.7717/peerj.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023] Open
Abstract
CCCH-type zinc figure proteins (ZFP) are small cellular proteins that are structurally maintained by zinc ions. Zinc ions coordinate the protein structure in a tetrahedral geometry by binding to cystine-cystine or cysteines-histidine amino acids. ZFP's unique structure enables it to interact with a wide variety of molecules including RNA; thus, ZFP modulates several cellular processes including the host immune response and virus replication. CCCH-type ZFPs have shown their antiviral efficacy against several DNA and RNA viruses. However, their role in the human coronavirus is little explored. We hypothesized that ZFP36L1 also suppresses the human coronavirus. To test our hypothesis, we used OC43 human coronavirus (HCoV) strain in our study. We overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction. Wild type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection (p.i.). Our results show that HCoV-OC43 replication was significantly reduced with ZFP36L1 overexpression while ZFP36L1 knockdown significantly enhanced virus replication. ZFP36L1 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which was an earlier timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-type and ZFP36L1 overexpressed HCT-8 cells started producing infectious virus at 72 hours p.i. Overall, the current study showed that overexpression of ZFP36L1 suppressed human coronavirus (OC43) production.
Collapse
Affiliation(s)
- Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Andrew Villasenor
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Uppsala, Sweden
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhr University, Assiut, Egypt
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, United States of America
| |
Collapse
|
20
|
Chung HJ, Lee JR, Kim TM, Kim S, Park K, Kim MJ, Jung E, Kim S, Lee EA, Ra JS, Hwang S, Lee JY, Schärer OD, Kim Y, Myung K, Kim H. ZNF212 promotes genomic integrity through direct interaction with TRAIP. Nucleic Acids Res 2023; 51:631-649. [PMID: 36594163 PMCID: PMC9881131 DOI: 10.1093/nar/gkac1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea,Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yonghwan Kim
- Correspondence may also be addressed to Yonghwan Kim. Tel: +82 2 710 9552;
| | - Kyungjae Myung
- Correspondence may also be addressed to Kyungjae Myung. Tel: +82 52 217 5323; Fax: +82 52 217 5519;
| | - Hongtae Kim
- To whom correspondence should be addressed. Tel: +82 52 217 5404; Fax: +82 52 217 5519;
| |
Collapse
|
21
|
Liu Z, Wei X, Gao Y, Gao X, Li X, Zhong Y, Wang X, Liu C, Shi T, Lv J, Liu T. Zbtb34 promotes embryonic stem cell proliferation by elongating telomere length. Aging (Albany NY) 2022; 14:7126-7136. [PMID: 36098743 PMCID: PMC9512507 DOI: 10.18632/aging.204285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Zbtb34 is a novel zinc finger protein, which is revealed by biological software analysis to have 3 zinc fingers, but its functions remain unknown. In this study, mouse Zbtb34 cDNA was amplified by PCR and inserted into the plasmid pEGFP-N1 to generate Zbtb34-EGFP fusion protein. The upregulation of Zbtb34 in mouse embryonic stem cells promoted telomere elongation and increased cell proliferation. In order to understand the above phenomena, the telomere co-immunoprecipitation technique was employed to investigate the relationship between Zbtb34 and telomeres. The results indicated that Zbtb34 could bind to the DNA sequences of the telomeres. Alanine substitution of the third zinc finger abolished such binding. Since Pot1 is the only protein binding to the single-stranded DNA at the end of the telomeres, we further investigated the relationship between Zbtb34 and Pot1. The results revealed that the upregulation of Zbtb34 decreased the binding of Pot1b to the telomeres. Through the upregulation of Pot1b, the binding of Zbtb34 to the telomeres was also reduced. In conclusion, we showed that the main biological function of Zbtb34 was to bind telomere DNA via its third ZnF, competing with Pot1b for the binding sites, resulting in telomere elongation and cell proliferation.
Collapse
Affiliation(s)
- Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiaodie Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xia Li
- Clinical Laboratory, Hospital Affiliated to Guilin Medical University, Guilin, Guangxi 541001, China
| | - Yujuan Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiujuan Wang
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Chong Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tianle Shi
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jiabin Lv
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tao Liu
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| |
Collapse
|
22
|
Volk LB, Cooper KL, Jiang T, Paffett ML, Hudson LG. Impacts of arsenic on Rad18 and translesion synthesis. Toxicol Appl Pharmacol 2022; 454:116230. [PMID: 36087615 PMCID: PMC10144522 DOI: 10.1016/j.taap.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Arsenite interferes with DNA repair protein function resulting in the retention of UV-induced DNA damage. Accumulated DNA damage promotes replication stress which is bypassed by DNA damage tolerance pathways such as translesion synthesis (TLS). Rad18 is an essential factor in initiating TLS through PCNA monoubiquitination and contains two functionally and structurally distinct zinc fingers that are potential targets for arsenite binding. Arsenite treatment displaced zinc from endogenous Rad18 protein and mass spectrometry analysis revealed arsenite binding to both the Rad18 RING finger and UBZ domains. Consequently, arsenite inhibited Rad18 RING finger dependent PCNA monoubiquitination and polymerase eta recruitment to DNA damage in UV exposed keratinocytes, both of which enhance the bypass of cyclobutane pyrimidine dimers during replication. Further analysis demonstrated multiple effects of arsenite, including the reduction in nuclear localization and UV-induced chromatin recruitment of Rad18 and its binding partner Rad6, which may also negatively impact TLS initiation. Arsenite and Rad18 knockdown in UV exposed keratinocytes significantly increased markers of replication stress and DNA strand breaks to a similar degree, suggesting arsenite mediates its effects through Rad18. Comet assay analysis confirmed an increase in both UV-induced single-stranded DNA and DNA double-strand breaks in arsenite treated keratinocytes compared to UV alone. Altogether, this study supports a mechanism by which arsenite inhibits TLS through the altered activity and regulation of Rad18. Arsenite elevated the levels of UV-induced replication stress and consequently, single-stranded DNA gaps and DNA double-strand breaks. These potentially mutagenic outcomes support a role for TLS in the cocarcinogenicity of arsenite.
Collapse
Affiliation(s)
- L B Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - K L Cooper
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - T Jiang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - M L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, 2325 Camino de Salud, Albuquerque, NM 87131, USA.
| | - L G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
23
|
Kciuk M, Gielecińska A, Kołat D, Kałuzińska Ż, Kontek R. Transcription factors in DNA damage response. Biochim Biophys Acta Rev Cancer 2022; 1877:188757. [PMID: 35781034 DOI: 10.1016/j.bbcan.2022.188757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transcription factors (TFs) constitute a wide and highly diverse group of proteins capable of controlling gene expression. Their roles in oncogenesis, tumor progression, and metastasis have been established, but recently their role in the DNA damage response pathway (DDR) has emerged. Many of them can affect elements of canonical DDR pathways, modulating their activity and deciding on the effectiveness of DNA repair. In this review, we focus on the latest reports on the effects of two TFs with dual roles in oncogenesis and metastasis (hypoxia-inducible factor-1 α (HIF1α), proto-oncogene MYC) and three epithelial-mesenchymal transition (EMT) TFs (twist-related protein 1 (TWIST), zinc-finger E-box binding homeobox 1 (ZEB1), and zinc finger protein 281 (ZNF281)) associated with control of canonical DDR pathways.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
24
|
Yang Z, Lemacon DS, Li S, Cheruiyot A, Kong L, Tan K, Cheng C, Turkay E, He D, You Z. Context-dependent pro- and anti-resection roles of ZKSCAN3 in the regulation of fork processing during replication stress. J Biol Chem 2022; 298:102215. [PMID: 35779634 PMCID: PMC9352557 DOI: 10.1016/j.jbc.2022.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Uncontrolled resection of replication forks under stress can cause genomic instability and influence cancer formation. Extensive fork resection has also been implicated in the chemosensitivity of “BReast CAncer gene” BRCA-deficient cancers. However, how fork resection is controlled in different genetic contexts and how it affects chromosomal stability and cell survival remains incompletely understood. Here, we report a novel function of the transcription repressor ZKSCAN3 in fork protection and chromosomal stability maintenance under replication stress. We show disruption of ZKSCAN3 function causes excessive resection of replication forks by the exonuclease Exo1 and homologous DNA recombination/repair protein Mre11 following fork reversal. Interestingly, in BRCA1-deficient cells, we found ZKSCAN3 actually promotes fork resection upon replication stress. We demonstrate these anti- and pro-resection roles of ZKSCAN3, consisting of a SCAN box, Kruppel-associated box, and zinc finger domain, are mediated by its SCAN box domain and do not require the Kruppel-associated box or zinc finger domains, suggesting that the transcriptional function of ZKSCAN3 is not involved. Furthermore, despite the severe impact on fork structure and chromosomal stability, depletion of ZKSCAN3 did not affect the short-term survival of BRCA1-proficient or BRCA1-deficient cells after treatment with cancer drugs hydroxyurea, PARPi, or cisplatin. Our findings reveal a unique relationship between ZKSCAN3 and BRCA1 in fork protection and add to our understanding of the relationships between replication fork protection, chromosomal instability, and chemosensitivity.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Delphine Sangotokun Lemacon
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigael Cheruiyot
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ke Tan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ecenur Turkay
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller K. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res 2022; 50:3922-3943. [PMID: 35253893 PMCID: PMC9023290 DOI: 10.1093/nar/gkac160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Seong-Ok Lee
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
26
|
Maderazo D, Flegg JA, Algama M, Ramialison M, Keith J. Detection and identification of cis-regulatory elements using change-point and classification algorithms. BMC Genomics 2022; 23:78. [PMID: 35078412 PMCID: PMC8790847 DOI: 10.1186/s12864-021-08190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptional regulation is primarily mediated by the binding of factors to non-coding regions in DNA. Identification of these binding regions enhances understanding of tissue formation and potentially facilitates the development of gene therapies. However, successful identification of binding regions is made difficult by the lack of a universal biological code for their characterisation. RESULTS We extend an alignment-based method, changept, and identify clusters of biological significance, through ontology and de novo motif analysis. Further, we apply a Bayesian method to estimate and combine binary classifiers on the clusters we identify to produce a better performing composite. CONCLUSIONS The analysis we describe provides a computational method for identification of conserved binding sites in the human genome and facilitates an alternative interrogation of combinations of existing data sets with alignment data.
Collapse
Affiliation(s)
- Dominic Maderazo
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, 3010, VIC, Australia.
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Manjula Algama
- School of Mathematics, Monash University, Melbourne, 3800, VIC, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Melbourne, 3800, VIC, Australia
| | - Jonathan Keith
- School of Mathematics, Monash University, Melbourne, 3800, VIC, Australia
| |
Collapse
|
27
|
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D’Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun 2021; 12:6560. [PMID: 34772923 PMCID: PMC8589989 DOI: 10.1038/s41467-021-26691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.
Collapse
Affiliation(s)
- Jenny Kaur Singh
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Smith
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France
| | - Magdalena B. Rother
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J. L. de Groot
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter W. Wiegant
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ostiane D’Augustin
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.457349.80000 0004 0623 0579Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, F-92265 Fontenay-aux-Roses, France
| | - Robbert Q. Kim
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Haibin Qian
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Przemek M. Krawczyk
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Román González-Prieto
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alfred C. O. Vertegaal
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Meindert Lamers
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sébastien Huet
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, F-75000 Paris, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
28
|
Ye M, Li L, Liu D, Wang Q, Zhang Y, Zhang J. Identification and validation of a novel zinc finger protein-related gene-based prognostic model for breast cancer. PeerJ 2021; 9:e12276. [PMID: 34721975 PMCID: PMC8530103 DOI: 10.7717/peerj.12276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast invasive carcinoma (BRCA) is a commonly occurring malignant tumor. Zinc finger proteins (ZNFs) constitute the largest transcription factor family in the human genome and play a mechanistic role in many cancers' development. The prognostic value of ZNFs has yet to be approached systematically for BRCA. Methods We analyzed the data of a training set from The Cancer Genome Atlas (TCGA) database and two validation cohort from GSE20685 and METABRIC datasets, composed of 3,231 BRCA patients. After screening the differentially expressed ZNFs, univariate Cox regression, LASSO, and multiple Cox regression analysis were performed to construct a risk-based predictive model. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and gene set enrichment analyses (GSEA) were utilized to assess the potential relations among the tumor immune microenvironment and ZNFs in BRCA. Results In this study, we profiled ZNF expression in TCGA based BRCA cohort and developed a novel prognostic model based on 14 genes with ZNF relations. This model was composed of high and low-score groups for BRCA classification. Based upon Kaplan-Meier survival curves, risk-status-based prognosis illustrated significant differences. We integrated the 14 ZNF-gene signature with patient clinicopathological data for nomogram construction with accurate 1-, 3-, and 5-overall survival predictive capabilities. We then accessed the Genomics of Drug Sensitivity in Cancer database for therapeutic drug response prediction of signature-defined BRCA patient groupings for our selected TCGA population. The signature also predicts sensitivity to chemotherapeutic and molecular-targeted agents in high- and low-risk patients afflicted with BRCA. Functional analysis suggested JAK STAT, VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like receptor signaling pathways, apoptosis, and cancer-based pathways could be key for ZNF-related BRCA development. Interestingly, based on the results of ESTIMATE, ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene signature had pivotal regulatory effects on the tumor immune microenvironment for BRCA. Conclusion Our findings shed light on the potential contribution of ZNFs to the pathogenesis of BRCA and may inform clinical practice to guide individualized treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Liang Li
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Donghua Liu
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Qiuming Wang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Yunuo Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| | - Jinfeng Zhang
- Department of Medical Oncology 3, The Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
29
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
30
|
Feng G, Wang T, Xue F, Qi Y, Wang R, Yuan H. Identification of enhancer RNAs for the prognosis of head and neck squamous cell carcinoma. Head Neck 2021; 43:3820-3831. [PMID: 34569097 DOI: 10.1002/hed.26877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) play an important role in carcinogenesis. The landscape of eRNAs in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. METHODS The eRNA expression matrix was obtained from the enhancer RNA in the cancer database. Functional enrichment analyses were performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). Prognostic eRNAs were identified using Cox regression analysis, and a prognostic prediction model was constructed based on coefficients. RESULTS KEGG analysis showed that eRNA-related transcription factors were mainly enriched in herpes simplex virus 1 (HSV1) infection. The zinc finger (ZNF) family may play an essential role in HNSCC. ENSR00000188847, ENSR00000250663, ENSR00000313345, ENSR00000317887, and ENSR00000336429 were identified. The prediction model was robust. CONCLUSIONS We constructed a robust 5-eRNA prognostic prediction model, and these eRNAs are potential biomarkers for HNSCC prognosis.
Collapse
Affiliation(s)
- Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yibo Qi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proc Natl Acad Sci U S A 2021; 118:2019408118. [PMID: 33692124 DOI: 10.1073/pnas.2019408118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc finger (ZnF) proteins represent one of the largest families of human proteins, although most remain uncharacterized. Given that numerous ZnF proteins are able to interact with DNA and poly(ADP ribose), there is growing interest in understanding their mechanism of action in the maintenance of genome integrity. We now report that the ZnF protein E4F transcription factor 1 (E4F1) is an actor in DNA repair. Indeed, E4F1 is rapidly recruited, in a poly(ADP ribose) polymerase (PARP)-dependent manner, to DNA breaks and promotes ATR/CHK1 signaling, DNA-end resection, and subsequent homologous recombination. Moreover, we identify E4F1 as a regulator of the ATP-dependent chromatin remodeling SWI/SNF complex in DNA repair. E4F1 binds to the catalytic subunit BRG1/SMARCA4 and together with PARP-1 mediates its recruitment to DNA lesions. We also report that a proportion of human breast cancers show amplification and overexpression of E4F1 or BRG1 that are mutually exclusive with BRCA1/2 alterations. Together, these results reveal a function of E4F1 in the DNA damage response that orchestrates proper signaling and repair of double-strand breaks and document a molecular mechanism for its essential role in maintaining genome integrity and cell survival.
Collapse
|
32
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
33
|
Making it or breaking it: DNA methylation and genome integrity. Essays Biochem 2021; 64:687-703. [PMID: 32808652 DOI: 10.1042/ebc20200009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.
Collapse
|
34
|
Spatiotemporal 22q11.21 Protein Network Implicates DGCR8-Dependent MicroRNA Biogenesis as a Risk for Late-Fetal Cortical Development in Psychiatric Diseases. Life (Basel) 2021; 11:life11060514. [PMID: 34073122 PMCID: PMC8227527 DOI: 10.3390/life11060514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
The chromosome 22q11.21 copy number variant (CNV) is a vital risk factor that can be a genetic predisposition to neurodevelopmental disorders (NDD). As the 22q11.21 CNV affects multiple genes, causal disease genes and mechanisms affected are still poorly understood. Thus, we aimed to identify the most impactful 22q11.21 CNV genes and the potential impacted human brain regions, developmental stages and signaling pathways. We constructed the spatiotemporal dynamic networks of 22q11.21 CNV genes using the brain developmental transcriptome and physical protein–protein interactions. The affected brain regions, developmental stages, driver genes and pathways were subsequently investigated via integrated bioinformatics analysis. As a result, we first identified that 22q11.21 CNV genes affect the cortical area mainly during late fetal periods. Interestingly, we observed that connections between a driver gene, DGCR8, and its interacting partners, MECP2 and CUL3, also network hubs, only existed in the network of the late fetal period within the cortical region, suggesting their functional specificity during brain development. We also confirmed the physical interaction result between DGCR8 and CUL3 by liquid chromatography-tandem mass spectrometry. In conclusion, our results could suggest that the disruption of DGCR8-dependent microRNA biogenesis plays a vital role in NDD for late fetal cortical development.
Collapse
|
35
|
Wang G, Zheng C. Zinc finger proteins in the host-virus interplay: multifaceted functions based on their nucleic acid-binding property. FEMS Microbiol Rev 2021; 45:fuaa059. [PMID: 33175962 DOI: 10.1093/femsre/fuaa059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc finger proteins (ZFPs) are a huge family comprised of massive, structurally diverse proteins characterized by zinc ion coordinating. They engage in the host-virus interplay in-depth and occupy a significant portion of the host antiviral arsenal. Nucleic acid-binding is the basic property of certain ZFPs, which draws increasing attention due to their immense influence on viral infections. ZFPs exert multiple roles on the viral replications and host cell transcription profiles by recognizing viral genomes and host mRNAs. Their roles could be either antiviral or proviral and were separately discussed. Our review covers the recent research progress and provides a comprehensive understanding of ZFPs in antiviral immunity based on their DNA/RNA binding property.
Collapse
Affiliation(s)
- Guanming Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, No.1 Xue Yuan Road, University Town, FuZhou Fujian, 350108, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, Canada, AB T2N 4N1
| |
Collapse
|
36
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
37
|
Osipovich AB, Dudek KD, Greenfest-Allen E, Cartailler JP, Manduchi E, Potter Case L, Choi E, Chapman AG, Clayton HW, Gu G, Stoeckert CJ, Magnuson MA. A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for Zfp800 in pancreas development. Development 2021; 148:dev196964. [PMID: 33653874 PMCID: PMC8015253 DOI: 10.1242/dev.196964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
To gain a deeper understanding of pancreatic β-cell development, we used iterative weighted gene correlation network analysis to calculate a gene co-expression network (GCN) from 11 temporally and genetically defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially expressed during pancreas development. Pcdhγ genes are preferentially expressed in pancreatic endoderm, Pcdhβ genes in nascent islets, and Pcdhα genes in mature β-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage, we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and β-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early postnatal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion and developmental pathways in the pancreas. Together, our results suggest that developmentally oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karrie D Dudek
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Leah Potter Case
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eunyoung Choi
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Austin G Chapman
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hannah W Clayton
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Guoqiang Gu
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
38
|
Chronic exposure of humans to high level natural background radiation leads to robust expression of protective stress response proteins. Sci Rep 2021; 11:1777. [PMID: 33469066 PMCID: PMC7815775 DOI: 10.1038/s41598-020-80405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding exposures to low doses of ionizing radiation are relevant since most environmental, diagnostic radiology and occupational exposures lie in this region. However, the molecular mechanisms that drive cellular responses at these doses, and the subsequent health outcomes, remain unclear. A local monazite-rich high level natural radiation area (HLNRA) in the state of Kerala on the south-west coast of Indian subcontinent show radiation doses extending from ≤ 1 to ≥ 45 mGy/y and thus, serve as a model resource to understand low dose mechanisms directly on healthy humans. We performed quantitative discovery proteomics based on multiplexed isobaric tags (iTRAQ) coupled with LC–MS/MS on human peripheral blood mononuclear cells from HLNRA individuals. Several proteins involved in diverse biological processes such as DNA repair, RNA processing, chromatin modifications and cytoskeletal organization showed distinct expression in HLNRA individuals, suggestive of both recovery and adaptation to low dose radiation. In protein–protein interaction (PPI) networks, YWHAZ (14-3-3ζ) emerged as the top-most hub protein that may direct phosphorylation driven pro-survival cellular processes against radiation stress. PPI networks also identified an integral role for the cytoskeletal protein ACTB, signaling protein PRKACA; and the molecular chaperone HSPA8. The data will allow better integration of radiation biology and epidemiology for risk assessment [Data are available via ProteomeXchange with identifier PXD022380].
Collapse
|
39
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
40
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
41
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020. [DOI: 10.1007/s12038-020-0014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
43
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020; 45:38. [PMID: 32098917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
GAGA associated factor (GAF) is a sequence-specific DNA binding transcription factor that is evolutionarily conserved from flies to humans. Emerging evidence shows a context-dependent function of vertebrate GAF (vGAF, a.k.a. ThPOK) in multiple processes like gene activation, repression, and enhancer-blocking. We hypothesize that context-dependent interaction of vGAF with a diverse set of proteins forms the basis for the multifunctional nature of vGAF. To this end, we deciphered the protein-protein interactome of vGAF and show that vGAF interacts with chromatin remodelers, RNA metabolic machinery, transcriptional activators/ repressors, and components of DNA repair machinery. We further validated the biological significance of our protein-protein interaction data with functional studies and established a novel role of vGAF in DNA repair and cell-survival after UV-induced DNA damage. One of the major risk factors for skin cutaneous melanoma is prolonged exposure of UV and subsequent DNA damage. vGAF is highly expressed in normal skin tissue. Interestingly, our analysis of high-throughput RNA-sequencing data shows that vGAF is heavily downregulated across all major stages of skin cutaneous melanoma suggesting its potential as a diagnostic biomarker. Taken together, our study provides a plausible explanation for the diverse gene regulatory functions of vGAF and unravels its novel role in DNA repair.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
44
|
Kim W, Zhao F, Wu R, Qin S, Nowsheen S, Huang J, Zhou Q, Chen Y, Deng M, Guo G, Luo K, Lou Z, Yuan J. ZFP161 regulates replication fork stability and maintenance of genomic stability by recruiting the ATR/ATRIP complex. Nat Commun 2019; 10:5304. [PMID: 31757956 PMCID: PMC6876566 DOI: 10.1038/s41467-019-13321-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/23/2019] [Indexed: 12/03/2022] Open
Abstract
DNA replication stress-mediated activation of the ATR kinase pathway is important for maintaining genomic stability. In this study, we identified a zinc finger protein, ZFP161 that functions as a replication stress response factor in ATR activation. Mechanistically, ZFP161 acts as a scaffolding protein to facilitate the interaction between RPA and ATR/ATRIP. ZFP161 binds to RPA and ATR/ATRIP through distinct regions and stabilizes the RPA–ATR–ATRIP complex at stalled replication forks. This function of ZFP161 is important to the ATR signaling cascade and genome stability maintenance. In addition, ZFP161 knockout mice showed a defect in ATR activation and genomic instability. Furthermore, low expression of ZFP161 is associated with higher cancer risk and chromosomal instability. Overall, these findings suggest that ZFP161 coordinates ATR/Chk1 pathway activation and helps maintain genomic stability. The ATR pathway is active during DNA replication stress to maintain genome stability. Here the authors reveal the role of the zinc finger containing protein 161 (ZFP161) to facilitate replication fork stability by acting as a scaffold to facilitate the interaction between RPA and ATR/ATRIP.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Somaira Nowsheen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School Of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qin Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China
| | - Min Deng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China. .,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
45
|
Squassina A, Meloni A, Chillotti C, Pisanu C. Zinc finger proteins in psychiatric disorders and response to psychotropic medications. Psychiatr Genet 2019; 29:132-141. [PMID: 31464994 DOI: 10.1097/ypg.0000000000000231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Zinc finger proteins are a large family of abundantly expressed small motifs that play a crucial role in a wide range of physiological and pathophysiological mechanisms. Findings published so far support an involvement of zinc fingers in psychiatric disorders. Most of the evidence has been provided for the zinc finger protein 804A (ZNF804A) gene, which has been suggested to be implicated in schizophrenia and bipolar disorder. This evidence has been corroborated by a wide range of functional studies showing that ZNF804A regulates the expression of genes involved in cell adhesion and plays a crucial role in neurite formation and maintenance of dendritic spines. On the other hand, far less is known on other zinc finger proteins and their involvement in psychiatric disorders. In this review, we discussed studies exploring the role of zinc finger proteins in schizophrenia, bipolar disorder, and major depressive disorder as well as in pharmacogenetics of psychotropic drugs.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy Department of Psychiatry, Dalhousie University, Halifax, NS, Canada Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
46
|
A comparison of computational methodologies for the structural modelling of biologically relevant zinc complexes. J Mol Model 2019; 25:258. [PMID: 31399760 DOI: 10.1007/s00894-019-4139-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/14/2019] [Indexed: 01/01/2023]
Abstract
The impact of a variety of modern computational methods on the structure of biologically relevant zinc complexes is studied. Different density functionals and a Hartree-Fock-based method, scalar-relativistic effects, and basis set integration grid choices, among others, are assessed for set of high-resolution crystallographic structures. While a previous study recommends incorporating relativistic effects into density functional theory calculations in order to improve the accuracy of obtained geometries for small Zn(II) coordination compounds, we show that, for the set in study, relativistic effects do not affect the geometries to a significant extent. The PBEh-3c composite method emerges as good alternative for the treatment of Zn(II) complexes, while the HF-3c method can be employed when computational efficiency is important. Graphical Abstract Which methods are best suited for the computation of Zn(II) bioligand complexes?
Collapse
|
47
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
48
|
Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H. The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 2018; 14:e1007674. [PMID: 30222730 PMCID: PMC6160208 DOI: 10.1371/journal.pgen.1007674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristin Papp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Hartung
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|