1
|
Roberts Kingman GA, Kipness JL, Rothschild LJ. Raiding nature's genetic toolbox for UV-C resistance by functional metagenomics. Sci Rep 2025; 15:223. [PMID: 39747236 PMCID: PMC11695868 DOI: 10.1038/s41598-024-83952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions. This approach can be dramatically improved through functional metagenomics, large-scale introduction of foreign genetic material to screen for phenotypes in a new host organism. This takes advantage of Earth's immense biological diversity with high-throughput screening for genetic tools that can facilitate adaptation. We address a key gap in functional metagenomics work by exploring the impact of the experimental parameters chosen for functional metagenomics libraries. Experimental design dictates both fragment size and copy number, and we show that both can have outsized effects on the resultant phenotypes in non-intuitive ways. These results highlight the potential of functional metagenomics for adapting life rapidly to challenging new environments, with important implications in both astrobiology and bioindustry, while also emphasizing the impacts of decisions in experimental design.
Collapse
Affiliation(s)
| | - Justin L Kipness
- Department of Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | - Lynn J Rothschild
- NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, USA.
| |
Collapse
|
2
|
Cotta SR, Dias ACF, Mendes R, Andreote FD. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz J Microbiol 2024:10.1007/s42770-024-01583-9. [PMID: 39730778 DOI: 10.1007/s42770-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions. HGT, in particular, holds a pivotal role as it facilitates the generation of metabolic diversity, thus directly or indirectly influencing microorganisms' interactions and functioning within their habitat. In this study, we investigate the correlations between enhanced metabolic diversity through HGT and cooperative behavior in the rhizosphere. Despite the potential drawbacks of cooperative behavior, which renders it susceptible to exploitation by cheaters based on evolutionary theory, HGT emerges as a mitigating factor. It serves as a valuable and adaptive tool for survival in competitive environments, notably the rhizosphere. By initiating a comprehensive discussion on these processes combined, we anticipate achieving a profound understanding of the rhizosphere microbiome, ultimately enhancing soil microbiology management and the exploitation of this ecological niche.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Armando Cavalcante Franco Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
3
|
Kearney M, Lieberman BS, Strotz LC. Tangled banks, braided rivers, and complex hierarchies: beyond microevolution and macroevolution. J Evol Biol 2024; 37:1402-1412. [PMID: 38819079 DOI: 10.1093/jeb/voae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Ever since the Modern Synthesis, a debate about the relationship between microevolution and macroevolution has persisted-specifically, whether they are equivalent, distinct, or explain one another. How one answers these questions has become shorthand for a much broader set of theoretical debates in evolutionary biology. Here, we examine microevolution and macroevolution in the context of the vast proliferation of data, knowledge, and theory since the advent of the Modern Synthesis. We suggest that traditional views on microevolution and macroevolution are too binary and reductive given current empirical and theoretical advances in biology. For example, patterns and processes are interconnected at various temporal and spatial scales and among hierarchical entities, rather than defining micro- or macro-domains. Further, biological entities have variably fuzzy boundaries, resulting in complex evolutionary processes that influence macroevolution occuring at both micro- and macro-levels. In addition, conceptual advances in phylodynamics have yet to be fully integrated with contemporary macroevolutionary approaches. Finally, holding microevolution and macroevolution as distinct domains thwarts synthesis and collaboration on important research questions. Instead, we propose that the focal entities and processes considered by evolutionary studies be contextualized within the complexity of the multidimensional, multimodal, multilevel phylogenetic system.
Collapse
Affiliation(s)
- Maureen Kearney
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, United States
| | - Bruce S Lieberman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
- Biodiversity Institute, Division of Invertebrate Paleontology, University of Kansas, Lawrence, KS, United States
| | - Luke C Strotz
- Biodiversity Institute, Division of Invertebrate Paleontology, University of Kansas, Lawrence, KS, United States
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an, People's Republic of China
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Peck LD, Llewellyn T, Bennetot B, O’Donnell S, Nowell RW, Ryan MJ, Flood J, Rodríguez de la Vega RC, Ropars J, Giraud T, Spanu PD, Barraclough TG. Horizontal transfers between fungal Fusarium species contributed to successive outbreaks of coffee wilt disease. PLoS Biol 2024; 22:e3002480. [PMID: 39637834 PMCID: PMC11620798 DOI: 10.1371/journal.pbio.3002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential. We compared the genomes of 13 historic strains spanning 6 decades and multiple disease outbreaks to investigate population structure and host specialisation. We found that F. xylarioides comprised at least 4 distinct lineages: 1 host-specific to Coffea arabica, 1 to C. canephora var. robusta, and 2 historic lineages isolated from various Coffea species. The presence/absence of large genomic regions across populations, the higher genetic similarities of these regions between species than expected based on genome-wide divergence and their locations in different loci in genomes across populations showed that horizontal transfers of effector genes from members of the F. oxysporum species complex contributed to host specificity. Multiple transfers into F. xylarioides populations matched different parts of the F. oxysporum mobile pathogenicity chromosome and were enriched in effector genes and transposons. Effector genes in this region and other carbohydrate-active enzymes important in the breakdown of plant cell walls were shown by transcriptomics to be highly expressed during infection of C. arabica by the fungal arabica strains. Widespread sharing of specific transposons between F. xylarioides and F. oxysporum, and the correspondence of a putative horizontally transferred regions to a Starship (large mobile element involved in horizontal gene transfers in fungi), reinforce the inference of horizontal transfers and suggest that mobile elements were involved. Our results support the hypothesis that horizontal gene transfers contributed to the repeated emergence of coffee wilt disease.
Collapse
Affiliation(s)
- Lily D. Peck
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- CABI, Egham, Surrey, United Kingdom
| | - Theo Llewellyn
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Bastien Bennetot
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samuel O’Donnell
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Reuben W. Nowell
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Biological & Environmental Sciences, University of Stirling, Scotland, United Kingdom
| | | | | | | | - Jeanne Ropars
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro D. Spanu
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Jerlström-Hultqvist J, Gallot-Lavallée L, Salas-Leiva DE, Curtis BA, Záhonová K, Čepička I, Stairs CW, Pipaliya S, Dacks JB, Archibald JM, Roger AJ. A unique symbiosome in an anaerobic single-celled eukaryote. Nat Commun 2024; 15:9726. [PMID: 39521804 PMCID: PMC11550330 DOI: 10.1038/s41467-024-54102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.
Collapse
Affiliation(s)
- Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Uppsala Universitet, Uppsala, Sweden.
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| | - Lucie Gallot-Lavallée
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Dayana E Salas-Leiva
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bruce A Curtis
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Kristína Záhonová
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Shweta Pipaliya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK
| | - John M Archibald
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
7
|
Yu G, Ge X, Li W, Ji L, Yang S. Interspecific cross-talk: The catalyst driving microbial biosynthesis of secondary metabolites. Biotechnol Adv 2024; 76:108420. [PMID: 39128577 DOI: 10.1016/j.biotechadv.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
8
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
9
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
10
|
Litchman E, Villéger S, Zinger L, Auguet JC, Thuiller W, Munoz F, Kraft NJB, Philippot L, Violle C. Refocusing the microbial rare biosphere concept through a functional lens. Trends Ecol Evol 2024; 39:923-936. [PMID: 38987022 DOI: 10.1016/j.tree.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure. It also sheds light on functionally distinct microbes, directing conservation efforts towards taxa harboring rare yet ecologically crucial functions.
Collapse
Affiliation(s)
- Elena Litchman
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | | | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS, Institut de Recherche pour le Développement (IRD), Toulouse INP, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Munoz
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Agroecology, Dijon, France
| | - Cyrille Violle
- CEFE, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
11
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Roulet ME, Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. THE NEW PHYTOLOGIST 2024; 243:2442-2456. [PMID: 39044460 DOI: 10.1111/nph.19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| |
Collapse
|
13
|
Frail S, Steele-Ogus M, Doenier J, Moulin SL, Braukmann T, Xu S, Yeh E. Genomes of nitrogen-fixing eukaryotes reveal a non-canonical model of organellogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609708. [PMID: 39253440 PMCID: PMC11383321 DOI: 10.1101/2024.08.27.609708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Endosymbiont gene transfer and import of host-encoded proteins are considered hallmarks of organelles necessary for stable integration of two cells. However, newer endosymbiotic models have challenged the origin and timing of such genetic integration during organellogenesis. Epithemia diatoms contain diazoplasts, closely related to recently-described nitrogen-fixing organelles, that are also stably integrated and co-speciating with their host algae. We report genomic analyses of two species, freshwater E.clementina and marine E.pelagica, which are highly divergent but share a common endosymbiotic origin. We found minimal evidence of genetic integration: nonfunctional diazoplast-to-nuclear DNA transfers in the E.clementina genome and 6 host-encoded proteins of unknown function in the E.clementina diazoplast proteome, far fewer than in other recently-acquired organelles. Epithemia diazoplasts are a valuable counterpoint to existing organellogenesis models, demonstrating that endosymbionts can be stably integrated and inherited absent significant genetic integration. The minimal genetic integration makes diazoplasts valuable blueprints for bioengineering endosymbiotic compartments de novo.
Collapse
Affiliation(s)
- Sarah Frail
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Melissa Steele-Ogus
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jon Doenier
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Solène L.Y. Moulin
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tom Braukmann
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA
| | - Ellen Yeh
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, California 94158, USA
- Lead contact
- Senior author
| |
Collapse
|
14
|
Jian J, Wang Z, Chen C, Workman CT, Fang X, Larsen TO, Guo J, Sonnenschein EC. Two high-quality Prototheca zopfii genomes provide new insights into their evolution as obligate algal heterotrophs and their pathogenicity. Microbiol Spectr 2024; 12:e0414823. [PMID: 38940543 PMCID: PMC11302234 DOI: 10.1128/spectrum.04148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The majority of the nearly 10,000 described species of green algae are photoautotrophs; however, some species have lost their ability to photosynthesize and become obligate heterotrophs that rely on parasitism for survival. Two high-quality genomes of the heterotrophic algae Prototheca zopfii Pz20 and Pz23 were obtained using short- and long-read genomic as well as transcriptomic data. The genome sizes were 31.2 Mb and 31.3 Mb, respectively, and contig N50 values of 1.99 Mb and 1.26 Mb. Although P. zopfii maintained its plastid genome, the transition to heterotrophy led to a reduction in both plastid and nuclear genome size, including the loss of photosynthesis-related genes from both the nuclear and plastid genomes and the elimination of genes encoding for carotenoid oxygenase and pheophorbide an oxygenase. The loss of genes, including basic leucine-zipper (bZIP) transcription factors, flavin adenine dinucleotide-linked oxidase, and helicase, could have played a role in the transmission of autotrophy to heterotrophs and in the processes of abiotic stress resistance and pathogenicity. A total of 66 (1.37%) and 73 (1.49%) genes were identified as potential horizontal gene transfer events in the two P. zopfii genomes, respectively. Genes for malate synthase and isocitrate lyase, which are horizontally transferred from bacteria, may play a pivotal role in carbon and nitrogen metabolism as well as the pathogenicity of Prototheca and non-photosynthetic organisms. The two high-quality P. zopfii genomes provide new insights into their evolution as obligate heterotrophs and pathogenicity. IMPORTANCE The genus Prototheca, characterized by its heterotrophic nature and pathogenicity, serves as an exemplary model for investigating pathobiology. The limited understanding of the protothecosis infectious disease is attributed to the lack of genomic resources. Using HiFi long-read sequencing, both nuclear and plastid genomes were generated for two strains of P. zopfii. The findings revealed a concurrent reduction in both plastid and nuclear genome size, accompanied by the loss of genes associated with photosynthesis, carotenoid oxygenase, basic leucine-zipper (bZIP) transcription factors, and others. The analysis of horizontal gene transfer revealed the presence of 1.37% and 1.49% bacterial genes, including malate synthase and isocitrate lyase, which play crucial roles in carbon and nitrogen metabolism, as well as pathogenicity and obligate heterotrophy. The two high-quality P. zopfii genomes represent valuable resources for investigating their adaptation and evolution as obligate heterotrophs, as well as for developing future prevention and treatment strategies against protothecosis.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | | | | | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| |
Collapse
|
15
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
16
|
Chen X, Zhu N, Yang G, Guo X, Sun S, Leng F, Wang Y. Role of cspA on the Preparation of Escherichia coli Competent Cells by Calcium Chloride Method. J Basic Microbiol 2024; 64:e2400113. [PMID: 38924123 DOI: 10.1002/jobm.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
One of the fundamental techniques in genetic engineering is the creation of Escherichia coli competent cells using the CaCl2 method. However, little is known about the mechanism of E. coli competence formation. We have previously found that the cspA gene may play an indispensable role in the preparation of E. coli DH5α competent cells through multiomics analysis. In the present study, the cellular localization, physicochemical properties, and function of the protein expressed by the cspA gene were analyzed. To investigate the role of the cspA gene in E. coli transformation, cspA-deficient mutant was constructed by red homologous recombination. The growth, transformation efficiency, and cell morphology of the cspA-deficient strain and E. coli were compared. It was found that there were no noticeable differences in growth and morphology between E. coli and the cspA-deficient strain cultured at 37°C, but the mutant exhibited increased transformation efficiencies compared to E. coli DH5α for plasmids pUC19, pET-32a, and p1304, with enhancements of 2.23, 2.24, and 3.46 times, respectively. It was proved that cspA gene is an important negative regulatory gene in the CaCl2 preparation of competent cells.
Collapse
Affiliation(s)
- Xiaona Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co. Ltd., Lanzhou, China
- Gansu Business Science and Technology Institute Co. Ltd., Lanzhou, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Shangchen Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
17
|
Duran-Nebreda S, Bentley RA, Vidiella B, Spiridonov A, Eldredge N, O'Brien MJ, Valverde S. On the multiscale dynamics of punctuated evolution. Trends Ecol Evol 2024; 39:734-744. [PMID: 38821781 DOI: 10.1016/j.tree.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
For five decades, paleontologists, paleobiologists, and ecologists have investigated patterns of punctuated equilibria in biology. Here, we step outside those fields and summarize recent advances in the theory of and evidence for punctuated equilibria, gathered from contemporary observations in geology, molecular biology, genetics, anthropology, and sociotechnology. Taken in the aggregate, these observations lead to a more general theory that we refer to as punctuated evolution. The quality of recent datasets is beginning to illustrate the mechanics of punctuated evolution in a way that can be modeled across a vast range of phenomena, from mass extinctions hundreds of millions of years ago to the possible future ahead in the Anthropocene. We expect the study of punctuated evolution to be applicable beyond biological scenarios.
Collapse
Affiliation(s)
- Salva Duran-Nebreda
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - R Alexander Bentley
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA
| | - Blai Vidiella
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain
| | - Andrej Spiridonov
- Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania
| | - Niles Eldredge
- The American Museum of Natural History, New York, NY 10024, USA
| | - Michael J O'Brien
- Department of History, Philosophy, and Geography and Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA; Department of Anthropology, University of Missouri, Columbia, MO 65205, USA.
| | - Sergi Valverde
- Evolution of Networks Lab, Institut de Biologia Evolutiva, Passeig Marítim de la Barceloneta 37 49, Barcelona 08003, Spain; European Centre for Living Technology, Ca' Bottacin, Dorsoduro 3911, 30123 Venice, Italy.
| |
Collapse
|
18
|
Vuruputoor VS, Starovoitov A, Cai Y, Liu Y, Rahmatpour N, Hedderson TA, Wilding N, Wegrzyn JL, Goffinet B. Crossroads of assembling a moss genome: navigating contaminants and horizontal gene transfer in the moss Physcomitrellopsis africana. G3 (BETHESDA, MD.) 2024; 14:jkae104. [PMID: 38781445 PMCID: PMC11228847 DOI: 10.1093/g3journal/jkae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana (P. africana) is presented here. Assembled from 73 × Oxford Nanopore Technologies (ONT) long reads and 163 × Beijing Genomics Institute (BGI)-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes [Benchmarking Universal Single-Copy Ortholog (BUSCO) scores: C:94.8% (D:13.9%)]. This genome holds 2 genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants, and are thus interpreted as resulting from 2 unique horizontal gene transfers (HGTs) from microbes. Further, P. africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens (P. patens), but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant P. africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.
Collapse
Affiliation(s)
- Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew Starovoitov
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake 518004, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake 518004, China
| | - Nasim Rahmatpour
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Terry A Hedderson
- Department of Biological Sciences, Bolus Herbarium, University of Cape Town, Private Bag, 7701 Rondebosch, South Africa
| | - Nicholas Wilding
- UMR PVBMT, BP 7151, Université de La Réunion, chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
19
|
Wang B, Jin Y, Hu M, Zhao Y, Wang X, Yue J, Ren H. Detecting genetic gain and loss events in terms of protein domain: Method and implementation. Heliyon 2024; 10:e32103. [PMID: 38867972 PMCID: PMC11168390 DOI: 10.1016/j.heliyon.2024.e32103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Continuous gain and loss of genes are the primary driving forces of bacterial evolution and environmental adaptation. Studying bacterial evolution in terms of protein domain, which is the fundamental function and evolutionary unit of proteins, can provide a more comprehensive understanding of bacterial differentiation and phenotypic adaptation processes. Therefore, we proposed a phylogenetic tree-based method for detecting genetic gain and loss events in terms of protein domains. Specifically, the method focuses on a single domain to trace its evolution process or on multiple domains to investigate their co-evolution principles. This novel method was validated using 122 Shigella isolates. We found that the loss of a significant number of domains was likely the main driving force behind the evolution of Shigella, which could reduce energy expenditure and preserve only the most essential functions. Additionally, we observed that simultaneously gained and lost domains were often functionally related, which can facilitate and accelerate phenotypic evolutionary adaptation to the environment. All results obtained using our method agree with those of previous studies, which validates our proposed method.
Collapse
Affiliation(s)
- Boqian Wang
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yuan Jin
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Mingda Hu
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yunxiang Zhao
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xin Wang
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Junjie Yue
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Hongguang Ren
- Beijing Institute of Biotechnology, State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
20
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
van der Gulik PTS, Hoff WD, Speijer D. The contours of evolution: In defence of Darwin's tree of life paradigm. Bioessays 2024; 46:e2400012. [PMID: 38436469 DOI: 10.1002/bies.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures. Especially important is the need to conceptually distinguish between organismal trees and gene trees, which necessitates incorporating insights of widely occurring LGT into modern evolutionary theory. We demonstrate that all criticisms, while based on important new findings, do not invalidate the TOL. After considering the implications of these new insights, we find that the contours of evolution are best represented by a TOL.
Collapse
Affiliation(s)
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Filgueiras JPC, Zámocký M, Turchetto-Zolet AC. Unraveling the evolutionary origin of the P5CS gene: a story of gene fusion and horizontal transfer. Front Mol Biosci 2024; 11:1341684. [PMID: 38693917 PMCID: PMC11061531 DOI: 10.3389/fmolb.2024.1341684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024] Open
Abstract
The accumulation of proline in response to the most diverse types of stress is a widespread defense mechanism. In prokaryotes, fungi, and certain unicellular eukaryotes (green algae), the first two reactions of proline biosynthesis occur through two distinct enzymes, γ-glutamyl kinase (GK E.C. 2.7.2.11) and γ-glutamyl phosphate reductase (GPR E.C. 1.2.1.41), encoded by two different genes, ProB and ProA, respectively. Plants, animals, and a few unicellular eukaryotes carry out these reactions through a single bifunctional enzyme, the Δ1-pyrroline-5-carboxylate synthase (P5CS), which has the GK and GPR domains fused. To better understand the origin and diversification of the P5CS gene, we use a robust phylogenetic approach with a broad sampling of the P5CS, ProB and ProA genes, including species from all three domains of life. Our results suggest that the collected P5CS genes have arisen from a single fusion event between the ProA and ProB gene paralogs. A peculiar fusion event occurred in an ancestral eukaryotic lineage and was spread to other lineages through horizontal gene transfer. As for the diversification of this gene family, the phylogeny of the P5CS gene in plants shows that there have been multiple independent processes of duplication and loss of this gene, with the duplications being related to old polyploidy events.
Collapse
Affiliation(s)
- João Pedro Carmo Filgueiras
- Graduate Program in Genetics and Molecular Biology, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andreia Carina Turchetto-Zolet
- Graduate Program in Genetics and Molecular Biology, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
24
|
Domazet-Lošo M, Široki T, Šimičević K, Domazet-Lošo T. Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages. Nat Commun 2024; 15:2663. [PMID: 38531970 DOI: 10.1038/s41467-024-47017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The gain and loss of genes fluctuate over evolutionary time in major eukaryotic clades. However, the full profile of these macroevolutionary trajectories is still missing. To give a more inclusive view on the changes in genome complexity across the tree of life, here we recovered the evolutionary dynamics of gene family gain and loss ranging from the ancestor of cellular organisms to 352 eukaryotic species. We show that in all considered lineages the gene family content follows a common evolutionary pattern, where the number of gene families reaches the highest value at a major evolutionary and ecological transition, and then gradually decreases towards extant organisms. This supports theoretical predictions and suggests that the genome complexity is often decoupled from commonly perceived organismal complexity. We conclude that simplification by gene family loss is a dominant force in Phanerozoic genomes of various lineages, probably underpinned by intense ecological specializations and functional outsourcing.
Collapse
Affiliation(s)
- Mirjana Domazet-Lošo
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia.
| | - Tin Široki
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Korina Šimičević
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000, Zagreb, Croatia.
| |
Collapse
|
25
|
Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proc Natl Acad Sci U S A 2024; 121:e2316284121. [PMID: 38442176 PMCID: PMC10945790 DOI: 10.1073/pnas.2316284121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are, and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungus Metarhizium robertsii during experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome-but no other-was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis, we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment between M. robertsii and another congeneric insect pathogen, Metarhizium guizhouense. Hence, horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The accessory chromosome that was transferred contains genes that may be involved in its preferential horizontal transfer or support its establishment. These genes encode putative histones and histone-modifying enzymes, as well as putative virulence factors. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.
Collapse
Affiliation(s)
- Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Anna V. Grasse
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| | - Judith Müller
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel24118, Germany
- Max Planck Institute for Evolutionary Biology, Plön24306, Germany
| | - Hanna Leitner
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| | - Sylvia Cremer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg3400, Austria
| |
Collapse
|
26
|
Duwor S, Brites D, Mäser P. Phylogenetic Analysis of Pyruvate-Ferredoxin Oxidoreductase, a Redox Enzyme Involved in the Pharmacological Activation of Nitro-Based Prodrugs in Bacteria and Protozoa. BIOLOGY 2024; 13:178. [PMID: 38534448 DOI: 10.3390/biology13030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The present frontrunners in the chemotherapy of infections caused by protozoa are nitro-based prodrugs that are selectively activated by PFOR-mediated redox reactions. This study seeks to analyze the distribution of PFOR in selected protozoa and bacteria by applying comparative genomics to test the hypothesis that PFOR in eukaryotes was acquired through horizontal gene transfer (HGT) from bacteria. Furthermore, to identify other putatively acquired genes, proteome-wide and gene enrichment analyses were used. A plausible explanation for the patchy occurrence of PFOR in protozoa is based on the hypothesis that bacteria are potential sources of genes that enhance the adaptation of protozoa in hostile environments. Comparative genomics of Entamoeba histolytica and the putative gene donor, Desulfovibrio vulgaris, identified eleven candidate genes for HGT involved in intermediary metabolism. If these results can be reproduced in other PFOR-possessing protozoa, it would provide more validated evidence to support the horizontal transfer of pfor from bacteria.
Collapse
Affiliation(s)
- Seth Duwor
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
27
|
Brunk CF, Marshall CR. Opinion: The Key Steps in the Origin of Life to the Formation of the Eukaryotic Cell. Life (Basel) 2024; 14:226. [PMID: 38398735 PMCID: PMC10890422 DOI: 10.3390/life14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The path from life's origin to the emergence of the eukaryotic cell was long and complex, and as such it is rarely treated in one publication. Here, we offer a sketch of this path, recognizing that there are points of disagreement and that many transitions are still shrouded in mystery. We assume life developed within microchambers of an alkaline hydrothermal vent system. Initial simple reactions were built into more sophisticated reflexively autocatalytic food-generated networks (RAFs), laying the foundation for life's anastomosing metabolism, and eventually for the origin of RNA, which functioned as a genetic repository and as a catalyst (ribozymes). Eventually, protein synthesis developed, leading to life's biology becoming dominated by enzymes and not ribozymes. Subsequent enzymatic innovation included ATP synthase, which generates ATP, fueled by the proton gradient between the alkaline vent flux and the acidic sea. This gradient was later internalized via the evolution of the electron transport chain, a preadaptation for the subsequent emergence of the vent creatures from their microchamber cradles. Differences between bacteria and archaea suggests cellularization evolved at least twice. Later, the bacterial development of oxidative phosphorylation and the archaeal development of proteins to stabilize its DNA laid the foundation for the merger that led to the formation of eukaryotic cells.
Collapse
Affiliation(s)
- Clifford F. Brunk
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Charles R. Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720-4780, USA
| |
Collapse
|
28
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
29
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
30
|
Jian J, Wu Z, Silva-Núñez A, Li X, Zheng X, Luo B, Liu Y, Fang X, Workman CT, Larsen TO, Hansen PJ, Sonnenschein EC. Long-read genome sequencing provides novel insights into the harmful algal bloom species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168042. [PMID: 37898203 DOI: 10.1016/j.scitotenv.2023.168042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms worldwide, which are often associated with massive fish-kills and subsequent economic losses. In here, we present nuclear and plastid genome assemblies using PacBio HiFi long reads and DNBseq short reads for the two P. parvum strains UTEX 2797 and CCMP 3037, representing producers of type A prymnesins. Our results show that the P. parvum strains have a moderate haptophyte genome size of 97.56 and 107.32 Mb. The genome assemblies present one of highest contiguous assembled contig sequences to date consisting of 463 and 362 contigs with a contig N50 of 596.99 kb and 968.39 kb for strain UTEX 2797 and CCMP 3037, respectively. The assembled contigs of UTEX 2797 and CCMP 3037 were anchored to 34 scaffolds, with a scaffold N50 of 5.35 Mb and 3.61 Mb, respectively, accounting for 93.2 % and 97.9 % of the total length. Each plastid genome comprises a circular contig. A total of 20,578 and 19,426 protein-coding genes were annotated for UTEX 2797 and CCMP 3037. The expanded gene family analysis showed that starch and sucrose metabolism, sulfur metabolism, energy metabolism and ABC transporters are involved in the evolution of P. parvum. Polyketide synthase (PKS) genes responsible for the production of secondary metabolites such as prymnesins displayed different expression patterns under nutrient limitation. Overlap with repeats and horizontal gene transfer may be two contributing factors to the high number of PKS genes found in this species. The two high quality P. parvum genomes will serve as valuable resources for ecological, genetic, and toxicological studies of haptophytes that can be used to monitor and potentially manage harmful blooms of ichthyotoxic P. parvum in the future.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Arisbe Silva-Núñez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| | - Xiaohui Li
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bei Luo
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Liu
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Department of Biosciences, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
31
|
Guo T, Pan K, Chen Y, Tian Y, Deng J, Li J. When aerobic granular sludge faces emerging contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167792. [PMID: 37838059 DOI: 10.1016/j.scitotenv.2023.167792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The evolution of emerging contaminants (ECs) has caused greater requirements and challenges to the current biological wastewater treatment technology. As one of the most promising biological treatment technologies, the aerobic granular sludge (AGS) process also faces the challenge of ECs. This study summarizes the recent progress and characteristics of several representative ECs (persistent organic pollutants, endocrine disrupting chemicals, antibiotics, and microplastics) in AGS systems that have garnered widespread attention. Additionally, the biodegradation and adsorption mechanisms of ECs were discussed, and the interactions between various ECs and AGS was elucidated. The importance of extracellular polymeric substances for the stabilization of AGS and the removal of ECs is also discussed. Knowledge gaps and future research directions that may enable the practical application of AGS are highlighted. Overall, AGS processes show great application potential and this review provides guidance for the future implementation of AGS technology as well as elucidating the mechanism of its interaction with ECs.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kuan Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yunxin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yajun Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jing Deng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
32
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
33
|
Raimondeau P, Bianconi ME, Pereira L, Parisod C, Christin PA, Dunning LT. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage. THE NEW PHYTOLOGIST 2023; 240:2072-2084. [PMID: 37793435 DOI: 10.1111/nph.19272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS/IRD/Université Toulouse 3, Toulouse, 31062, France
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
34
|
Zhang X, Han W, Fan X, Wang Y, Xu D, Sun K, Wang W, Zhang Y, Ma J, Ye N. Gene duplication and functional divergence of new genes contributed to the polar acclimation of Antarctic green algae. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:511-524. [PMID: 38045541 PMCID: PMC10689623 DOI: 10.1007/s42995-023-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Psychrophilic microalgae successfully survive in the extreme and highly variable polar ecosystems, which represent the energy base of most food webs and play a fundamental role in nutrient cycling. The success of microalgae is rooted in their adaptive evolution. Revealing how they have evolved to thrive in extreme polar environments will help us better understand the origin of life in polar ecosystems. We isolated a psychrophilic unicellular green alga, Microglena sp. YARC, from Antarctic sea ice which has a huge genome. Therefore, we predicted that gene replication may play an important role in its polar adaptive evolution. We found that its protein-coding gene number significantly increased and the duplication time was dated between 37 and 48 million years ago, which is consistent with the formation of the circumpolar Southern Ocean. Most duplicated paralogous genes were enriched in pathways related to photosynthesis, DNA repair, and fatty acid metabolism. Moreover, there were a total of 657 Microglena-specific families, including collagen-like proteins. The divergence in the expression patterns of the duplicated and species-specific genes reflects sub- and neo-functionalization during stress acclimation. Overall, key findings from this study provide new information on how gene duplication and their functional novelty contributed to polar algae adaptation to the highly variable polar environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00203-z.
Collapse
Affiliation(s)
- Xiaowen Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266200 China
| | - Wentao Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Xiao Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Yitao Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Dong Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Ke Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Yan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jian Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Naihao Ye
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266200 China
| |
Collapse
|
35
|
Palmgren M. Evolution of the sodium pump. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119511. [PMID: 37301269 DOI: 10.1016/j.bbamcr.2023.119511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
37
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
38
|
Rappaport HB, Oliverio AM. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology. Nat Commun 2023; 14:4959. [PMID: 37587119 PMCID: PMC10432404 DOI: 10.1038/s41467-023-40657-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Research in extreme environments has substantially expanded our understanding of the ecology and evolution of life on Earth, but a major group of organisms has been largely overlooked: microbial eukaryotes (i.e., protists). In this Perspective, we summarize data from over 80 studies of protists in extreme environments and identify focal lineages that are of significant interest for further study, including clades within Echinamoebida, Heterolobosea, Radiolaria, Haptophyta, Oomycota, and Cryptophyta. We argue that extreme environments are prime sampling targets to fill gaps in the eukaryotic tree of life and to increase our understanding of the ecology, metabolism, genome architecture, and evolution of eukaryotic life.
Collapse
Affiliation(s)
| | - Angela M Oliverio
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
39
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Widen SA, Bes IC, Koreshova A, Pliota P, Krogull D, Burga A. Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. Science 2023; 380:eade0705. [PMID: 37384706 DOI: 10.1126/science.ade0705] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Horizontal gene transfer, the movement of genetic material between species, has been reported across all major eukaryotic lineages. However, the underlying mechanisms of transfer and their impact on genome evolution are still poorly understood. While studying the evolutionary origin of a selfish element in the nematode Caenorhabditis briggsae, we discovered that Mavericks, ancient virus-like transposons related to giant viruses and virophages, are one of the long-sought vectors of horizontal gene transfer. We found that Mavericks gained a novel herpesvirus-like fusogen in nematodes, leading to the widespread exchange of cargo genes between extremely divergent species, bypassing sexual and genetic barriers spanning hundreds of millions of years. Our results show how the union between viruses and transposons causes horizontal gene transfer and ultimately genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Israel Campo Bes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
41
|
Lapadula WJ, Juri Ayub M. Ribosome Inactivating Proteins in Insects: HGT, gene expression, and functional implications. Gene 2023:147547. [PMID: 37286020 DOI: 10.1016/j.gene.2023.147547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that depurinate an adenine residue in the conserved alpha-sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. Previously, we reported the existence of these toxins in insects, whose presence is restricted to mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti) and whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci). Both groups of genes are derived from two independent horizontal gene transfer (HGT) events and are evolved under purifying selection. Here, we report and characterize the occurrence of a third HGT event in the Sciaroidea superfamily, which supports the recurrent acquisition of RIP genes by insects. Transcriptomic experiments, available in databases, allowed us to describe the temporal and spatial expression profiles for these foreign genes in these organisms. Furthermore, we found that RIP expression is induced after infection with pathogens and provided, for the first time, transcriptomic evidence of parasite SRL depurination. This evidence suggests a possible role of these foreign genes as immune effectors in insects.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina
| |
Collapse
|
42
|
Xu Y, Liu Q, Meng G, Dong C. Horizontal gene transfer of Cccyt contributes to virulence of mycoparasite Calcarisporium cordycipiticola by interacting with a host heat shock protein. Int J Biol Macromol 2023:124927. [PMID: 37270129 DOI: 10.1016/j.ijbiomac.2023.124927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/12/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Horizontal gene transfer (HGT) is an important driving force for virulence evolution of pathogens, however, functions of these transferred genes are still not fully investigated. Here, an HGT effector, CcCYT was reported to contribute to virulence of a mycoparasite, Calcarisporium cordycipiticola to the host Cordyceps militaris, an important mushroom. Cccyt was predicted to be horizontally transferred from Actinobacteria ancestor by phylogenetic, synteny, GC content and codon usage pattern analyses. The transcript of Cccyt was sharply up-regulated at the early stage of infecting C. militaris. This effector was localized to the cell wall and contributed to the virulence of C. cordycipiticola without affecting its morphology, mycelial growth, conidiation, and resistance to abiotic stress. CcCYT can firstly bind the septa, and finally cytoplasm of the deformed hyphal cells of C. militaris. Pull-down assay coupled mass spectrometry revealed that proteins with which CcCYT interacted were related to protein process, folding and degradation. GST-Pull down assay confirmed that C. cordycipiticola effector CcCYT can interact with host protein CmHSP90 to inhibit the immune response of host. The results provided functional evidence that HGT is an important driving force for the virulence evolution and will be helpful for revealing the interaction between mycoparasite and mushroom host.
Collapse
Affiliation(s)
- Yanyan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
43
|
Gilbert C, Maumus F. Sidestepping Darwin: horizontal gene transfer from plants to insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101035. [PMID: 37061183 DOI: 10.1016/j.cois.2023.101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants, and insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant genetic material through HT. One of them, the whitefly Bemisia tabaci (Middle East Asia Minor 1), concentrates most of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-parasite interactions. We highlight methodological approaches that may further help characterize these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated and that in-depth studies of these transfers will shed new light on plant-insect interactions.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France.
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| |
Collapse
|
44
|
Van Etten J, Benites LF, Stephens TG, Yoon HS, Bhattacharya D. Algae obscura: The potential of rare species as model systems. JOURNAL OF PHYCOLOGY 2023; 59:293-300. [PMID: 36764681 DOI: 10.1111/jpy.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/28/2023]
Abstract
Model organism research has provided invaluable knowledge about foundational biological principles. However, most of these studies have focused on species that are in high abundance, easy to cultivate in the lab, and represent only a small fraction of extant biodiversity. Here, we present three examples of rare algae with unusual features that we refer to as "algae obscura." The Cyanidiophyceae (Rhodophyta), Glaucophyta, and Paulinella (rhizarian) lineages have all transitioned out of obscurity to become models for fundamental evolutionary research. Insights have been gained into the prevalence and importance of eukaryotic horizontal gene transfer, early Earth microbial community dynamics, primary plastid endosymbiosis, and the origin of Archaeplastida. By reviewing the research that has come from the exploration of these organisms, we demonstrate that underappreciated algae have the potential to help us formulate, refine, and substantiate core hypotheses and that such organisms should be considered when establishing future model systems.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Luiz Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
45
|
van der Gulik PTS, Hoff WD, Speijer D. Renewing Linnaean taxonomy: a proposal to restructure the highest levels of the Natural System. Biol Rev Camb Philos Soc 2023; 98:584-602. [PMID: 36366773 DOI: 10.1111/brv.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
During the last century enormous progress has been made in the understanding of biological diversity, involving a dramatic shift from macroscopic to microscopic organisms. The question now arises as to whether the Natural System introduced by Carl Linnaeus, which has served as the central system for organizing biological diversity, can accommodate the great expansion of diversity that has been discovered. Important discoveries regarding biological diversity have not been fully integrated into a formal, coherent taxonomic system. In addition, because of taxonomic challenges and conflicts, various proposals have been made to abandon key aspects of the Linnaean system. We review the current status of taxonomy of the living world, focussing on groups at the taxonomic level of phylum and above. We summarize the main arguments against and in favour of abandoning aspects of the Linnaean system. Based on these considerations, we conclude that retaining the Linnaean Natural System provides important advantages. We propose a relatively small number of amendments for extending this system, particularly to include the named rank of world (Latin alternative mundis) formally to include non-cellular entities (viruses), and the named rank of empire (Latin alternative imperium) to accommodate the depth of diversity in (unicellular) eukaryotes that has been uncovered. We argue that in the case of both the eukaryotic domain and the viruses the cladistic approach intrinsically fails. However, the resulting semi-cladistic system provides a productive way forward that can help resolve taxonomic challenges. The amendments proposed allow us to: (i) retain named taxonomic levels and the three-domain system, (ii) improve understanding of the main eukaryotic lineages, and (iii) incorporate viruses into the Natural System. Of note, the proposal described herein is intended to serve as the starting point for a broad scientific discussion regarding the modernization of the Linnaean system.
Collapse
Affiliation(s)
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics and Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - David Speijer
- Department of Medical Biochemistry, AmsterdamUMC, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Dorrell RG, Kuo A, Füssy Z, Richardson EH, Salamov A, Zarevski N, Freyria NJ, Ibarbalz FM, Jenkins J, Pierella Karlusich JJ, Stecca Steindorff A, Edgar RE, Handley L, Lail K, Lipzen A, Lombard V, McFarlane J, Nef C, Novák Vanclová AM, Peng Y, Plott C, Potvin M, Vieira FRJ, Barry K, de Vargas C, Henrissat B, Pelletier E, Schmutz J, Wincker P, Dacks JB, Bowler C, Grigoriev IV, Lovejoy C. Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae. Life Sci Alliance 2023; 6:6/3/e202201833. [PMID: 36522135 PMCID: PMC9756366 DOI: 10.26508/lsa.202201833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Collapse
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Füssy
- Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
| | - Elisabeth H Richardson
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikola Zarevski
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Nastasia J Freyria
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Federico M Ibarbalz
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Jose Pierella Karlusich
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Andrei Stecca Steindorff
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robyn E Edgar
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Lori Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vincent Lombard
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - John McFarlane
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Charlotte Nef
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Anna Mg Novák Vanclová
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Yi Peng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marianne Potvin
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colomban de Vargas
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, Roscoff, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric Pelletier
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Patrick Wincker
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta and Department of Biological Sciences, and University of Alberta, Edmonton, Canada
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative des Systèmes, Université Laval, Quebec, Canada
| |
Collapse
|
47
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
48
|
Van Etten J, Cho CH, Yoon HS, Bhattacharya D. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin Cell Dev Biol 2023; 134:4-13. [PMID: 35339358 DOI: 10.1016/j.semcdb.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
49
|
Cho CH, Park SI, Huang TY, Lee Y, Ciniglia C, Yadavalli HC, Yang SW, Bhattacharya D, Yoon HS. Genome-wide signatures of adaptation to extreme environments in red algae. Nat Commun 2023; 14:10. [PMID: 36599855 DOI: 10.1038/s41467-022-35566-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tzu-Yen Huang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
50
|
Kronmiller BA, Feau N, Shen D, Tabima JF, Ali SS, Armitage AD, Arredondo F, Bailey BA, Bollmann SR, Dale A, Harrison RJ, Hrywkiw K, Kasuga T, McDougal R, Nellist CF, Panda P, Tripathy S, Williams NM, Ye W, Wang Y, Hamelin RC, Grünwald NJ. Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:26-46. [PMID: 36306437 DOI: 10.1094/mpmi-06-22-0133-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brent A Kronmiller
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, MA, U.S.A
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Andrew D Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, U.K
| | - Felipe Arredondo
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| | - Angela Dale
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- SC-New Construction Materials, FPInnovations, Vancouver, V6T 1Z4, Canada
| | | | - Kelly Hrywkiw
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, U.S.A
| | - Rebecca McDougal
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
| | | | - Preeti Panda
- The New Zealand Institute for Plant and Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
| | | | - Nari M Williams
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North, New Zealand
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|