1
|
Cui S, Zhou L, Fang Q, Xiao H, Jin D, Liu Y. Growth period and variety together drive the succession of phyllosphere microbial communities of grapevine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175334. [PMID: 39117232 DOI: 10.1016/j.scitotenv.2024.175334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Phyllosphere microbes play a crucial role in plant health and productivity. However, the influence of abiotic and biotic factors on these communities is poorly understood. Here, we used amplicon sequencing to investigate the microbiome variations across eight grape cultivars and three distinct leaf ages. The diversity and richness of phyllosphere microbiomes were significantly affected by cultivars and leaf age. Young leaves of most grape cultivars had a higher diversity. Beta-diversity analyses revealed notable differences in microbial communities across leaf ages, with bacterial communities varying substantially between cultivars. The main bacterial genera included Staphylococcus, Exiguobacterium, Acinetobacter, Enterococcus, and Erwinia; the principal fungal genera were Cladosporium, Moesziomyces, Alternaria, Didymella, and Coprinellus across all samples. LEfSe analysis revealed significant differences in bacterial and fungal biomarkers at different leaf ages, with no biomarkers identified among different cultivars. Fungal biomarkers were more abundant than bacterial at three leaf ages, and older leaves had more fungal biomarkers. Notably, beneficial microbial taxa with biocontrol potential were present on the phyllosphere at 45 d, whereas certain fungal groups associated with increased disease risk were first detected at 100 d. The bacterial network was more complex than the fungal network, and young leaves had a more complex network in most cultivars. Our study elucidated the dynamics of early grape phyllosphere microbes, providing valuable insights for early detection and prediction of grape diseases and a foundation for leveraging the grape leaf microbiome for agricultural purposes.
Collapse
Affiliation(s)
- Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lianzhu Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiandong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Xiao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Oaikhena AO, Coker ME, Cyril-Okoh D, Wicaksono WA, Olimi E, Berg G, Okeke IN. The phyllosphere of Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii is inhabited by a specific microbiota. Sci Rep 2024; 14:22806. [PMID: 39354019 PMCID: PMC11448504 DOI: 10.1038/s41598-024-68001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/18/2024] [Indexed: 10/03/2024] Open
Abstract
The microbiota of medicinal plants is known to be highly specific and can contribute to medicinal activity. However, the majority of plant species have not yet been studied. Here, we investigated the phyllosphere composition of two common Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii, by a polyphasic approach combining analyses of metagenomic DNA and isolates. Microbial abundance estimated via qPCR using specific marker gene primers showed that all leaf samples were densely colonized, with up to 108 per gram of leaf, with higher bacterial and fungal abundance than Archaea. While no statistically significant differences between both plant species were found for abundance, amplicon sequencing of 16S rRNA and ITS genes revealed distinct microbiota compositions. Only seven of the 27 genera isolated were represented on both plants, e.g. dominant Sphingomonas spp., and numerous members of Xanthomonadaceae and Enterobacteriaceae. The most dominant fungal families on both plants were Cladosporiaceae, Mycosphaerellaceae and Trichosphaeriaceae. In addition, 225 plant-specific isolates were identified, with Pseudomonadota and Enterobacteriaceae being dominant. Interestingly, 29 isolates are likely species previously unknown, and 14 of these belong to Burkholderiales. However, a high proportion, 56% and 40% of the isolates from E. lateriflora and F. thonningii, respectively, were characterized as various Escherichia coli. The growth of most of the bacterial isolates was not influenced by extractable secondary metabolites of plants. Our results suggest that a specific and diverse microbial community inhabits the leaves of both E. lateriflora and F. thonningii, including potentially new species and producers of antimicrobials.
Collapse
Affiliation(s)
- Anderson O Oaikhena
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria.
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Morenike E Coker
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Dorothy Cyril-Okoh
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Wisnu A Wicaksono
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Expedito Olimi
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Department of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Ngolong Ngea GL, Yang Q, Xu M, Ianiri G, Dhanasekaran S, Zhang X, Bi Y, Zhang H. Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies. Compr Rev Food Sci Food Saf 2024; 23:e13397. [PMID: 38924311 DOI: 10.1111/1541-4337.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meiqiu Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Chen X, Li L, He Y. Epiphytic and endophytic bacteria on Camellia oleifera phyllosphere: exploring region and cultivar effect. BMC Ecol Evol 2024; 24:62. [PMID: 38735962 PMCID: PMC11089727 DOI: 10.1186/s12862-024-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
The epiphytic and endophytic bacteria play an important role in the healthy growth of plants. Both plant species and growth environmental influence the bacterial population diversity, yet it is inconclusive whether it is the former or the latter that has a greater impact. To explore the communities of the epiphytic and endophytic microbes in Camellia oleifera, this study assessed three representative C. oleifera cultivars from three areas in Hunan, China by Illumina high-throughput sequencing. The results showed that the diversity and species richness of endophytic microbial community in leaves were significantly higher than those of microbial community in the epiphytic. The diversity and species richness of epiphytic and endophytic microbes are complex when the same cultivar was grown in different areas. The C. oleifera cultivars grown in Youxian had the highest diversity of epiphytic microbial community, but the lowest abundance, while the cultivars grown in Changsha had the highest diversity and species richness of endophytic microbes in leaves. It was concluded that the dominant phylum mainly included Proteobacteria, Actinobacteriota and Firmicutes through the analysis of the epiphytic and endophytic microbial communities of C. oleifera. The species and relative abundances of epiphytic and endophytic microbial community were extremely different at the genus level. The analysis of NMDS map and PERMANOVA shows that the species richness and diversity of microbial communities in epiphytes are greatly influenced by region. However, the community structure of endophytic microorganisms in leaves is influenced by region and cultivated varieties, but the influence of cultivars is more significant. Molecular ecological network analysis showed that the symbiotic interaction of epiphytic microbial community was more complex.
Collapse
Affiliation(s)
- Xiaolin Chen
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Lili Li
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yuanhao He
- Key Laboratory of National Forestry and Grassland Administration On Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China.
| |
Collapse
|
6
|
Yu Z, Wang D, Zhang B, Mao H, Wang Z, Yan Z, Tao C, Deng X, Shen Q, Li R. Bacillus velezensis SQR9 promotes plant growth through colonization and rhizosphere-phyllosphere bacteria interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13250. [PMID: 38575119 PMCID: PMC10994692 DOI: 10.1111/1758-2229.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
The rhizosphere and phyllosphere of plants are home to a diverse range of microorganisms that play pivotal roles in ecosystem services. Consequently, plant growth-promoting bacteria (PGPB) are extensively utilized as inoculants to enhance plant growth and boost productivity. Despite this, the interactions between the rhizosphere and phyllosphere, which are influenced by PGPB inoculation, have not been thoroughly studied to date. In this study, we inoculated Bacillus velezensis SQR9, a PGPB, into the bulk soil, rhizosphere or phyllosphere, and subsequently examined the bacterial communities in the rhizosphere and phyllosphere using amplicon sequencing. Our results revealed that PGPB inoculation increased its abundance in the corresponding compartment, and all treatments demonstrated plant growth promotion effects. Further analysis of the sequencing data indicated that the presence of PGPB exerted a more significant impact on bacterial communities in both the rhizosphere and phyllosphere than in the inoculation compartment. Notably, the PGPB stimulated similar rhizosphere-beneficial microbes regardless of the inoculation site. We, therefore, conclude that PGPB can promote plant growth both directly and indirectly through the interaction between the rhizosphere and phyllosphere, leading to the enrichment of beneficial microorganisms.
Collapse
Affiliation(s)
- Zhao Yu
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Dongsheng Wang
- Nanjing Institute of Vegetable ScienceNanjingJiangsuPeople's Republic of China
| | - Bo Zhang
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Hancheng Mao
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Zhe Wang
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Zhiguang Yan
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Chengyuan Tao
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Xuhui Deng
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Qirong Shen
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Rong Li
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| |
Collapse
|
7
|
Welsh BL, Eisenhofer R. The prevalence of controls in phyllosphere microbiome research: a methodological review. THE NEW PHYTOLOGIST 2024; 242:23-29. [PMID: 38339825 DOI: 10.1111/nph.19573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
DNA contamination can critically confound microbiome studies. Here, we take a systematic approach to review the current literature and investigate the prevalence of contamination controls in phyllosphere microbiome research over the past decade. By utilising systematic review principles for this review, we were able to conduct a thorough investigation, screening 450 articles from three databases for eligibility and extracting data in a controlled and methodical manner. Worryingly, we observed a surprisingly low usage of both positive and negative contamination controls in phyllosphere research. As a result, we propose a set of minimum standards to combat the effects of contamination in future phyllosphere research.
Collapse
Affiliation(s)
- Brady L Welsh
- School of Biological Sciences, The University of Adelaide, North Terrace Campus, Adelaide, SA, 5005, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, North Terrace Campus, Adelaide, SA, 5005, Australia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark
| |
Collapse
|
8
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Shi Z, Yang M, Li K, Yang L, Yang L. Influence of cultivation duration on microbial taxa aggregation in Panax ginseng soils across ecological niches. Front Microbiol 2024; 14:1284191. [PMID: 38282744 PMCID: PMC10813202 DOI: 10.3389/fmicb.2023.1284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Microbial communities are crucial for plant health and productivity. However, the influence of cultivation age on the ecological processes in assembling plant microbiomes at various ecological niches remains unclear. Methods We selected 12 samples from ginseng farmlands with different cultivation years (N4: 4 years old, N6: 6 years old). We used soil physicochemical properties, enzyme activities, and high-throughput sequencing (16S rDNA and ITS) to examine the rhizoplane (RP), rhizosphere (RS), and bulk soil (BS). Results Our results indicated that cultivation years significantly affect the soil microbiome's diversity and community composition across different ecological niches. The BS microbiome experienced the largest effect, while the RS experienced the smallest. N6 showed a greater impact than N4. This effect was more pronounced on the fungal communities than the bacterial communities of various ecological niches and can be closely related to the soil's physicochemical properties. In N4 soils, we observed an upward trend in both the number of ASVs (amplicon sequence variations) and the diversity of soil microbial taxa across various ecological niches. In N4RP, the bacteria Sphingomonas, known for degrading toxic soil compounds, was present. All ecological niches in N4 showed significant enrichment of Tetracladium fungi, positively associated with crop yield (N4RP at 6.41%, N4RS at 11.31%, and N4BS at 3.45%). In N6 soils, we noted a stark decline in fungal diversity within the BS, with a 57.5% reduction in ASVs. Moreover, Sphingomonas was abundantly present in N6RS and N6BS soils. The relative abundance of the pathogen-inhibiting fungus Exophiala in N6RP and N6RS reached 34.18% and 13.71%, respectively, marking increases of 4.9-fold and 7.7-fold. Additionally, another pathogeninhibiting fungus, Humicola, showed significant enrichment in N6BS, with a 7.5-fold increase. The phenolic acid-producing fungus Pseudogymnoascus in N6RP, N6RS, and N6BS showed increases of 2.41-fold, 2.55-fold, and 4.32-fold, respectively. We hypothesize that functional genes related to the metabolism of terpenoids and polyketides, as well as signaling molecules and interactions, regulate soil microbial taxa in ginseng from different cultivation years. Discussion In conclusion, our study enhances understanding of plant-microbe interactions and aids the sustainable development of medicinal plants, particularly by addressing ginseng succession disorder.
Collapse
Affiliation(s)
| | | | | | - Li Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Wang Z, Peng D, Fu C, Luo X, Guo S, Li L, Yin H. Pan-metagenome reveals the abiotic stress resistome of cigar tobacco phyllosphere microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1248476. [PMID: 38179476 PMCID: PMC10765411 DOI: 10.3389/fpls.2023.1248476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
The important role of microbial associations in mediating plant protection and responses to abiotic stresses has been widely recognized. However, there have been limited studies on the functional profile of the phyllosphere microbiota from tobacco (Nicotiana tabacum), hindering our understanding of the mechanisms underlying stress resilience in this representative and easy-to-cultivate model species from the solanaceous family. To address this knowledge gap, our study employed shotgun metagenomic sequencing for the first time to analyze the genetic catalog and identify putative plant growth promoting bacteria (PGPB) candidates that confer abiotic stress resilience throughout the growth period of cigar tobacco in the phyllosphere. We identified abundant genes from specific bacterial lineages, particularly Pseudomonas, within the cigar tobacco phyllospheric microbiome. These genes were found to confer resilience against a wide range of stressors, including osmotic and drought stress, heavy metal toxicity, temperature perturbation, organic pollutants, oxidative stress, and UV light damage. In addition, we conducted a virome mining analysis on the metagenome to explore the potential roles of viruses in driving microbial adaptation to environmental stresses. Our results identified a total of 3,320 scaffolds predicted to be viral from the cigar tobacco phyllosphere metagenome, with various phages infecting Pseudomonas, Burkholderia, Enterobacteria, Ralstonia, and related viruses. Within the virome, we also annotated genes associated with abiotic stress resilience, such as alkaline phosphatase D (phoD) for nutrient solubilization and glutamate-5-semialdehyde dehydrogenase (proA) for osmolyte synthesis. These findings shed light on the unexplored roles of viruses in facilitating and transferring abiotic stress resilience in the phyllospheric microbiome through beneficial interactions with their hosts. The findings from this study have important implications for agricultural practices, as they offer potential strategies for harnessing the capabilities of the phyllosphere microbiome to enhance stress tolerance in crop plants.
Collapse
Affiliation(s)
- Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Changwu Fu
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xianxue Luo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Shijie Guo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
12
|
Wei N, Tan J. Environment and Host Genetics Influence the Biogeography of Plant Microbiome Structure. MICROBIAL ECOLOGY 2023; 86:2858-2868. [PMID: 37610498 DOI: 10.1007/s00248-023-02288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.
Collapse
Affiliation(s)
- Na Wei
- The Holden Arboretum, Kirtland, OH, 44094, USA.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisianan State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
13
|
Mukherjee A, Tikariha H, Bandla A, Pavagadhi S, Swarup S. Global analyses of biosynthetic gene clusters in phytobiomes reveal strong phylogenetic conservation of terpenes and aryl polyenes. mSystems 2023; 8:e0038723. [PMID: 37409823 PMCID: PMC10469690 DOI: 10.1128/msystems.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
There are gaps in our understandings on how did the evolutionary relationships among members of the phytobiomes shape their ability to produce tremendously complex specialized metabolites under the influence of plant host. To determine these relationships, we investigated the phylogenetic conservation of biosynthetic gene clusters (BGCs) on a global collection of 4,519 high-quality and nonredundant (out of 12,181) bacterial isolates and metagenome-assembled genomes from 47 different plant hosts and soil, by adopting three independent phylogenomic approaches (D-test, Pagel's λ, and consenTRAIT). We report that the BGCs are phylogenetically conserved to varying strengths and depths in their different classes. We show that the ability to produce specialized metabolites qualifies as a complex trait, and the depth of conservation is equivalent to ecologically relevant complex microbial traits. Interestingly, terpene and aryl polyene BGCs had the strongest phylogenetic conservation in the phytobiomes, but not in the soil microbiomes. Furthermore, we showed that terpenes are largely uncharacterized in phytobiomes and pinpointed specific clades that harbor potentially novel terpenes. Taken together, this study sheds light on the evolution of specialized metabolites' biosynthesis potential in phytobiomes under the influence of plant hosts and presents strategies to rationally guide the discovery of potentially novel classes of metabolites. IMPORTANCE This study expands our understandings of the biosynthetic potential of phytobiomes by using such worldwide and extensive collection of microbiomes from plants and soil. Apart from providing such vital resource for the plant microbiome researchers, this study provides fundamental insights into the evolution of biosynthetic gene clusters (BGCs) in phytobiomes under the influence of plant host. Specifically, we report that the strength of phylogenetic conservation in microbiomes varies for different classes of BGCs and is influenced as a result of plant host association. Furthermore, our results indicate that biosynthetic potential of specialized metabolites is deeply conserved equivalent to other complex and ecologically relevant microbial traits. Finally, for the most conserved class of specialized metabolites (terpenes), we identified clades harboring potentially novel class of molecules. Future studies could focus on plant-microbe coevolution and interactions through specialized metabolites building upon these findings.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Hitesh Tikariha
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Aditya Bandla
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shruti Pavagadhi
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
15
|
Zhou R, Duan GL, García-Palacios P, Yang G, Cui HL, Yan M, Yin Y, Yi XY, Li L, Delgado-Baquerizo M, Zhu YG. Environmental factors and host genotype control foliar epiphytic microbial community of wild soybeans across China. Front Microbiol 2023; 14:1065302. [PMID: 36992926 PMCID: PMC10041966 DOI: 10.3389/fmicb.2023.1065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionThe microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood.MethodsHere, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified.ResultsOur findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa.ConclusionOur study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lv Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- *Correspondence: Yong-Guan Zhu,
| |
Collapse
|
16
|
Hoffmann A, Posirca AR, Lewin S, Verch G, Büttner C, Müller MEH. Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:507. [PMID: 36771591 PMCID: PMC9919219 DOI: 10.3390/plants12030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Börde (MBB), Müncheberger Sander (MSA), Uckermärkisches Hügelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Alexandra-Raluca Posirca
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- State Office for Rural Development, Agriculture and Land Reorganization (LELF) Brandenburg, Division P, 15236 Frankfurt (Oder), Germany
| | - Simon Lewin
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Gernot Verch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Carmen Büttner
- Phytomedicine, Albrecht Daniel Thaer Institute, Faculty of Life Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
17
|
Cornelissen JHC, Cornwell WK, Freschet GT, Weedon JT, Berg MP, Zanne AE. Coevolutionary legacies for plant decomposition. Trends Ecol Evol 2023; 38:44-54. [PMID: 35945074 DOI: 10.1016/j.tree.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Collapse
Affiliation(s)
- J Hans C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - William K Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - James T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Matty P Berg
- A-LIFE, Ecology and Evolution Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Postiglione A, Prigioniero A, Zuzolo D, Tartaglia M, Scarano P, Maisto M, Ranauda MA, Sciarrillo R, Thijs S, Vangronsveld J, Guarino C. Quercus ilex Phyllosphere Microbiome Environmental-Driven Structure and Composition Shifts in a Mediterranean Contex. PLANTS (BASEL, SWITZERLAND) 2022; 11:3528. [PMID: 36559640 PMCID: PMC9782775 DOI: 10.3390/plants11243528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The intra- and interdomain phyllosphere microbiome features of Quercus ilex L. in a Mediterranean context is reported. We hypothesized that the main driver of the phyllosphere microbiome might be the season and that atmospheric pollutants might have a co-effect. Hence, we investigated the composition of epiphytic bacteria and fungi of leaves sampled in urban and natural areas (in Southern Italy) in summer and winter, using microscopy and metagenomic analysis. To assess possible co-effects on the composition of the phyllosphere microbiome, concentrations of particulate matter and polycyclic aromatic hydrocarbons (PAHs) were determined from sampled leaves. We found that environmental factors had a significative influence on the phyllosphere biodiversity, altering the taxa relative abundances. Ascomycota and Firmicutes were higher in summer and in urban areas, whereas a significant increase in Proteobacteria was observed in the winter season, with higher abundance in natural areas. Network analysis suggested that OTUs belonging to Acidobacteria, Cytophagia, unkn. Firmicutes(p), Actinobacteria are keystone of the Q. ilex phyllosphere microbiome. In addition, 83 genes coding for 5 enzymes involved in PAH degradation pathways were identified. Given that the phyllosphere microbiome can be considered an extension of the ecosystem services offered by trees, our results can be exploited in the framework of Next-Generation Biomonitoring.
Collapse
Affiliation(s)
- Alessia Postiglione
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
19
|
Zhan C, Matsumoto H, Liu Y, Wang M. Pathways to engineering the phyllosphere microbiome for sustainable crop production. NATURE FOOD 2022; 3:997-1004. [PMID: 37118297 DOI: 10.1038/s43016-022-00636-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/12/2022] [Indexed: 04/30/2023]
Abstract
Current disease resistance breeding, which is largely dependent on the exploitation of resistance genes in host plants, faces the serious challenges of rapidly evolving phytopathogens. The phyllosphere is the largest biological surface on Earth and an untapped reservoir of functional microbiomes. The phyllosphere microbiome has the potential to defend against plant diseases. However, the mechanisms of how the microbiota assemble and function in the phyllosphere remain largely elusive, and this restricts the exploitation of the targeted beneficial microbes in the field. Here we review the endogenous and exogenous cues impacting microbiota assembly in the phyllosphere and how the phyllosphere microbiota in turn facilitate the disease resistance of host plants. We further construct a holistic framework by integrating of holo-omics, genetic manipulation, culture-dependent characterization and emerging artificial intelligence techniques, such as deep learning, to engineer the phyllosphere microbiome for sustainable crop production.
Collapse
Affiliation(s)
- Chengfang Zhan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
20
|
Gutierrez A, Grillo MA. Effects of Domestication on Plant-Microbiome Interactions. PLANT & CELL PHYSIOLOGY 2022; 63:1654-1666. [PMID: 35876043 DOI: 10.1093/pcp/pcac108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Through the process of domestication, selection is targeted on a limited number of plant traits that are typically associated with yield. As an unintended consequence, domesticated plants often perform poorly compared to their wild progenitors for a multitude of traits that were not under selection during domestication, including abiotic and biotic stress tolerance. Over the past decade, advances in sequencing technology have allowed for the rigorous characterization of host-associated microbial communities, termed the microbiome. It is now clear that nearly every conceivable plant interaction with the environment is mediated by interactions with the microbiome. For this reason, plant-microbiome interactions are an area of great promise for plant breeding and crop improvement. Here, we review the literature to assess the potential impact that domestication has had on plant-microbiome interactions and the current understanding of the genetic basis of microbiome variation to inform plant breeding efforts. Overall, we find limited evidence that domestication impacts the diversity of microbiomes, but domestication is often associated with shifts in the abundance and composition of microbial communities, including taxa of known functional significance. Moreover, genome-wide association studies and mutant analysis have not revealed a consistent set of core candidate genes or genetic pathways that confer variation in microbiomes across systems. However, such studies do implicate a consistent role for plant immunity, root traits, root and leaf exudates and cell wall integrity as key traits that control microbiome colonization and assembly. Therefore, selection on these key traits may pose the most immediate promise for enhancing plant-microbiome interactions through breeding.
Collapse
Affiliation(s)
- Andres Gutierrez
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
21
|
Kim SG, Lee SB, Jo SJ, Cho K, Park JK, Kwon J, Giri SS, Kim SW, Kang JW, Jung WJ, Lee YM, Roh E, Park SC. Phage Cocktail in Combination with Kasugamycin as a Potential Treatment for Fire Blight Caused by Erwinia amylovora. Antibiotics (Basel) 2022; 11:1566. [PMID: 36358221 PMCID: PMC9686651 DOI: 10.3390/antibiotics11111566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
Recently, there has been an increasing number of blight disease reports associated with Erwinia amylovora and Erwinia pyrifoliae in South Korea. Current management protocols that have been conducted with antibiotics have faced resistance problems and the outbreak has not decreased. Because of this concern, the present study aimed to provide an alternative method to control the invasive fire blight outbreak in the nation using bacteriophages (phages) in combination with an antibiotic agent (kasugamycin). Among 54 phage isolates, we selected five phages, pEa_SNUABM_27, 31, 32, 47, and 48, based on their bacteriolytic efficacy. Although only phage pEa_SNUABM_27 showed host specificity for E. amylovora, all five phages presented complementary lytic potential that improved the host infectivity coverage of each phage All the phages in the cocktail solution could lyse phage-resistant strains. These strains had a decreased tolerance to the antibiotic kasugamycin, and a synergistic effect of phages and antibiotics was demonstrated both in vitro and on immature wound-infected apples. It is noteworthy that the antibacterial effect of the phage cocktail or phage cocktail-sub-minimal inhibitory concentration (MIC) of kasugamycin was significantly higher than the kasugamycin at the MIC. The selected phages were experimentally stable under environmental factors such as thermal or pH stress. Genomic analysis revealed these are novel Erwinia-infecting phages, and did not encode antibiotic-, virulence-, or lysogenic phage-related genes. In conclusion, we suggest the potential of the phage cocktail and kasugamycin combination as an effective strategy that would minimize the use of antibiotics, which are being excessively used in order to control fire blight pathogens.
Collapse
Affiliation(s)
- Sang-Guen Kim
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sung-Bin Lee
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Su-Jin Jo
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kevin Cho
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jung-Kum Park
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang-Wha Kim
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jeong-Woo Kang
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Won-Joon Jung
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Young-Min Lee
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Se-Chang Park
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Plant-Endophyte Interaction during Biotic Stress Management. PLANTS 2022; 11:plants11172203. [PMID: 36079585 PMCID: PMC9459794 DOI: 10.3390/plants11172203] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host–endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant–endophyte interaction in biotic stress management.
Collapse
|
23
|
Zhu Y, Xiong C, Wei Z, Chen Q, Ma B, Zhou S, Tan J, Zhang L, Cui H, Duan G. Impacts of global change on the phyllosphere microbiome. THE NEW PHYTOLOGIST 2022; 234:1977-1986. [PMID: 34921429 PMCID: PMC9306672 DOI: 10.1111/nph.17928] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2021] [Indexed: 05/21/2023]
Abstract
Plants form complex interaction networks with diverse microbiomes in the environment, and the intricate interplay between plants and their associated microbiomes can greatly influence ecosystem processes and functions. The phyllosphere, the aerial part of the plant, provides a unique habitat for diverse microbes, and in return the phyllosphere microbiome greatly affects plant performance. As an open system, the phyllosphere is subjected to environmental perturbations, including global change, which will impact the crosstalk between plants and their microbiomes. In this review, we aim to provide a synthesis of current knowledge of the complex interactions between plants and the phyllosphere microbiome under global changes and to identify future priority areas of research on this topic.
Collapse
Affiliation(s)
- Yong‐Guan Zhu
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Zhong Wei
- Key Laboratory of Plant ImmunityJiangsu Provincial Key Laboratory for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationNational Engineering Research Center for Organic‐Based FertilizersNanjing Agricultural UniversityWeigang, Nanjing210095China
| | - Qing‐Lin Chen
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVic3010Australia
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and EnvironmentCollege of Environmental and Natural Resource SciencesZhejiang UniversityHangzhou310058China
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Shu‐Yi‐Dan Zhou
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| | - Jiaqi Tan
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Li‐Mei Zhang
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Hui‐Ling Cui
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Gui‐Lan Duan
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| |
Collapse
|
24
|
Zeng LJ, Huang YH, Lü H, Geng J, Zhao HM, Xiang L, Li H, Li YW, Mo CH, Cai QY, Li QX. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152854. [PMID: 34995579 DOI: 10.1016/j.scitotenv.2021.152854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Uptake pathway and accumulation variation of soil and airborne phthalates (PAEs) in plastic greenhouses by vegetables remains unclear. Here, pot experiments of Chinese flowering cabbage were designed to distinguish root or leaf uptake pathways of PAEs, and investigate the mitigation of spraying PAE-degrading strain in PAE accumulation by vegetables. The results showed that leaves of Chinese flowering cabbage grown in plastic greenhouses absorbed more PAEs from air than those of outside greenhouses. Airborne PAEs were mainly stored in leaf surfaces of vegetables grown inside greenhouse, while PAEs absorbed by roots from soil were translocated and mainly stored in mesophyll, especially in cell walls and organelles. PAE concentrations in mesophyll elevated with increasing soil PAE levels, whereas those in leaf surfaces were not influenced by soil PAE levels. The values of bioconcentration factors for leaves inside greenhouses were significantly (1.39-3.47 fold) higher than those outside. PAE-degrading strain (Rhodococcus pyridinivorans XB) sprayed on leaf surfaces could grow well and Rhodococcus was the dominant genus as confirmed by Illumina high-throughput sequencing. PAE-degrading strain effectively reduced PAEs by 12.9%-34.9% in leaf surface, but not those in vegetables grown in high-PAE soil. This study demonstrated mitigation of spraying PAE-degrading strain in PAE accumulation by vegetable leaves from air of plastic greenhouse.
Collapse
Affiliation(s)
- Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Geng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
25
|
Vincent SA, Ebertz A, Spanu PD, Devlin PF. Salicylic Acid-Mediated Disturbance Increases Bacterial Diversity in the Phyllosphere but Is Overcome by a Dominant Core Community. Front Microbiol 2022; 13:809940. [PMID: 35283825 PMCID: PMC8908428 DOI: 10.3389/fmicb.2022.809940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two Arabidopsis mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.
Collapse
Affiliation(s)
- Stacey A. Vincent
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Andreas Ebertz
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Pietro D. Spanu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
26
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, Meng GZ, Liu SY, Wang JT, Wu CF, Ge AH, Zhang LM. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. MICROBIOME 2021; 9:171. [PMID: 34389047 PMCID: PMC8364065 DOI: 10.1186/s40168-021-01118-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. RESULTS Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. CONCLUSIONS Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.
Collapse
Affiliation(s)
- Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yan-Lai Han
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Li-Hua Wan
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Guo-Zhong Meng
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Fa Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|