1
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Chan SN, Pek JW. Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Bioessays 2024; 46:e2400143. [PMID: 39301980 DOI: 10.1002/bies.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ever since their introduction a decade ago, stable introns, a type of noncoding (nc)RNAs, are found to be key players in different important cellular processes acting through regulation of gene expression and feedback loops to maintain cellular homeostasis. Despite being commonly regarded as useless byproducts, recent studies in yeast suggested that stable introns are essential for cell survivability under starvation. In Drosophila, we found that a stable intron, sisR-1, has a direct effect in regulating mitochondrial dynamics during short-term fasting and subsequently improved overall oocyte quality. We speculated that the beneficial effects implicated by sisR-1 is through the activation of mitohormesis, an interesting phenomenon in mitochondrial biology. Mitohormesis is suggested to improve health span and lifespan of cells and organisms, but the involvement of ncRNAs is not well-documented. Here, we discuss the potential role of sisR-1 and other ncRNAs in activating mitohormesis and the possible applications in improving cellular and organismal health.
Collapse
Affiliation(s)
- Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
4
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
5
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2024:S0300-9084(24)00239-6. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
6
|
Sanadgol N, Amini J, Khalseh R, Bakhshi M, Nikbin A, Beyer C, Zendehdel A. Mitochondrial genome-derived circRNAs: Orphan epigenetic regulators in molecular biology. Mitochondrion 2024; 79:101968. [PMID: 39321951 DOI: 10.1016/j.mito.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are vital for cellular activities, influencing ATP production, Ca2+ signaling, and reactive oxygen species generation. It has been proposed that nuclear genome-derived circular RNAs (circRNAs) play a role in biological processes. For the first time, this study aims to comprehensively explore experimentally confirmed human mitochondrial genome-derived circRNAs (mt-circRNAs) via in-silico analysis. We utilized wide-ranging bioinformatics tools to anticipate their roles in molecular biology, involving miRNA sponging, protein antagonism, and peptide translation. Among five well-characterized mt-circRNAs, SCAR/mc-COX2 stands out as particularly significant with the potential to sponge around 41 different miRNAs, which target several genes mostly involved in endocytosis, MAP kinase, and PI3K-Akt pathways. Interestingly, circMNTND5 and mecciND1 specifically interact with miRNAs through their unique back-splice junction sequence. These exclusively targeted miRNAs (has-miR-5186, 6888-5p, 8081, 924, 672-5p) are predominantly associated with insulin secretion, proteoglycans in cancer, and MAPK signaling pathways. Moreover, all mt-circRNAs intricately affect the P53 pathway through miRNA sequestration. Remarkably, mc-COX2 and circMNTND5 appear to be involved in the RNA's biogenesis by antagonizing AGO1/2, EIF4A3, and DGCR8. All mt-circRNAs engaged with IGF2BP proteins crucial in redox signaling, and except mecciND1, they all potentially generate at least one protein resembling the immunoglobulin heavy chain protein. Given P53's function as a redox-sensitive transcription factor, and insulin's role as a crucial regulator of energy metabolism, their indirect interplay with mt-circRNAs could influence cellular outcomes. However, due to limited attention and infrequent data availability, it is advisable to conduct more thorough investigations to gain a deeper understanding of the functions of mt-circRNA.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, 94149-75516 Bojnurd, Iran
| | - Roghayeh Khalseh
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Mostafa Bakhshi
- Department of Electrical and Computer Engineering, Kharazmi University, 15719-14911 Tehran, Iran
| | - Arezoo Nikbin
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendehdel
- Institut of Anatomy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
7
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
9
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024:elae026. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Sanita Lima M, Rossi Paschoal A, Silva Domingues D, Smith DR. Pervasive transcription of plant organelle genomes: functional noncoding transcriptomes? TRENDS IN PLANT SCIENCE 2024; 29:626-629. [PMID: 38360479 DOI: 10.1016/j.tplants.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Plant mitochondrial and plastid genomes typically show pervasive, genome-wide transcription. Little is known, however, about the utility of organelle noncoding RNAs, which often make up most of the transcriptome. Here, we suggest that long-read sequencing data combined with dedicated RNA databases could help identify putative functional organelle noncoding transcripts.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group, Federal University of Technology - Paraná - UTFPR, Cornélio Procópio, PR, Brazil
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - David Roy Smith
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
11
|
Nesterov SV, Ilyinsky NS, Plokhikh KS, Manuylov VD, Chesnokov YM, Vasilov RG, Kuznetsova IM, Turoverov KK, Gordeliy VI, Fonin AV, Uversky VN. Order wrapped in chaos: On the roles of intrinsically disordered proteins and RNAs in the arrangement of the mitochondrial enzymatic machines. Int J Biol Macromol 2024; 267:131455. [PMID: 38588835 DOI: 10.1016/j.ijbiomac.2024.131455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The analysis of cryo-electron tomography images of human and rat mitochondria revealed that the mitochondrial matrix is at least as crowded as the cytosol. To mitigate the crowding effects, metabolite transport in the mitochondria primarily occurs through the intermembrane space, which is significantly less crowded. The scientific literature largely ignores how enzyme systems and metabolite transport are organized in the crowded environment of the mitochondrial matrix. Under crowded conditions, multivalent interactions carried out by disordered protein regions (IDRs), may become extremely important. We analyzed the human mitochondrial proteome to determine the presence and physiological significance of IDRs. Despite mitochondrial proteins being generally more ordered than cytosolic or overall proteome proteins, disordered regions plays a significant role in certain mitochondrial compartments and processes. Even in highly ordered enzyme systems, there are proteins with long IDRs. Some IDRs act as binding elements between highly ordered subunits, while the roles of others are not yet established. Mitochondrial systems, like their bacterial ancestors, rely less on IDRs and more on RNA for LLPS compartmentalization. More evolutionarily advanced subsystems that enable mitochondria-cell interactions contain more IDRs. The study highlights the crucial and often overlooked role played by IDRs and non-coding RNAs in mitochondrial organization.
Collapse
Affiliation(s)
- Semen V Nesterov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Moscow Institute of Physics and Techonology, Dolgoprudny, Moscow Region 141701, Russia; Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia.
| | - Nikolay S Ilyinsky
- Moscow Institute of Physics and Techonology, Dolgoprudny, Moscow Region 141701, Russia.
| | | | - Vladimir D Manuylov
- Moscow Institute of Physics and Techonology, Dolgoprudny, Moscow Region 141701, Russia
| | - Yuriy M Chesnokov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Raif G Vasilov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Irina M Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | | | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Disha B, Mathew RP, Dalal AB, Mahato AK, Satyamoorthy K, Singh KK, Thangaraj K, Govindaraj P. Mitochondria in biology and medicine - 2023. Mitochondrion 2024; 76:101853. [PMID: 38423268 DOI: 10.1016/j.mito.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Mitochondria are an indispensable part of the cell that plays a crucial role in regulating various signaling pathways, energy metabolism, cell differentiation, proliferation, and cell death. Since mitochondria have their own genetic material, they differ from their nuclear counterparts, and dysregulation is responsible for a broad spectrum of diseases. Mitochondrial dysfunction is associated with several disorders, including neuro-muscular disorders, cancer, and premature aging, among others. The intricacy of the field is due to the cross-talk between nuclear and mitochondrial genes, which has also improved our knowledge of mitochondrial functions and their pathogenesis. Therefore, interdisciplinary research and communication are crucial for mitochondrial biology and medicine due to the challenges they pose for diagnosis and treatment. The ninth annual conference of the Society for Mitochondria Research and Medicine (SMRM)- India, titled "Mitochondria in Biology and Medicine" was organized at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, on June 21-23, 2023. The latest advancements in the field of mitochondrial biology and medicine were discussed at the conference. In this article, we summarize the entire event for the benefit of researchers working in the field of mitochondrial biology and medicine.
Collapse
Affiliation(s)
- B Disha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Rohan Peter Mathew
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Ashwin B Dalal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Ajay K Mahato
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad 580009, India
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Building, Rm. 620, 720 20th St. South, Birmingham, AL, 35294, USA
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Periyasamy Govindaraj
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Department of Neuropathology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru 560029, India.
| |
Collapse
|
13
|
Thirunavukkarasu S, Banerjee S, Tantray I, Ojha R. Non-coding RNA and reprogrammed mitochondrial metabolism in genitourinary cancer. Front Genet 2024; 15:1364389. [PMID: 38544804 PMCID: PMC10965626 DOI: 10.3389/fgene.2024.1364389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) have been recently shown to contribute to tumorigenesis by mediating changes in metabolism. ncRNAs act as key molecules in metabolic pathways regulation. The dysregulation of ncRNAs during cancer progression contributes to altered metabolic phenotypes leading to reprogrammed metabolism. Since ncRNAs affect different tumor processes by regulating mitochondrial dynamics and metabolism, in the future ncRNAs can be exploited in disease detection, diagnosis, treatment, and resistance. The purpose of this review is to highlight the role of ncRNAs in mitochondrial metabolic reprogramming and to relate their therapeutic potential in the management of genitourinary cancer.
Collapse
Affiliation(s)
- Sandiya Thirunavukkarasu
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shouryarudra Banerjee
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishaq Tantray
- InventX Scientia, Kashmir, India
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Huang S, Wu Z, Zhou Y. Hypoxia-induced circRNAs encoded by PPARA are highly expressed in human cardiomyocytes and are potential clinical biomarkers of acute myocardial infarction. Eur J Med Res 2024; 29:159. [PMID: 38475969 DOI: 10.1186/s40001-024-01753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a serious cardiovascular disease that adversely affects human health. Circular RNAs (circRNAs) are involved in the pathological and physiological processes of AMI, but the biological mechanism of their involvement and their clinical significance remain unknown. We aimed to identify circRNAs that are significantly associated with morbidity in the peripheral blood of patients with AMI and evaluate their diagnostic utility. METHODS High-throughput sequencing was used to screen for differentially expressed circRNAs in peripheral blood samples obtained from five patients with AMI and five sex- and age-matched healthy controls. A series of bioinformatics tools and databases were used to determine the biological functional classification and pathway enrichment of the circRNAs based on data obtained from sequencing. A hypoxia model was established and used to evaluate the effect of hypoxia on circRNA expression in human cardiomyocytes. A cytoplasmic separation assay and enzyme resistance assay were employed to identify the biological characteristics of circRNA. Polymerase chain reaction validity testing and receiver operating characteristic (ROC) curve analysis were used to evaluate the utility of circRNA assessments in the diagnosis of AMI. RESULTS A large number of circRNAs were found to be differentially expressed in the peripheral blood of patients with AMI, and significantly more of these circRNAs were highly expressed than lowly expressed. The genes encoding these circRNAs have a wide range of effects on various functions in the body. A hypoxic environment promoted the upregulation of circRNA expression in human cardiomyocytes, and hsa_circ_0116795 encoded by PPARA was highly expressed in the peripheral blood of the patients with AMI. In terms of biological characteristics, under physiological conditions, hsa_circ_0116795 (circ_PPARA) was mainly located in the cytoplasm of cardiomyocytes and found to be resistant to exonuclease. The ROC curve analysis showed that the expression levels of circ_PPARA in the peripheral blood of patients with AMI were significantly different from those in the peripheral blood of healthy controls. CONCLUSION A large number of abnormally expressed circRNAs are detectable in the peripheral blood of patients with AMI. In particular, circ_PPARA is highly expressed in human myocardial cells under hypoxic conditions, and its biological characteristics indicate that it could be employed as a biomarker for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, , Guangdong, China
| | - Zhangying Wu
- Department of Cardiology, Qingdao Huangdao District People's Hospital, Qingdao, 266400, Shangdong, China
| | - Yang Zhou
- Department of Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, No. 201-209, Hubinnan Road, Siming District, Xiamen, 361004, Fujian, China.
| |
Collapse
|
15
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
16
|
Garrido P, Casas-Benito A, Larrayoz IM, Narro-Íñiguez J, Rubio-Mediavilla S, Zozaya E, Martín-Carnicero A, Martínez A. Expression of Mitochondrial Long Non-Coding RNAs, MDL1 and MDL1AS, Are Good Prognostic and/or Diagnostic Biomarkers for Several Cancers, Including Colorectal Cancer. Cancers (Basel) 2024; 16:960. [PMID: 38473321 DOI: 10.3390/cancers16050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-coding RNAs provide new opportunities to identify biomarkers that properly classify cancer patients. Here, we study the biomarker status of the mitochondrial long non-coding RNAs, MDL1 and MDL1AS. Expression of these genes was studied in public transcriptomic databases. In addition, a cohort of 69 locally advanced rectal cancer (LARC) patients with a follow-up of more than 5 years was used to determine the prognostic value of these markers. Furthermore, cell lines of colorectal (HCT116) and breast (MDA-MB-231) carcinoma were employed to study the effects of downregulating MDL1AS in vitro. Expression of MDL1AS (but not MDL1) was significantly different in tumor cells than in the surrounding tissue in a tumor-type-specific context. Both MDL1 and MDL1AS were accurate biomarkers for the 5-year survival of LARC patients (p = 0.040 and p = 0.007, respectively) with promising areas under the curve in the ROC analyses (0.820 and 0.930, respectively). MDL1AS downregulation reduced mitochondrial respiration in both cell lines. Furthermore, this downregulation produced a decrease in growth and migration on colorectal cells, but the reverse effects on breast cancer cells. In summary, MDL1 and MDL1AS can be used as reliable prognostic biomarkers of LARC, and MDL1AS expression provides relevant information on the diagnosis of different cancers.
Collapse
Affiliation(s)
- Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Adrián Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ignacio M Larrayoz
- Department of Nursing, Biomarkers, Artificial Intelligence and Signaling (BIAS), University of La Rioja, 26004 Logroño, Spain
| | - Judit Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Enrique Zozaya
- Pathology Service, Hospital de Calahorra, 26500 Calahorra, Spain
| | | | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
17
|
Liang J, Han J, Zhuang Y, Chen G, Li Y. Mitochondria-Associated Transcriptome Profiling via Localizable Aggregation-Induced Emission Photosensitizers in Live Cells. ACS Chem Biol 2024; 19:419-427. [PMID: 38264802 DOI: 10.1021/acschembio.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In recent decades, there has been increasing interest in studying mitochondria through transcriptomic research. Various exogenous fusion protein-based proximity labeling methods have been reported that focus on the site of one particular protein/peptide and might also influence the corresponding localization or interactome. To enable unbiased and high spatial-resolution profiling of mitochondria-associated transcriptomes in live cells, a flexible RNA proximity labeling approach was developed using aggregation-induced emission (AIE) type photosensitizers (PSs) that possess great mitochondria-targeting capabilities. Their accumulation in an enclosed mitochondrial environment tends to enhance the fluorescence emission and reactive oxygen species generation. By comparing the in vitro optical properties, photosensitization processes, as well as the in cellulo mitochondrial specificity and RNA labeling performance of four AIE PSs, high-throughput sequencing analysis was conducted using TFPy-mediated RNA proximity labeling in live HeLa cells. This approach successfully captured a comprehensive list of transcripts, including mitochondria-encoded RNAs, as well as some nuclear-derived RNAs located at the outer mitochondrial membrane and interacting organelles. This small molecule-based proximity labeling method bypasses complex genetic manipulation and transfection steps, making it readily applicable for diverse research purposes.
Collapse
Affiliation(s)
- Jiying Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhuang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| |
Collapse
|
18
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
19
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Siniscalchi C, Di Palo A, Petito G, Senese R, Manfrevola F, Leo ID, Mosca N, Chioccarelli T, Porreca V, Marchese G, Ravo M, Chianese R, Cobellis G, Lanni A, Russo A, Potenza N. A landscape of mouse mitochondrial small non-coding RNAs. PLoS One 2024; 19:e0293644. [PMID: 38165955 PMCID: PMC10760717 DOI: 10.1371/journal.pone.0293644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024] Open
Abstract
Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.
Collapse
Affiliation(s)
- Chiara Siniscalchi
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Armando Di Palo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ilenia De Leo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
- Genomix4Life S.r.l., Baronissi (SA), Italy
| | - Nicola Mosca
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Maria Ravo
- Genomix4Life S.r.l., Baronissi (SA), Italy
- Genome Research Center for Health, CRGS, Baronissi, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonia Lanni
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
22
|
Yoon J, Kim S, Lee M, Kim Y. Mitochondrial nucleic acids in innate immunity and beyond. Exp Mol Med 2023; 55:2508-2518. [PMID: 38036728 PMCID: PMC10766607 DOI: 10.1038/s12276-023-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 12/02/2023] Open
Abstract
Mitochondria participate in a wide range of cellular processes. One essential function of mitochondria is to be a platform for antiviral signaling proteins during the innate immune response to viral infection. Recently, studies have revealed that mitochondrion-derived DNAs and RNAs are recognized as non-self molecules and act as immunogenic ligands. More importantly, the cytosolic release of these mitochondrial nucleic acids (mt-NAs) is closely associated with the pathogenesis of human diseases accompanying aberrant immune activation. The release of mitochondrial DNAs (mtDNAs) via BAX/BAK activation and/or VDAC1 oligomerization activates the innate immune response and inflammasome assembly. In addition, mitochondrial double-stranded RNAs (mt-dsRNAs) are sensed by pattern recognition receptors in the cytosol to induce type I interferon expression and initiate apoptotic programs. Notably, these cytosolic mt-NAs also mediate adipocyte differentiation and contribute to mitogenesis and mitochondrial thermogenesis. In this review, we summarize recent studies of innate immune signaling pathways regulated by mt-NAs, human diseases associated with mt-NAs, and the emerging physiological roles of mt-NAs.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Mei Z, Liu G, Zhao B, He Z, Gu S. Emerging roles of epigenetics in lead-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2023; 181:108253. [PMID: 37864902 DOI: 10.1016/j.envint.2023.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Lead is a common environmental heavy metal contaminant. Humans are highly susceptible to lead accumulation in the body, which causes nervous system damage and leads to a variety of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Recent research has focused on the mechanisms of lead-induced neurotoxicity at multiple levels, including DNA methylation, histone modifications, and non-coding RNAs, which are involved in various lead-induced nervous system diseases. We reviewed the latest articles and summarised the emerging roles of DNA methylation, histone modification, and non-coding RNAs in lead-induced neurotoxicity. Our summary provides a theoretical basis and directions for future research on the prevention, diagnosis, and treatment of lead-induced neurological diseases.
Collapse
Affiliation(s)
- Zongqin Mei
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Bo Zhao
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| |
Collapse
|
24
|
Li J, Jiang C, Xia J. The role of programmed cell death in diabetic foot ulcers. Int Wound J 2023; 21:e14399. [PMID: 37736955 PMCID: PMC10824602 DOI: 10.1111/iwj.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetic foot ulcer, is a chronic complication afflicting individuals with diabetes, continue to increase worldwide, immensely burdening society. Programmed cell death, which includes apoptosis, autophagy, ferroptosis, necroptosis and pyroptosis, has been increasingly implicated in the pathogenesis of diabetic foot ulcer. This review is based on an exhaustive examination of the literature on 'programmed cell death' and 'diabetic foot ulcers' via PubMed. The findings revealed that natural bioactive compounds, noncoding RNAs and certain proteins play crucial roles in the healing of diabetic foot ulcers through various forms of programmed cell death, including apoptosis, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Juncheng Li
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| | - Chengli Jiang
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| | - Jian Xia
- Department of OrthopedicsThe First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang UniversityNanchangChina
- Medical Department of Graduate SchoolNanchang UniversityNanchangChina
| |
Collapse
|
25
|
Emser SV, Spielvogel CP, Millesi E, Steinborn R. Mitochondrial polymorphism m.3017C>T of SHLP6 relates to heterothermy. Front Physiol 2023; 14:1207620. [PMID: 37675281 PMCID: PMC10478271 DOI: 10.3389/fphys.2023.1207620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Heterothermic thermoregulation requires intricate regulation of metabolic rate and activation of pro-survival factors. Eliciting these responses and coordinating the necessary energy shifts likely involves retrograde signalling by mitochondrial-derived peptides (MDPs). Members of the group were suggested before to play a role in heterothermic physiology, a key component of hibernation and daily torpor. Here we studied the mitochondrial single-nucleotide polymorphism (SNP) m.3017C>T that resides in the evolutionarily conserved gene MT-SHLP6. The substitution occurring in several mammalian orders causes truncation of SHLP6 peptide size from twenty to nine amino acids. Public mass spectrometric (MS) data of human SHLP6 indicated a canonical size of 20 amino acids, but not the use of alternative translation initiation codons that would expand the peptide. The shorter isoform of SHLP6 was found in heterothermic rodents at higher frequency compared to homeothermic rodents (p < 0.001). In heterothermic mammals it was associated with lower minimal body temperature (T b, p < 0.001). In the thirteen-lined ground squirrel, brown adipose tissue-a key organ required for hibernation, showed dynamic changes of the steady-state transcript level of mt-Shlp6. The level was significantly higher before hibernation and during interbout arousal and lower during torpor and after hibernation. Our finding argues to further explore the mode of action of SHLP6 size isoforms with respect to mammalian thermoregulation and possibly mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Sarah V. Emser
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Clemens P. Spielvogel
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
27
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023; 12:cells12050729. [PMID: 36899864 PMCID: PMC10001313 DOI: 10.3390/cells12050729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Abiotic stresses triggered by climate change and human activity cause substantial agricultural and environmental problems which hamper plant growth. Plants have evolved sophisticated mechanisms in response to abiotic stresses, such as stress perception, epigenetic modification, and regulation of transcription and translation. Over the past decade, a large body of literature has revealed the various regulatory roles of long non-coding RNAs (lncRNAs) in the plant response to abiotic stresses and their irreplaceable functions in environmental adaptation. LncRNAs are recognized as a class of ncRNAs that are longer than 200 nucleotides, influencing a variety of biological processes. In this review, we mainly focused on the recent progress of plant lncRNAs, outlining their features, evolution, and functions of plant lncRNAs in response to drought, low or high temperature, salt, and heavy metal stress. The approaches to characterize the function of lncRNAs and the mechanisms of how they regulate plant responses to abiotic stresses were further reviewed. Moreover, we discuss the accumulating discoveries regarding the biological functions of lncRNAs on plant stress memory as well. The present review provides updated information and directions for us to characterize the potential functions of lncRNAs in abiotic stresses in the future.
Collapse
|
29
|
Chen X, Wei C, Huang L, Syrigos K, Li Y, Li P. Non-coding RNAs regulate mitochondrial dynamics in the development of gastric cancer. Front Mol Biosci 2023; 10:1107651. [PMID: 36714260 PMCID: PMC9877238 DOI: 10.3389/fmolb.2023.1107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer that reduces life expectancy worldwide. Although treatment strategies have improved, patients with GC still have poor prognoses. Hence, it is necessary to understand the molecular mechanisms of GC and to find new therapeutic targets. Mitochondrial dynamics and mitochondrial dysfunction are associated with cancer cell growth and progression. Numerous studies have reported that non-coding RNAs (ncRNAs) can participate in the occurrence and development of GC by regulating mitochondrial dynamics. Elucidating the crosstalk between ncRNAs and mitochondria would be helpful in preventing and treating GC. Herein, we review and summarize the functions of oncogenes and tumor suppressors in suppressing ncRNAs and regulating mitochondrial dynamics in GC tumor growth, proliferation, invasion and metastasis. This review provides new insights into the pathogenesis of and intervention for GC.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chuang Wei
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liting Huang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,*Correspondence: Yuzhen Li, ; Peifeng Li,
| |
Collapse
|