1
|
Ni X, Zhai X, Yu W, Ye M, Yang F, Zhou YJ, Gao J. Dynamically Regulating Homologous Recombination Enables Precise Genome Editing in Ogataea polymorpha. ACS Synth Biol 2024; 13:2938-2947. [PMID: 39230514 DOI: 10.1021/acssynbio.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Methylotrophic yeast Ogataea polymorpha has become a promising cell factory due to its efficient utilization of methanol to produce high value-added chemicals. However, the low homologous recombination (HR) efficiency in O. polymorpha greatly hinders extensive metabolic engineering for industrial applications. Overexpression of HR-related genes successfully improved HR efficiency, which however brought cellular stress and reduced chemical production due to constitutive expression of the HR-related gene. Here, we engineered an HR repair pathway using the dynamically regulated gene ScRAD51 under the control of the l-rhamnose-induced promoter PLRA3 based on the previously constructed CRISPR-Cas9 system in O. polymorpha. Under the optimal inducible conditions, the appropriate expression level of ScRAD51 achieved up to 60% of HR rates without any detectable influence on cell growth in methanol, which was 10-fold higher than that of the wild-type strain. While adopting as the chassis strain for bioproductions, the dynamically regulated recombination system had 50% higher titers of fatty alcohols than that static regulation system. Therefore, this study provided a feasible platform in O. polymorpha for convenient genetic manipulation without perturbing cellular fitness.
Collapse
Affiliation(s)
- Xin Ni
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
2
|
Bregón-Villahoz M, Menéndez-Manjón P, Carrano G, Díez-Villalba A, Arrieta-Aguirre I, Fernandez-de-Larrinoa I, Moragues MD. Candida albicans cDNA library screening reveals novel potential diagnostic targets for invasive candidiasis. Diagn Microbiol Infect Dis 2024; 109:116311. [PMID: 38657353 DOI: 10.1016/j.diagmicrobio.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The detection of patterns associated with the invasive form of Candida albicans, such as Candida albicans germ tube antibodies (CAGTA), is a useful complement to blood culture for Invasive Candidiasis (IC) diagnosis. As CAGTA are detected by a non-standardisable and non-automatable technique, a Candida albicans cDNA expression library was screened with CAGTA isolated from serum of an animal model of invasive candidiasis, and five protein targets were identified: hyphally regulated cell wall protein 1 (Hyr1), enolase 1 (Eno1), coatomer subunit gamma (Sec21), a metallo-aminopeptidase (Ape2) and cystathionine gamma-lyase (Cys3). Homology with proteins from other organisms rules out Cys3 as a good biomarker while Sec21 results suggest that it is not in the germ tubes surface but secreted to the external environment. Our analysis propose Ape2, Sec21 and a region of Hyr1 different from the one currently being studied for immunoprotection as potential biomarker candidates for the diagnosis of IC.
Collapse
Affiliation(s)
- Marta Bregón-Villahoz
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Pilar Menéndez-Manjón
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Ander Díez-Villalba
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | | | | | | |
Collapse
|
3
|
Rick EM, Woolnough K, Richardson M, Monteiro W, Craner M, Bourne M, Cousins DJ, Swoboda I, Wardlaw AJ, Pashley CH. Identification of allergens from Aspergillus fumigatus-Potential association with lung damage in asthma. Allergy 2024; 79:1208-1218. [PMID: 38334146 DOI: 10.1111/all.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Component-resolved diagnosis allows detection of IgE sensitization having the advantage of reproducibility and standardization compared to crude extracts. The main disadvantage of the traditional allergen identification methods, 1- or 2-dimensional western blotting and screening of expression cDNA libraries with patients' IgEs, is that the native structure of the protein is not necessarily maintained. METHODS We used a novel immunoprecipitation technique in combination with mass spectrometry to identify new allergens of Aspergillus fumigatus. Magnetic Dynabeads coupled with anti-human IgE antibodies were used to purify human serum IgE and subsequently allergens from A. fumigatus protein extract. RESULTS Of the 184 proteins detected by subsequent mass peptide fingerprinting, a subset of 13 were recombinantly expressed and purified. In a panel of 52 A. fumigatus-sensitized people with asthma, 23 non-fungal-sensitized asthmatics and 18 healthy individuals, only the former showed an IgE reaction by immunoblotting and/or ELISA. We discovered 11 proteins not yet described as A. fumigatus allergens, with fructose-bisphosphate aldolase class II (FBA2) (33%), NAD-dependent malate dehydrogenase (31%) and Cu/Zn superoxide dismutase (27%) being the most prevalent. With respect to these three allergens, native versus denatured protein assays indicated a better recognition of the native proteins. Seven of 11 allergens fulfilled the WHO/IUIS criteria and were accepted as new A. fumigatus allergens. CONCLUSION In conclusion, we introduce a straightforward method of allergen identification from complex allergenic sources such as A. fumigatus by immunoprecipitation combined with mass spectrometry, which has the advantage over traditional methods of identifying allergens by maintaining the structure of the proteins.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Division of Clinical and Molecular Allergology, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel Sulfeld, Germany
| | - Kerry Woolnough
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Matthew Richardson
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - William Monteiro
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Craner
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Michelle Bourne
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - David John Cousins
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Ines Swoboda
- Competence Center for Molecular Biotechnology, Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Andrew John Wardlaw
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
- Department of Allergy and Respiratory Medicine, Leicester Biomedical Research Centre - Respiratory, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Catherine Helen Pashley
- Department of Respiratory Sciences, Aerobiology and Mycology Group, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Balasubramanian S, Køhler JB, Jers C, Jensen PR, Mijakovic I. Exploring the secretome of Corynebacterium glutamicum ATCC 13032. Front Bioeng Biotechnol 2024; 12:1348184. [PMID: 38415189 PMCID: PMC10896948 DOI: 10.3389/fbioe.2024.1348184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The demand for alternative sources of food proteins is increasing due to the limitations and challenges associated with conventional food production. Advances in biotechnology have enabled the production of proteins using microorganisms, thus prompting the exploration of attractive microbial hosts capable of producing functional proteins in high titers. Corynebacterium glutamicum is widely used in industry for the production of amino acids and has many advantages as a host organism for recombinant protein production. However, its performance in this area is limited by low yields of target proteins and high levels of native protein secretion. Despite representing a challenge for heterologous protein production, the C. glutamicum secretome has not been fully characterized. In this study, state-of-the-art mass spectrometry-based proteomics was used to identify and analyze the proteins secreted by C. glutamicum. Both the wild-type strain and a strain that produced and secreted a recombinant β-lactoglobulin protein were analyzed. A total of 427 proteins were identified in the culture supernatants, with 148 predicted to possess a secretion signal peptide. MS-based proteomics on the secretome enabled a comprehensive characterization and quantification (based on abundance) of the secreted proteins through label-free quantification (LFQ). The top 12 most abundant proteins accounted for almost 80% of the secretome. These are uncharacterized proteins of unknown function, resuscitation promoting factors, protein PS1, Porin B, ABC-type transporter protein and hypothetical membrane protein. The data can be leveraged for protein production by, e.g., utilizing the signal peptides of the most abundant proteins to improve secretion of heterologous proteins. In addition, secretory stress can potentially be alleviated by inactivating non-essential secreted proteins. Here we provide targets by identifying the most abundant, secreted proteins of which majority are of unknown function. The data from this study can thus provide valuable insight for researchers looking to improve protein secretion and optimize C. glutamicum as a host for secretory protein production.
Collapse
Affiliation(s)
- Suvasini Balasubramanian
- Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julie Bonne Køhler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Bednarek A, Satala D, Zawrotniak M, Nobbs AH, Rapala-Kozik M, Kozik A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024; 25:1013. [PMID: 38256088 PMCID: PMC10815899 DOI: 10.3390/ijms25021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Angela H. Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| |
Collapse
|
6
|
Zaragoza-Gómez A, García-Caffarel E, Cruz-Zamora Y, González J, Anaya-Muñoz VH, Cruz-García F, Juárez-Díaz JA. The Nβ motif of NaTrxh directs secretion as an endoplasmic reticulum transit peptide and variations might result in different cellular targeting. PLoS One 2023; 18:e0287087. [PMID: 37824466 PMCID: PMC10569557 DOI: 10.1371/journal.pone.0287087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Soluble secretory proteins with a signal peptide reach the extracellular space through the endoplasmic reticulum-Golgi conventional pathway. During translation, the signal peptide is recognised by the signal recognition particle and results in a co-translational translocation to the endoplasmic reticulum to continue the secretory pathway. However, soluble secretory proteins lacking a signal peptide are also abundant, and several unconventional (endoplasmic reticulum/Golgi independent) pathways have been proposed and some demonstrated. This work describes new features of the secretion signal called Nβ, originally identified in NaTrxh, a plant extracellular thioredoxin, that does not possess an orthodox signal peptide. We provide evidence that other proteins, including thioredoxins type h, with similar sequences are also signal peptide-lacking secretory proteins. To be a secretion signal, positions 5, 8 and 9 must contain neutral residues in plant proteins-a negative residue in position 8 is suggested in animal proteins-to maintain the Nβ motif negatively charged and a hydrophilic profile. Moreover, our results suggest that the NaTrxh translocation to the endoplasmic reticulum occurs as a post-translational event. Finally, the Nβ motif sequence at the N- or C-terminus could be a feature that may help to predict protein localisation, mainly in plant and animal proteins.
Collapse
Affiliation(s)
- Andre Zaragoza-Gómez
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Emilio García-Caffarel
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Yuridia Cruz-Zamora
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Víctor Hugo Anaya-Muñoz
- Escuela Nacional Estudios Superiores unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Michoacán, México
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Javier Andrés Juárez-Díaz
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| |
Collapse
|
7
|
Nimma R, Kumar A, Gani Z, Gahlawat A, Dilawari R, Rohilla RK, Kumbhar H, Garg P, Chopra S, Raje M, Iyengar Raje C. Characterization of the enzymatic and multifunctional properties of Acinetobacter baumannii erythrose-4-phosphate dehydrogenase (E4PDH). Microb Pathog 2023; 175:105992. [PMID: 36649779 DOI: 10.1016/j.micpath.2023.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Infections due to Acinetobacter baumannii (A. baumannii) are rapidly increasing worldwide and consequently therapeutic options for treatment are limited. The emergence of multi drug resistant (MDR) strains has rendered available antibiotics ineffective, necessitating the urgent discovery of new drugs and drug targets. The vitamin B6 biosynthetic pathway has been considered as a potential antibacterial drug target but it is as yet uncharacterized for A. baumannii. In the current work, we have carried out in silico and biochemical characterization of Erythrose-4-phosphate dehydrogenase (E4PDH) (EC 1.2.1.72). This enzyme catalyzes the first step in the deoxyxylulose-5-phosphate (DXP) dependent Vitamin B6 biosynthetic pathway i.e. the conversion of d-erythrose-4-phosphate (E4P) to 4-Phosphoerythronate. E4PDH also possesses an additional activity whereby it can catalyze the conversion of Glyceraldehyde-3-phosphate (G3P) to 1,3 bisphosphoglycerate (1,3BPG). Our studies have revealed that this enzyme exhibits an alternate moonlighting function as a cell surface receptor for the human iron transport proteins transferrin (Tf) and lactoferrin (Lf). The present work reports the internalization of Tf and consequent iron acquisition as an alternate strategy for iron acquisition. Given its essential role in two crucial pathways i.e. metabolism and iron acquisition, A. baumannii E4PDH may play a vital role in bacterial pathogenesis.
Collapse
Affiliation(s)
- Ramesh Nimma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Anuj Gahlawat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Rahul Dilawari
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39A, Chandigarh, 160036, India
| | - Rajesh Kumar Rohilla
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Hemangi Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India
| | - Sidharth Chopra
- Council of Scientific and Industrial Research-CSIR (CSIR-CDRI), Sector10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Manoj Raje
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
8
|
Piletska E, Thompson D, Jones R, Cruz AG, Poblocka M, Canfarotta F, Norman R, Macip S, Jones DJL, Piletsky S. Snapshot imprinting as a tool for surface mapping and identification of novel biomarkers of senescent cells. NANOSCALE ADVANCES 2022; 4:5304-5311. [PMID: 36540121 PMCID: PMC9724690 DOI: 10.1039/d2na00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Cellular senescence has proved to be a strong contributor to ageing and age-related diseases, such as cancer and atherosclerosis. Therefore, the protein content of senescent cells is highly relevant to drug discovery, diagnostics and therapeutic applications. However, current technologies for the analysis of proteins are based on a combination of separation techniques and mass spectrometry, which require handling large sample sizes and a large volume of data and are time-consuming. This limits their application in personalised medicine. An easy, quick and inexpensive procedure is needed for qualitative and quantitative analysis of proteins expressed by a cell or tissue. Here, we describe the use of the "snapshot imprinting" approach for the identification of proteins differentially expressed by senescent cells. Molecularly imprinted polymer nanoparticles (MIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complex with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. In this work, "snapshot imprinting" was performed parallel to a standard proteomic "shaving approach", showing similar results. The analysis by "snapshot imprinting" identified three senescent-specific proteins: cell division cycle 7-related protein kinase, partitioning defective three homolog B and putative ATP-dependent RNA helicase DHX57, the abundance of which could potentially make them specific markers of senescence. Identifying biomarkers for the future elimination of senescent cells grants the potential for developing therapeutics for age-related diseases.
Collapse
Affiliation(s)
- Elena Piletska
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Dana Thompson
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Rebecca Jones
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Alvaro Garcia Cruz
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Marta Poblocka
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester LE1 7RH UK
| | - Francesco Canfarotta
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Rachel Norman
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya 08018 Barcelona Spain
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester LE1 7RH UK
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya 08018 Barcelona Spain
| | - Donald J L Jones
- Department of Cancer Studies, RKCSB, University of Leicester Leicester LE2 7LX UK
| | - Sergey Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
9
|
Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14101989. [PMID: 36297425 PMCID: PMC9612021 DOI: 10.3390/pharmaceutics14101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome.
Collapse
|
10
|
Yammine M, Bray F, Flament S, Picavet A, Lacroix JM, Poilpré E, Mouly I, Rolando C. Reliable Approach for Pure Yeast Cell Wall Protein Isolation from Saccharomyces cerevisiae Yeast Cells. ACS OMEGA 2022; 7:29702-29713. [PMID: 36061670 PMCID: PMC9435031 DOI: 10.1021/acsomega.2c02176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.
Collapse
Affiliation(s)
- Marie Yammine
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Fabrice Bray
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Stéphanie Flament
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Antoine Picavet
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Jean-Marie Lacroix
- Univ.
Lille, CNRS, UMR 8765, UGSF, Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Emmanuel Poilpré
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Isabelle Mouly
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Christian Rolando
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Shrieking
sixties, 1-3 Allée
Lavoisier, F-59650 Villeneuve-d’Ascq, France
| |
Collapse
|
11
|
Identification of Candidate Genes Associated with Trichothecene Biosynthesis in Fusarium graminearum Species Complex Combined with Transcriptomic and Proteomic Analysis. Microorganisms 2022; 10:microorganisms10081479. [PMID: 35893537 PMCID: PMC9332169 DOI: 10.3390/microorganisms10081479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
The Fusarium graminearum species complex is the main causal agent of wheat head blight worldwide. Trichothecenes produced by the pathogen in infected grains have important food safety implications. Previously reported studies on trichothecene production have all focused on the conditions conducive to mycotoxin production, while the molecular mechanisms of trichothecene biosynthesis in Fusarium strains under normal or non-inducing conditions are still unclear. Here, a global analysis of the fungal gene expression of three strains using the Affymetrix Fusarium GeneChip under non-inducing conditions is reported. Differentially expressed genes were identified among strains with different trichothecene-production ability, and some novel genes associated with trichothecene biosynthesis were found by bioinformatics analysis. To verify the transcriptome results, proteomic analyses of the three strains were conducted under the same culture conditions. In total, 69 unique fungal proteins were identified in 77 protein spots. Combined with transcriptome and proteome analysis, 27 novel genes were predicted to be associated with trichothecene mycotoxin production. A protein, encoded by FGSG_01403, was found to be associated with trichothecene production via proteome analysis. Gene knock-out mutations of FGSG_01403 resulted in mutants with increased production of trichothecenes. Future functional analysis of the candidate genes identified in this study may reveal new insights into the negative regulation of trichothecene production in the Fusarium graminearum species complex.
Collapse
|
12
|
Martínez-López R, Hernáez ML, Redondo E, Calvo G, Radau S, Pardo M, Gil C, Monteoliva L. Candida albicans Hyphal Extracellular Vesicles Are Different from Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response. Microbiol Spectr 2022; 10:e0069822. [PMID: 35604172 PMCID: PMC9241596 DOI: 10.1128/spectrum.00698-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the principal causative agent of lethal fungal infections, predominantly in immunocompromised hosts. Extracellular vesicles (EVs) have been described as crucial in the interaction of microorganisms with their host. Since the yeast-to-hypha transition is an important virulence trait with great impact in invasive candidiasis (IC), we have addressed the characterization of EVs secreted by hyphal cells (HEVs) from C. albicans, comparing them to yeast EVs (YEVs). YEVs comprised a larger population of bigger EVs with mainly cell wall proteins, while HEVs were smaller, in general, and had a much higher protein diversity. YEVs were able to rescue the sensitivity of a cell wall mutant against calcofluor white, presumably due to the larger amount of cell wall proteins they contained. On the other hand, HEVs also contained many cytoplasmic proteins related to protein metabolism and intracellular protein transport and the endosomal sorting complexes required for transport (ESCRT) pathway related to exosome biogenesis, pointing to an intracellular origin of HEVs. Interestingly, an active 20S proteasome complex was secreted exclusively in HEVs. Moreover, HEVs contained a greater number of virulence-related proteins. As for their immunogenic role, both types of EV presented immune reactivity with human sera from patients suffering invasive candidiasis; however, under our conditions, only HEVs showed a cytotoxic effect on human macrophages and could elicit the release of tumor necrosis factor alpha (TNF-α) by these macrophages. IMPORTANCE This first analysis of HEVs of C. albicans has shown clear differences between them and the YEVs of C. albicans, showing their relevance and possible use in the discovery of new diagnostic markers and treatment targets against C. albicans infections. The data obtained point to different mechanisms of biogenesis of YEVs and HEVs, as well as different involvements in cell biology and host interaction. YEVs played a more relevant role in cell wall maintenance, while HEVs were more closely related to virulence, as they had greater effects on human immune cells. Importantly, an active 20S proteosome complex was described as a fungal-EV cargo. A deeper study of its role and those of many other proteins exclusively detected in HEVs and involved in different relevant biological processes of this fungus could open up interesting new areas of research in the battle against C. albicans.
Collapse
Affiliation(s)
- Raquel Martínez-López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | | | - Esther Redondo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Guillermo Calvo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Sonja Radau
- Thermo Fisher Scientific GmbH, Dreieich, Germany
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London, United Kingdom
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Proteomics Unit, Complutense University of Madrid, Madrid, Spain
| | - Lucía Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
- Ramon y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| |
Collapse
|
13
|
Liu S, Kerr ED, Pegg CL, Schulz BL. Proteomics and glycoproteomics of beer and wine. Proteomics 2022; 22:e2100329. [PMID: 35716130 DOI: 10.1002/pmic.202100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Beer and wine are fermented beverages that contain abundant proteins released from barley or grapes, and secreted from yeast. These proteins are associated with many quality attributes including turbidity, foamability, effervescence, flavour and colour. Many grape proteins and secreted yeast proteins are glycosylated, and barley proteins can be glycated under the high temperatures in the beer making process. The emergence of high-resolution mass spectrometry has allowed proteomic and glycoproteomic analyses of these complex mixtures of proteins towards understanding their role in determining beer and wine attributes. In this review, we summarise recent studies of proteomic and glycoproteomic analyses of beer and wine including their strategies for mass spectrometry (MS)-based identification, quantification and characterisation of the glyco/proteomes of fermented beverages to control product quality.
Collapse
Affiliation(s)
- Shulei Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Piletska E, Magumba K, Joseph L, Garcia Cruz A, Norman R, Singh R, Tabasso AFS, Jones DJL, Macip S, Piletsky S. Molecular imprinting as a tool for determining molecular markers: a lung cancer case. RSC Adv 2022; 12:17747-17754. [PMID: 35765329 PMCID: PMC9200412 DOI: 10.1039/d2ra01830f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Determining which cancer patients will be sensitive to a given therapy is essential for personalised medicine. Thus, it is important to develop new tools that will allow us to stratify patients according to their predicted response to treatment. The aim of work presented here was to use molecular imprinting for determining the sensitivity of lung cancer cell lines to ionising radiation based on cell surface proteomic differences. Molecularly imprinted polymer nanoparticles (nanoMIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complexing with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. The analysis identified two membrane proteins, neutral amino acid transporter B (0) and 4F2 cell-surface antigen heavy chain, the abundance of which in the lung cancer cells could indicate resistance of these cells to radiotherapy. This proof-of-principle experiments shows that this technology can be used in the discovery of new biomarkers and in development of novel diagnostic and therapeutic tools for a personalised medicine approach to treating cancer. A first use of molecular imprinting for characterisation of surfaceome of the lung cancer cells and discovery of the molecular markers for radiosensitivity: towards development of an effective tool for cancer therapy and personalised medicine.![]()
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Kirabo Magumba
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Lesslly Joseph
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Alvaro Garcia Cruz
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Rachel Norman
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Rajinder Singh
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Antonella F S Tabasso
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Department of Cardiovascular Sciences, University of Leicester Leicester UK.,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital Leicester UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya Barcelona Spain
| | - Sergey Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| |
Collapse
|
15
|
Soliman SSM, El-Labbad EM, Abu-Qiyas A, Fayed B, Hamoda AM, Al-Rawi AM, Dakalbab S, El-Shorbagi ANA, Hamad M, Ibrahim AS, Mohammad MG. Novel Secreted Peptides From Rhizopus arrhizus var. delemar With Immunomodulatory Effects That Enhance Fungal Pathogenesis. Front Microbiol 2022; 13:863133. [PMID: 35387075 PMCID: PMC8977774 DOI: 10.3389/fmicb.2022.863133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Secreted fungal peptides are known to influence the interactions between the pathogen and host innate immunity. The aim of this study is to screen and evaluate secreted peptides from the fungus Rhizopus arrhizus var. delemar for their immunomodulatory activity. By using mass spectrometry and immuno-informatics analysis, we identified three secreted peptides CesT (S16), Colicin (S17), and Ca2+/calmodulin-dependent protein kinase/ligand (CAMK/CAMKL; S27). Culturing peripheral blood-derived monocytic macrophages (PBMMs) in the presence of S16 or S17 caused cell clumping, while culturing them with S27 resulted in the formation of spindle-shaped cells. S27-treated PBMMs showed cell cycle arrest at G0 phase and exhibited alternatively activated macrophage phenotype with pronounced reduction in scavenger receptors CD163 and CD206. Homology prediction indicated that IL-4/IL-13 is the immunomodulatory target of S27. Confirming this prediction, S27 initiated macrophage activation through phosphorylation of STAT-6; STAT-6 inhibition reversed the activity of S27 and reduced the formation of spindle-shaped PBMMs. Lastly, S27 treatment of PBMMs was associated with altered expression of key iron regulatory genes including hepcidin, ferroportin, transferrin receptor 1, and ferritin in a pattern consistent with increased cellular iron release; a condition known to enhance Rhizopus infection. Collectively, R. arrhizus var. delemar secretes peptides with immunomodulatory activities that support fungal pathogenesis. Targeting the IL-4/IL-13R/STAT-6 axis is a potential therapeutic approach to enhance the PBMM-mediated fungal phagocytosis. This represents a potential new approach to overcome lethal mucormycosis.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman M El-Labbad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdel-Nasser A El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:6440159. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
17
|
Chen L, Wang H, Yang J, Yang X, Zhang M, Zhao Z, Fan Y, Wang C, Wang J. Bioinformatics and Transcriptome Analysis of CFEM Proteins in Fusarium graminearum. J Fungi (Basel) 2021; 7:jof7100871. [PMID: 34682292 PMCID: PMC8540330 DOI: 10.3390/jof7100871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
Fusarium blight of wheat is usually caused by Fusarium graminearum, and the pathogenic fungi will secrete effectors into the host plant tissue to affect its normal physiological process, so as to make it pathogenic. The CFEM (Common in Fungal Extracellular Membrane) protein domain is unique to fungi, but it is not found in all fungi. The CFEM protein contained in F. graminearum may be closely related to pathogenicity. In this study, 23 FgCFEM proteins were identified from the F. graminearum genome. Then, features of these proteins, such as signal peptide, subcellular localization, and transmembrane domains, etc., were analyzed and candidate effectors were screened out. Sequence alignment results revealed that each FgCFEM protein contains one CFEM domain. The amino acids of the CFEM domain are highly conserved and contain eight spaced cysteines, with the exception that FgCFEM8, 9, and 15 lack two cysteines and three cysteines were missed in FgCFEM18 and FgCFEM22. A recently identified CFEM_DR motif was detected in 11 FgCFEMs, and importantly we identified two new conserved motifs containing about 29 and 18 amino acids (CFEM_WR and CFEM_KF), respectively, in some of FgCFEM proteins. Transcriptome analysis of the genes encoding CFEM proteins indicated that all the CFEM-containing genes were expressed during wheat infection, with seven and six genes significantly up- and down-regulated, respectively, compared with in planta and in vitro. Based on the above analysis, FgCFEM11 and FgCFEM23 were predicted to be F. graminearum effectors. This study provides the basis for future functional analyses of CFEM proteins in F. graminearum.
Collapse
Affiliation(s)
- Lingqiao Chen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.C.); (H.W.); (M.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Haoyu Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.C.); (H.W.); (M.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Junhua Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Xianli Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Mengyuan Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.C.); (H.W.); (M.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Zhihui Zhao
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
| | - Yingying Fan
- Institute of Quanlity Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Cheng Wang
- Institute of Quanlity Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.F.); (C.W.)
| | - Jianhua Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (L.C.); (H.W.); (M.Z.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shanghai), Institute for Agro-Food Standards and Testing Technology, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.Y.); (X.Y.); (Z.Z.)
- Correspondence: ; Tel.: +86-2167131637
| |
Collapse
|
18
|
Lee WH, Jin YS. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose. J Microbiol Biotechnol 2021; 31:1035-1043. [PMID: 34226403 PMCID: PMC9705985 DOI: 10.4014/jmb.2105.05018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.
Collapse
Affiliation(s)
- Won-Heong Lee
- Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Department of Bioenergy Science and Technology, and Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding author Phone: +82-62-530-2046 Fax: +82-62-530-2047 E-mail:
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Steele E, Alebous HD, Vickers M, Harris ME, Johnson MD. Co-culturing experiments reveal the uptake of myo-inositol phosphate synthase (EC 5.5.1.4) in an inositol auxotroph of Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:138. [PMID: 34281557 PMCID: PMC8287684 DOI: 10.1186/s12934-021-01610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/08/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Myo-Inositol Phosphate Synthase (MIP) catalyzes the conversion of glucose 6- phosphate into inositol phosphate, an essential nutrient and cell signaling molecule. Data obtained, first in bovine brain and later in plants, established MIP expression in organelles and in extracellular environments. A physiological role for secreted MIP has remained elusive since its first detection in intercellular space. To provide further insight into the role of MIP in intercellular milieus, we tested the hypothesis that MIP may function as a growth factor, synthesizing inositol phosphate in intercellular locations requiring, but lacking ability to produce or transport adequate quantities of the cell-cell communicator. This idea was experimentally challenged, utilizing a Saccharomyces cerevisiae inositol auxotroph with no MIP enzyme, permeable membranes with a 0.4 µm pore size, and cellular supernatants as external sources of inositol isolated from S. cerevisiae cells containing either wild-type enzyme (Wt-MIP), no MIP enzyme, auxotroph (Aux), or a green fluorescent protein (GFP) tagged reporter enzyme (MIP- GFP) in co- culturing experiments. RESULTS Resulting cell densities and microscopic studies with corroborating biochemical and molecular analyses, documented sustained growth of Aux cells in cellular supernatant, concomitant with the uptakeof MIP, detected as MIP-GFP reporter enzyme. These findings revealed previously unknown functions, suggesting that the enzyme can: (1) move into and out of intercellular space, (2) traverse cell walls, and (3) act as a growth factor to promote cellular proliferation of an inositol requiring cell. CONCLUSIONS Co-culturing experiments, designed to test a probable function for MIP secreted in extracellular vesicles, uncovered previously unknown functions for the enzyme and advanced current knowledge concerning spatial control of inositol phosphate biosynthesis. Most importantly, resulting data identified an extracellular vesicle (a non-viral vector) that is capable of synthesizing and transporting inositol phosphate, a biological activity that can be used to enhance specificity of current inositol phosphate therapeutics.
Collapse
Affiliation(s)
- Erika Steele
- The University of Alabama, The Institute of Social Science Research, PO Box 8702161, Tuscaloosa, AL 35487 USA
| | - Hana D. Alebous
- Department of Biological Sciences, School of Science, The University of Jordan, PO Box 11942, Amman-Jordan, Jordan
| | - Macy Vickers
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| | - Mary E. Harris
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| | - Margaret D. Johnson
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| |
Collapse
|
20
|
Lo SC, Yang CY, Mathew DC, Huang CC. Growth and autolysis of the kefir yeast Kluyveromyces marxianus in lactate culture. Sci Rep 2021; 11:14552. [PMID: 34267270 PMCID: PMC8282799 DOI: 10.1038/s41598-021-94101-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Kluyveromyces marxianus is a yeast that could be identified from kefir and can use a broad range of substrates, such as glucose and lactate, as carbon sources. The lactate produced in kefir culture can be a substrate for K. marxianus. However, the complexity of the kefir microbiota makes the traits of K. marxianus difficult to study. In this research, we focused on K. marxianus cultured with lactate as the sole carbon source. The optimal growth and released protein in lactate culture were determined under different pH conditions, and the LC–MS/MS-identified proteins were associated with the tricarboxylic acid cycle, glycolysis pathway, and cellular stress responses in cells, indicating that autolysis of K. marxianus had occurred under the culture conditions. The abundant glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) was cocrystallized with other proteins in the cell-free fraction, and the low transcription level of the GAP1 gene indicated that the protein abundance under autolysis conditions was dependent on protein stability. These results suggest that lactate induces the growth and autolysis of K. marxianus, releasing proteins and peptides. These findings can be fundamental for K. marxianus probiotic and kefir studies in the future.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chia-Yin Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan. .,Program in Microbial Genomics, National Chung Hsing University, Taichung, 402, Taiwan. .,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
21
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
22
|
Comparative analysis of extracellular proteomes reveals putative effectors of the boxwood blight pathogens, Calonectria henricotiae and C. pseudonaviculata. Biosci Rep 2021; 41:227917. [PMID: 33619567 PMCID: PMC7937907 DOI: 10.1042/bsr20203544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 01/25/2023] Open
Abstract
Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in the present study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.
Collapse
|
23
|
Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium. Appl Microbiol Biotechnol 2021; 105:2411-2426. [PMID: 33630153 DOI: 10.1007/s00253-021-11132-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Yeast whole cells have been widely used in modern biotechnology as biocatalysts to generate numerous compounds of industrial, chemical, and pharmaceutical importance. Since many of the biocatalysis-utilizing manufactures have become more concerned about environmental issues, seawater is now considered a sustainable alternative to freshwater for biocatalytic processes. This approach plausibly commenced new research initiatives into exploration of salt-tolerant yeast strains. Recently, there has also been a growing interest in possible applications of microbial biofilms in the field of biocatalysis. In these complex communities, cells demonstrate higher resistance to adverse environmental conditions due to their embedment in an extracellular matrix, in which physical, chemical, and physiological gradients exist. Considering these two topics, seawater and biofilms, in this work, we characterized biofilm formation in seawater-based growth media by several salt-tolerant yeast strains with previously demonstrated biocatalytic capacities. The tested strains formed both air-liquid-like biofilms and biofilms on silicone surfaces, with Debaryomyces fabryi, Schwanniomyces etchellsii, Schwanniomyces polymorphus, and Kluyveromyces marxianus showing the highest biofilm formation. The extracted biofilm extracellular matrices mostly consisted of carbohydrates and proteins. The latter group was primarily represented by enzymes involved in metabolic processes, particularly the biosynthetic ones, and in the response to stimuli. Specific features were also found in the carbohydrate composition of the extracellular matrix, which were dependent both on the yeast isolate and the nature of formed biofilms. Overall, our findings presented herein provide a unique data resource for further development and optimization of biocatalytic processes and applications employing seawater and halotolerant yeast biofilms.Key points• Ability for biofilm formation of some yeast-halotolerant strains in seawater medium• ECM composition dependent on strain and biofilm-forming surface• Metabolic enzymes in the ECM with potential applications for biocatalysis.
Collapse
|
24
|
Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. J Fungi (Basel) 2021; 7:jof7010021. [PMID: 33401497 PMCID: PMC7823998 DOI: 10.3390/jof7010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.
Collapse
|
25
|
Abstract
In yeast, many proteins are found in both the cytoplasmic and extracellular compartments, and consequently it can be difficult to distinguish nonconventional secretion from cellular leakage. Therefore, we monitored the extracellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity of intact cells as a specific marker for nonconventional secretion. Extracellular GAPDH activity was proportional to the number of cells assayed, increased with incubation time, and was dependent on added substrates. Preincubation of intact cells with 100 μM dithiothreitol increased the reaction rate, consistent with increased access of the enzyme after reduction of cell wall disulfide cross-links. Such treatment did not increase cell permeability to propidium iodide, in contrast to effects of higher concentrations of reducing agents. An amine-specific membrane-impermeant biotinylation reagent specifically inactivated extracellular GAPDH. The enzyme was secreted again after a 30- to 60-min lag following the inactivation, and there was no concomitant increase in propidium iodide staining. There were about 4 × 104 active GAPDH molecules per cell at steady state, and secretion studies showed replenishment to that level 1 h after inactivation. These results establish conditions for specific quantitative assays of cell wall proteins in the absence of cytoplasmic leakage and for subsequent quantification of secretion rates in intact cells.IMPORTANCE Eukaryotic cells secrete many proteins, including many proteins that do not follow the classical secretion pathway. Among these, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is unexpectedly found in the walls of yeasts and other fungi and in extracellular space in mammalian cell cultures. It is difficult to quantify extracellular GAPDH, because leakage of just a little of the very large amount of cytoplasmic enzyme can invalidate the determinations. We used enzymatic assays of intact cells while also maintaining membrane integrity. The results lead to estimates of the amount of extracellular enzyme and its rate of secretion to the wall in intact cells. Therefore, enzyme assays under controlled conditions can be used to investigate nonconventional secretion more generally.
Collapse
|
26
|
Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020; 7:13. [PMID: 32968488 PMCID: PMC7501697 DOI: 10.1186/s40694-020-00103-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)-secreted, membrane-bound nanoparticles containing molecular cargo-being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. RESULTS Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC-MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. CONCLUSION We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.
Collapse
Affiliation(s)
- Erin H. Hill
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
27
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
28
|
Hosomi A, Iida K, Cho T, Iida H, Kaneko M, Suzuki T. The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 2020; 295:10406-10419. [PMID: 32513868 DOI: 10.1074/jbc.ra120.012575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soluble proteins destined for the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER). The importance of N-terminal signal peptides for ER translocation has been extensively examined over the past few decades. However, in the budding yeast Saccharomyces cerevisiae, a few proteins devoid of a signal peptide are still translocated into the ER and then N-glycosyl-ated. Using signal peptide-truncated reporter proteins, here we report the detection of significant translocation of N-terminal signal peptide-truncated proteins in a yeast mutant strain (ste24Δ) that lacks the endopeptidase Ste24 at the ER membrane. Furthermore, several ER/cytosolic proteins, including Sec61, Sec66, and Sec72, were identified as being involved in the translocation process. On the basis of screening for 20 soluble proteins that may be N-glycosylated in the ER in the ste24Δ strain, we identified the transcription factor Rme1 as a protein that is partially N-glycosylated despite the lack of a signal peptide. These results clearly indicate that some proteins lacking a signal peptide can be translocated into the ER and that Ste24 typically suppresses this process.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Kazuko Iida
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Toshihiko Cho
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Masashi Kaneko
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
29
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
30
|
Phithakrotchanakoon C, Phaonakrop N, Roytrakul S, Tanapongpipat S, Roongsawang N. Protein secretion in wild-type and Othac1 mutant strains of thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC656. Mol Biol Rep 2019; 47:461-468. [DOI: 10.1007/s11033-019-05149-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
|
31
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
32
|
Chinnici J, Yerke L, Tsou C, Busarajan S, Mancuso R, Sadhak ND, Kim J, Maddi A. Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii. PeerJ 2019; 7:e7870. [PMID: 31616604 PMCID: PMC6791342 DOI: 10.7717/peerj.7870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Polymicrobial biofilms play important roles in oral and systemic infections. The oral plaque bacterium Streptococcus gordonii is known to attach to the hyphal cell wall of the fungus Candida albicans to form corn-cob like structures in biofilms. However, the role of C. albicans in formation of polymicrobial biofilms is not completely understood. The objective of this study was to determine the role of C. albicans transcription factors in regulation of polymicrobial biofilms and antibiotic tolerance of S. gordonii. The proteins secreted by C. albicans and S. gordonii in mixed planktonic cultures were determined using mass spectrometry. Antibiotic tolerance of S. gordonii to ampicillin and erythromycin was determined in mixed cultures and mixed biofilms with C. albicans. Additionally, biofilm formation of S. gordonii with C. albicans knock-out mutants of 45 transcription factors that affect cell wall integrity, filamentous growth and biofilm formation was determined. Furthermore, these mutants were also screened for antibiotic tolerance in mixed biofilms with S. gordonii. Analysis of secreted proteomes resulted in the identification of proteins being secreted exclusively in mixed cultures. Antibiotic testing showed that S. gordonii had significantly increased survival in mixed planktonic cultures with antibiotics as compared to single cultures. C. albicans mutants of transcription factors Sfl2, Brg1, Leu3, Cas5, Cta4, Tec1, Tup1, Rim101 and Efg1 were significantly affected in mixed biofilm formation. Also mixed biofilms of S. gordonii with mutants of C. albicans transcription factors, Tec1 and Sfl2, had significantly reduced antibiotic tolerance as compared to control cultures. Our data indicates that C. albicans may have an important role in mixed biofilm formation as well as antibiotic tolerance of S. gordonii in polymicrobial biofilms. C. albicans may play a facilitating role than being just an innocent bystander in oral biofilms and infections.
Collapse
Affiliation(s)
- Jennifer Chinnici
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Lisa Yerke
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Charlene Tsou
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Sujay Busarajan
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Ryan Mancuso
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Nishanth D Sadhak
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Jaewon Kim
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Abhiram Maddi
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
33
|
Zhou Q, Jiao L, Qiao Y, Wang Y, Xu L, Yan J, Yan Y. Overexpression of GRAS Rhizomucor miehei lipase in Yarrowia lipolytica via optimizing promoter, gene dosage and fermentation parameters. J Biotechnol 2019; 306:16-23. [PMID: 31520680 DOI: 10.1016/j.jbiotec.2019.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Rhizomucor miehei lipase (RML), a GRAS catalyst with wide applications, was overexpressed in Yarrowia lipolytica, also a GRAS unconventional yeast, via a combined strategy, optimization for promoter, gene dosage and fermentation process. The lipase activity of the recombinant strain was first increased from 19.5 to 26.9 U/mL via codon optimization of rml gene. Subsequently, a method was developed for constructing hybrid promoters harboring different copy number of upstream activation sequences fragment (UAS1B), and the recombinant strain Po1g/hp12d-rml 25# reached 38.9 U/mL. On this basis, expression vectors with different optimized rml gene copy numbers were constructed and introduced into Y. lipolytica Po1g. The recombinant strain Po1g/hp12d-2rml 14# carrying 12 copies of UAS1B in the upstream of pLEUmin and 2 copies of rml gene obtained the highest lipase activity of 59.6 U/mL. Moreover, in optimized shaking flask culture parameters: 5% (m/v) of d-Sorbitol, 2% (v/v) inoculation density, initial pH 7.0, and 30 mL initial culture medium, the RML activity of Po1g/hp12d-2rml 14# further reached 157 U/mL after 84-h of incubation at 28 ℃. Overall, RML activity was enhanced about 8-fold compared with the initial recombinant strain via the combined strategy, which provides a consolidated basis for the large-scale production of RML in Y. lipolytica to match urgent demand of the market.
Collapse
Affiliation(s)
- Qinghua Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangcheng Jiao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yangge Qiao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
34
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
35
|
Cai P, Gao J, Zhou Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb Cell Fact 2019; 18:63. [PMID: 30940138 PMCID: PMC6444819 DOI: 10.1186/s12934-019-1112-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Non-conventional yeasts are playing important roles as cell factories for bioproduction of biofuels, food additives and proteins with outstanding natural characteristics. However, the precise genome editing is challenging in non-conventional yeasts due to lack of efficient genetic tools. In the past few years, CRISPR-based genome editing worked as a revolutionary tool for genetic engineering and showed great advantages in cellular metabolic engineering. Here, we review the current advances and barriers of CRISPR-Cas9 for genome editing in non-conventional yeasts and propose the possible solutions in enhancing its efficiency for precise genetic engineering.
Collapse
Affiliation(s)
- Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023 People’s Republic of China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Yongjin Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
36
|
Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2019; 103:3073-3083. [PMID: 30734124 DOI: 10.1007/s00253-019-09657-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Microbial contamination of alcoholic fermentation processes (e.g. winemaking and fuel-ethanol production) is a serious problem for the industry since it may render the product unacceptable and/or reduce its productivity, leading to large economic losses. Brettanomyces/Dekkera bruxellensis is one of the most dangerous microbial contaminant of ethanol industrial fermentations. In the case of wine, this yeast species can produce phenolic compounds that confer off-flavours to the final product. In fuel-ethanol fermentations, D. bruxellensis is a persistent contaminant that affects ethanol yields and productivities. We recently found that Saccharomyces cerevisiae secretes a biocide, which we named saccharomycin, composed of antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Saccharomycin is active against several wine-related yeast species, namely D. bruxellensis. However, the levels of saccharomycin naturally secreted by S. cerevisiae during alcoholic fermentation are not sufficient to ensure the complete death of D. bruxellensis. Therefore, the aim of the present work was to construct genetically modified S. cerevisiae strains to overproduce these GAPDH-derived AMPs. The expression levels of the nucleotides sequences encoding the AMPs were evaluated in the modified S. cerevisiae strains by RT-qPCR, confirming the success of the recombinant approach. Furthermore, we confirmed by immunological tests that the modified S. cerevisiae strains secreted higher amounts of the AMPs by comparison with the non-modified strain, inducing total death of D. bruxellensis during alcoholic fermentations.
Collapse
|
37
|
A Potential Lock-Type Mechanism for Unconventional Secretion in Fungi. Int J Mol Sci 2019; 20:ijms20030460. [PMID: 30678160 PMCID: PMC6386918 DOI: 10.3390/ijms20030460] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.
Collapse
|
38
|
Chemoproteomic identification of molecular targets of antifungal prototypes, thiosemicarbazide and a camphene derivative of thiosemicarbazide, in Paracoccidioides brasiliensis. PLoS One 2018; 13:e0201948. [PMID: 30148835 PMCID: PMC6110461 DOI: 10.1371/journal.pone.0201948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a neglected human systemic disease caused by species of the genus Paracoccidioides. The disease attacks the host’s lungs and may disseminate to many other organs. Treatment involves amphotericin B, sulfadiazine, trimethoprim-sulfamethoxazole, itraconazole, ketoconazole, or fluconazole. The treatment duration is usually long, from 6 months to 2 years, and many adverse effects may occur in relation to the treatment; co-morbidities and poor treatment adherence have been noted. Therefore, the discovery of more effective and less toxic drugs is needed. Thiosemicarbazide (TSC) and a camphene derivative of thiosemicarbazide (TSC-C) were able to inhibit P. brasiliensis growth at a low dosage and were not toxic to fibroblast cells. In order to investigate the mode of action of those compounds, we used a chemoproteomic approach to determine which fungal proteins were bound to each of these compounds. The compounds were able to inhibit the activities of the enzyme formamidase and interfered in P. brasiliensis dimorphism. In comparison with the transcriptomic and proteomic data previously obtained by our group, we determined that TSC and TSC-C were multitarget compounds that exerted effects on the electron-transport chain and cell cycle regulation, increased ROS formation, inhibited proteasomes and peptidases, modulated glycolysis, lipid, protein and carbohydrate metabolisms, and caused suppressed the mycelium to yeast transition.
Collapse
|
39
|
Medrano-Díaz CL, Vega-González A, Ruiz-Baca E, Moreno A, Cuéllar-Cruz M. Moonlighting proteins induce protection in a mouse model against Candida species. Microb Pathog 2018; 124:21-29. [PMID: 30118801 DOI: 10.1016/j.micpath.2018.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
In recent years, C. albicans and C. glabrata have been identified as the main cause of candidemia and invasive candidiasis in hospitalized and immunocompromised patients. In order to colonize the human host, these fungi express several virulence factors such as the response to oxidative stress and the formation of biofilms. In the expression of these virulence factors, the cell wall of C. albicans and C. glabrata is of fundamental importance. As the outermost structure of the yeast, the cell wall is the first to come in contact with the reactive oxygen species (ROS) generated during the respiratory outbreak, and in the formation of biofilms, it is the first to adhere to organs or medical devices implanted in the human host. In both processes, several cell wall proteins (CWP) are required, since they promote attachment to human cells or abiotic surfaces, as well as to detoxify ROS. In our working group we have identified moonlighting CWP in response to oxidative stress as well as in the formation of biofilms. Having identified moonlighting CWP in Candida species in response to two virulence factors indicates that these proteins may possibly be immunodominant. The aim of the present work was to evaluate whether proteins of this type such as fructose-bisphosphate aldolase (Fba1), phosphoglycerate kinase (Pgk) and pyruvate kinase (Pk), could confer protection in a mouse model against C. albicans and C. glabrata. For this, recombinant proteins His6-Fba1, His6-Pgk and His6-Pk were constructed and used to immunize several groups of mice. The immunized mice were infected with C. albicans or C. glabrata, and subsequently the liver, spleen and kidney were extracted and the number of CFU was determined. Our results showed that Pk confers immunity to mice against C. albicans, while Fba1 to C. glabrata. This data allows us to conclude that the moonlighting CWP, Fba1 and Pk confer in vivo protection in a specific way against each species of Candida. This makes them promising candidates for developing specific vaccines against these pathogens.
Collapse
Affiliation(s)
- César Luis Medrano-Díaz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Arturo Vega-González
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
40
|
Sentandreu R, Caminero A, Rentería I, León-Ramirez C, González-de-la-Vara L, Valentin-Gomez E, Ruiz-Herrera J. Analysis of the 3H8 antigen of Candida albicans reveals new aspects of the organization of fungal cell wall proteins. FEMS Yeast Res 2018; 18:4966986. [PMID: 29648589 DOI: 10.1093/femsyr/foy035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
The walls of both, yeast and mycelial cells of Candida albicans possess a species-specific antigen that is recognized by a monoclonal antibody (MAb 3H8). This antigen can be extracted in the form of a very high Mr complex, close or over 106 Da, by treatment, with β-1,3-glucanase, β mercaptoethanol or dithothreitol, or mild alkali, but not by saturated hydrogen fluoride (HF) in pyridine, suggesting that the complex is bound to wall β-1,3 glucans, and to proteins by disulfide bonds, but not to β-1,6 glucans. Through its sensitivity to trypsin and different deglycosylation procedures, it was concluded that the epitope is associated to a glycoprotein containing N-glycosidic, but not O-glycosidic mannan moieties. By means of electrophoresis in polycrylamide gradient gels, followed by mass spectrometric analysis, the epitope was pinpointed to a very high MW complex containing Agglutinin-Like Sequence (ALS) family proteins, and other cytoplasmic, membrane and secreted proteins. The components of this complex are bound by unknown covalent bonds. The material extracted with β mercaptoethanol or dilute alkali appeared under the electron microscope as large aggregates in the form of spheroidal and mostly web-like structures of large sizes. These, and additional data, suggest that this protein complex may constitute an important part of the basic glycoprotein structure of C. albicans. The possibility that similar complexes exist in the wall of other fungi is an attractive, although yet untested possibility.
Collapse
Affiliation(s)
- Rafael Sentandreu
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Antonio Caminero
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Itzel Rentería
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Claudia León-Ramirez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Luis González-de-la-Vara
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Eulogio Valentin-Gomez
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| |
Collapse
|
41
|
de Oliveira AR, Oliveira LN, Chaves EGA, Weber SS, Bailão AM, Parente-Rocha JA, Baeza LC, de Almeida Soares CM, Borges CL. Characterization of extracellular proteins in members of the Paracoccidioides complex. Fungal Biol 2018; 122:738-751. [PMID: 30007425 DOI: 10.1016/j.funbio.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) - an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.
Collapse
Affiliation(s)
- Amanda Rodrigues de Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Simone Schneider Weber
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
42
|
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep 2018; 8:2681. [PMID: 29422616 PMCID: PMC5805727 DOI: 10.1038/s41598-018-21039-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes.
Collapse
|
43
|
Computational and Experimental Approaches to Predict Host-Parasite Protein-Protein Interactions. Methods Mol Biol 2018; 1819:153-173. [PMID: 30421403 DOI: 10.1007/978-1-4939-8618-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In host-parasite systems, protein-protein interactions are key to allow the pathogen to enter the host and persist within the host. The study of host-parasite molecular communication improves the understanding the mechanisms of infection, evasion of the host immune system and tropism across different tissues. Current trends in parasitology focus on unraveling host-parasite protein-protein interactions to aid the development of new strategies to combat pathogenic parasites with better treatments and prevention mechanisms. Due to the complexity of capturing experimentally these interactions, computational approaches integrating data from different sources (mainly "omics" data) become key to complement or support experimental approaches. Here, we focus on the application of experimental and computational methods in the prediction of host-parasite interactions and highlight the potential of each of these methods in specific contexts.
Collapse
|
44
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
45
|
Araújo DS, de Sousa Lima P, Baeza LC, Parente AFA, Melo Bailão A, Borges CL, de Almeida Soares CM. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1304-1314. [PMID: 28844734 DOI: 10.1016/j.bbapap.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MSE, was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil; Laboratório Interdisciplinar de Biologia, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Ana Flávia Alves Parente
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Biologia, Campus Universitário Darci Ribeiro, Brasília, DF, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil.
| |
Collapse
|
46
|
León-García MC, Ríos-Castro E, López-Romero E, Cuéllar-Cruz M. Evaluation of cell wall damage by dimethyl sulfoxide in Candida species. Res Microbiol 2017. [PMID: 28629869 DOI: 10.1016/j.resmic.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies dealing with the response of microorganisms to oxidative stress require the dissolution of oxidant agents in an appropriate solvent. A commonly used medium is dimethyl sulfoxide, which has been considered as an innocuous polar solvent. However, we have observed significant differences between control, untreated cells and those receiving increasing amounts of the oxidant and hence increasing amounts of DMSO, to the maximum allowed of 1%. Here we show that, while this solvent does not influence yeast cell viability, it does affect expression of cell wall proteins as well as catalase activity. Therefore, its use in future studies of oxidative stress as an innocuous solvent should be reconsidered.
Collapse
Affiliation(s)
- María Cristina León-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Centro de Investigación y de Estudios Avanzados del I.P.N., Apdo. Postal 14-740, 07000, México, D.F., Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
47
|
Núñez-Beltrán A, López-Romero E, Cuéllar-Cruz M. Identification of proteins involved in the adhesionof Candida species to different medical devices. Microb Pathog 2017; 107:293-303. [PMID: 28396240 DOI: 10.1016/j.micpath.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/04/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection.
Collapse
Affiliation(s)
- Arianna Núñez-Beltrán
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
48
|
Cuesta-Astroz Y, Oliveira FSD, Nahum LA, Oliveira G. Helminth secretomes reflect different lifestyles and parasitized hosts. Int J Parasitol 2017; 47:529-544. [PMID: 28336271 DOI: 10.1016/j.ijpara.2017.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Helminths cause a number of medical and agricultural problems and are a major cause of parasitic infections in humans, animals and plants. Comparative analysis of helminth genes and genomes are important to understand the genomic biodiversity and evolution of parasites and their hosts in terms of different selective pressures in their habitats. The interactions between the infective organisms and their hosts are mediated in large part by secreted proteins, known collectively as the "secretome". Proteins secreted by parasites are able to modify a host's environment and modulate their immune system. The composition and function of this set of proteins varies depending on the ecology, lifestyle and environment of an organism. The present study aimed to predict, in silico, the secretome in 44 helminth species including Nematoda (31 species) and Platyhelminthes (13 species) and, understand the diversity and evolution of secretomes. Secretomes from plant helminths range from 7.6% (943 proteins) to 13.9% (2,077 proteins) of the filtered proteome with an average of 10.2% (1,412 proteins) and from free-living helminths range from 4.4% (870 proteins) to 13% (3,121 proteins) with an average of 9.8% (2,126 proteins), respectively, and thus are considerably larger secretomes in relation to animal helminth secretomes which range from 4.2% (431 proteins) to 11.8% (2,419 proteins) of the proteomes, with an average of 7.1% (804 proteins). Across 44 secretomes in different helminth species, we found five conserved domains: (i) PF00014 (Kunitz/Bovine pancreatic trypsin inhibitor domain), (ii) PF00046 (Homeobox domain), (iii) PF00188 (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), (iv) PF00085 (Thioredoxin) and (v) PF07679 (Immunoglobulin I-set domain). Our results detected secreted proteins associated with invasion, infection, adhesion and immunoregulation processes as protease inhibitors and cytokines, among other functions. In summary, this study will contribute towards the understanding of host-parasite interactions and possibly identify new molecular targets for the treatment or diagnosis of helminthiases.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Francislon Silva de Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Laila Alves Nahum
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Faculdade Promove de Tecnologia, Belo Horizonte, MG 30130-180, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto Tecnológico Vale, Belém, PA 66055-090, Brazil.
| |
Collapse
|
49
|
Abstract
A majority of infections caused by Candida albicans—the most frequent fungal pathogen—are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.
Collapse
|
50
|
Barnabas L, Ashwin NMR, Kaverinathan K, Trentin AR, Pivato M, Sundar AR, Malathi P, Viswanathan R, Carletti P, Arrigoni G, Masi A, Agrawal GK, Rakwal R. In vitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum - The sugarcane smut fungus. Fungal Biol 2017; 121:199-211. [PMID: 28215348 DOI: 10.1016/j.funbio.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 02/08/2023]
Abstract
Sporisorium scitamineum, the sugarcane smut pathogen, relies predominantly on its secretome to successfully colonise its host, in accordance with other related smut fungi. Considering the significance of deciphering its secretome, we have examined alterations in the in vitro secretome of S. scitamineum in response to synthetic and sugarcane meristem tissue-amended growth media, so as to identify host signal responsive secretory proteins. Secretory proteins that were differentially abundant and exclusively secreted in response to host extract media were identified by two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF MS. Of the 16 differentially abundant and exclusively secreted proteins, nine proteins were identified. Among which, six were related to cell wall modification, morphogenesis, polysaccharide degradation, and carbohydrate metabolism. In planta gene expression profiling indicated that five in vitro secreted proteins were expressed in distinct patterns by S. scitamineum during different stages of infection with relatively higher expression at 1 day after inoculation, suggesting that these proteins could be aiding S. scitamineum at early time points in penetration and colonisation of sugarcane cells. The present study has provided insights into the alterations occurring in the secretome of S. scitamineum at in vitro conditions and has resulted in the identification of secretory proteins that are possibly associated with pathogenicity of the sugarcane smut fungus.
Collapse
Affiliation(s)
- Leonard Barnabas
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - N M R Ashwin
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Kalimuthu Kaverinathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Amalraj Ramesh Sundar
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India.
| | - Palaniyandi Malathi
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center of Padova University, Via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, 44301 Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, 44301 Birgunj, Nepal; Faculty of Health and Sport Sciences & Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 305-8571 Ibaraki, Japan
| |
Collapse
|