1
|
Sasazawa M, Tomares DT, Childers WS, Saurabh S. Biomolecular condensates as stress sensors and modulators of bacterial signaling. PLoS Pathog 2024; 20:e1012413. [PMID: 39146259 PMCID: PMC11326607 DOI: 10.1371/journal.ppat.1012413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Microbes exhibit remarkable adaptability to environmental fluctuations. Signaling mechanisms, such as two-component systems and secondary messengers, have long been recognized as critical for sensing and responding to environmental cues. However, recent research has illuminated the potential of a physical adaptation mechanism in signaling-phase separation, which may represent a ubiquitous mechanism for compartmentalizing biochemistry within the cytoplasm in the context of bacteria that frequently lack membrane-bound organelles. This review considers the broader prospect that phase separation may play critical roles as rapid stress sensing and response mechanisms within pathogens. It is well established that weak multivalent interactions between disordered regions, coiled-coils, and other structured domains can form condensates via phase separation and be regulated by specific environmental parameters in some cases. The process of phase separation itself acts as a responsive sensor, influenced by changes in protein concentration, posttranslational modifications, temperature, salts, pH, and oxidative stresses. This environmentally triggered phase separation can, in turn, regulate the functions of recruited biomolecules, providing a rapid response to stressful conditions. As examples, we describe biochemical pathways organized by condensates that are essential for cell physiology and exhibit signaling features. These include proteins that organize and modify the chromosome (Dps, Hu, SSB), regulate the decay, and modification of RNA (RNase E, Hfq, Rho, RNA polymerase), those involved in signal transduction (PopZ, PodJ, and SpmX) and stress response (aggresomes and polyphosphate granules). We also summarize the potential of proteins within pathogens to function as condensates and the potential and challenges in targeting biomolecular condensates for next-generation antimicrobial therapeutics. Together, this review illuminates the emerging significance of biomolecular condensates in microbial signaling, stress responses, and regulation of cell physiology and provides a framework for microbiologists to consider the function of biomolecular condensates in microbial adaptation and response to diverse environmental conditions.
Collapse
Affiliation(s)
- Moeka Sasazawa
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saumya Saurabh
- Department of Chemistry, New York University, New York, New York, United States of America
| |
Collapse
|
2
|
Muñoz-Bucio A, Arellano-Reynoso B, Sangari FJ, Sieira R, Thébault P, Espitia C, García Lobo JM, Seoane A, Suárez-Güemes F. Increased Brucella abortus asRNA_0067 expression under intraphagocytic stressors is associated with enhanced virB2 transcription. Arch Microbiol 2024; 206:285. [PMID: 38816572 PMCID: PMC11139718 DOI: 10.1007/s00203-024-03984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Collapse
Affiliation(s)
- Adrian Muñoz-Bucio
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Félix J Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435CABA, CP. 1405, Buenos Aires Argentina, Argentina
| | - Patricia Thébault
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux, 33400, Talence, France
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México MX, CDMX, Circuito Escolar 33, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Juan M García Lobo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Asunción Seoane
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
3
|
Zheng M, Lin R, Zhu J, Dong Q, Chen J, Jiang P, Zhang H, Liu J, Chen Z. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther 2024; 19:145-153. [PMID: 36809969 DOI: 10.2174/1574888x18666230222124529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ruiqi Lin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 110866, Shenyang, China
| |
Collapse
|
4
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross-regulation in a three-component cell envelope stress signaling system of Brucella. mBio 2023; 14:e0238723. [PMID: 38032291 PMCID: PMC10746171 DOI: 10.1128/mbio.02387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE As intracellular pathogens, Brucella must contend with a variety of host-derived stressors when infecting a host cell. The inner membrane, cell wall, and outer membrane, i.e. the cell envelope, of Brucella provide a critical barrier to host assault. A conserved regulatory mechanism known as two-component signaling (TCS) commonly controls transcription of genes that determine the structure and biochemical composition of the cell envelope during stress. We report the identification of previously uncharacterized TCS genes that determine Brucella ovis fitness in the presence of cell envelope disruptors and within infected mammalian host cells. Our study reveals a new molecular mechanism of TCS-dependent gene regulation, and thereby advances fundamental understanding of transcriptional regulatory processes in bacteria.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Melene A. Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Yu J, Yuan H, Guo J, Dong Z, Li S, Fu Q, Aode B, Baoyin S, Bao L, Wu L. Combining multi-omics analysis to identify host-targeted targets for the control of Brucella infection. Microb Biotechnol 2023; 16:2345-2366. [PMID: 37882474 PMCID: PMC10686141 DOI: 10.1111/1751-7915.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 10/27/2023] Open
Abstract
Human infections caused by Brucella (called brucellosis) are among the most common zoonoses worldwide with an estimated 500,000 cases each year. Since chronic Brucella infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As a facultative intracellular bacterium, Brucella is strictly parasitic in the host cell. Here, we performed proteomic and transcriptomic and metabolomic analyses on Brucella infected patients, mice and cells that provided an extensive "map" of physiological changes in brucellosis patients and characterized the metabolic pathways essential to the response to infection, as well as the associated cellular response and molecular mechanisms. This is the first report utilizing multi-omics analysis to investigate the global response of proteins and metabolites associated with Brucella infection, and the data can provide a comprehensive insight to understand the mechanism of Brucella infection. We demonstrated that Brucella increased nucleotide synthesis in the host, consistent with increased biomass requirement. We also identified IMPDH2, a key regulatory complex that controls nucleotide synthesis during Brucella infection. Pharmacological targeting of IMPDH2, the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits B. abortus growth both in vitro and in vivo. Through screening a library of natural products, we identified oxymatrine, an alkaloid obtained primarily from Sophora roots, is a novel and selective IMPDH2 inhibitor. In further in vitro bacterial inhibition assays, oxymatrine effectively inhibited the growth of B. abortus, which was impaired by exogenous supplementation of guanosine, a salvage pathway of purine nucleotides. This moderately potent, structurally novel compound may provide clues for further design and development of efficient IMPDH2 inhibitors and also demonstrates the potential of natural compounds from plants against Brucella.
Collapse
Affiliation(s)
- Jiuwang Yu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Hongwei Yuan
- Department of PathologyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Jiarong Guo
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Zhiheng Dong
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Sha Li
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Quan Fu
- Department of LaboratoryAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Bilige Aode
- Department of Mongolian MedicineInner Mongolia Xilin Gol League Mongolian Medical HospitalXilinhaoteChina
| | - Sachula Baoyin
- Mongolia Medical SchoolInner Mongolia Medical UniversityHohhotChina
| | - Lidao Bao
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Lan Wu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| |
Collapse
|
6
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross regulation in a three-component cell envelope stress signaling system of Brucella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536747. [PMID: 37873345 PMCID: PMC10592609 DOI: 10.1101/2023.04.15.536747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A multi-layered structure known as the cell envelope separates the controlled interior of bacterial cells from a fluctuating physical and chemical environment. The transcription of genes that determine cell envelope structure and function is commonly regulated by two-component signaling systems (TCS), comprising a sensor histidine kinase and a cognate response regulator. To identify TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a collection of non-essential TCS deletion mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins that coordinately function to confer resistance to cell envelope stressors and to support B. ovis replication in the intracellular niche. This tripartite regulatory system includes the known cell envelope regulator, CenR, and a previously uncharacterized TCS, EssR-EssS, which is widely conserved in Alphaproteobacteria. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR, while CenR and EssR control the cellular levels of each other via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator affects both the activity and protein levels of a cognate TCS protein pair.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
7
|
Lin R, Li A, Li Y, Shen R, Du F, Zheng M, Zhu J, Chen J, Jiang P, Zhang H, Liu J, Chen X, Chen Z. The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53. Microorganisms 2023; 11:2322. [PMID: 37764165 PMCID: PMC10534853 DOI: 10.3390/microorganisms11092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The Brucella type IV secretion system (T4SS) can promote the intracellular survival and reproduction of Brucella. T4SS secretes effector proteins to act on cellular signaling pathways to inhibit the host's innate immune response and cause a chronic, persistent Brucella infection. Brucella can survive in host cells for a long time by inhibiting macrophage apoptosis and avoiding immune recognition. The effector protein, BspF, secreted by T4SS, can regulate host secretory transport and accelerate the intracellular replication of Brucella. BspF has an acetyltransferase domain of the GNAT (GCN5-related N-acetyltransferases) family, and in our previous crotonylation proteomics data, we have found that BspF has crotonyl transferase activity and crotonylation regulation of host cell protein in the proteomics data. Here, we found that BspF attenuates the crotonylation modification of the interacting protein p53, which reduces the p53 expression through the GNAT domain. BspF can inhibit the transcription and protein expression of downstream apoptotic genes, thereby inhibiting host cell apoptosis. Additionally, the Brucella ΔbspF mutant stain promotes apoptosis and reduces the survival rate of Brucella in the cells. In conclusion, we identified that the T4SS effector protein BspF can regulate host cell apoptosis to assist Brucella in its long-term survival by attenuating crotonylation modification of p53 and decreasing p53 expression. Our findings reveal a unique mechanism of elucidating how Brucella regulates host cell apoptosis and promotes its proliferation through the secretion of effector proteins.
Collapse
Affiliation(s)
- Ruiqi Lin
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Ang Li
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Yuzhuo Li
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Ruitong Shen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Fangyuan Du
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Min Zheng
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Pengfei Jiang
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Xiaoyue Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Disease, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China; (R.L.); (A.L.); (R.S.); (F.D.); (M.Z.); (J.Z.); (J.C.); (P.J.); (J.L.); (X.C.)
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
9
|
Guo X, Zeng H, Li M, Xiao Y, Gu G, Song Z, Shuai X, Guo J, Huang Q, Zhou B, Chu Y, Jiao H. The mechanism of chronic intracellular infection with Brucella spp. Front Cell Infect Microbiol 2023; 13:1129172. [PMID: 37143745 PMCID: PMC10151771 DOI: 10.3389/fcimb.2023.1129172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Globally, brucellosis is a widespread zoonotic disease. It is prevalent in more than 170 countries and regions. It mostly damages an animal's reproductive system and causes extreme economic losses to the animal husbandry industry. Once inside cells, Brucella resides in a vacuole, designated the BCV, which interacts with components of the endocytic and secretory pathways to ensure bacterial survival. Numerous studies conducted recently have revealed that Brucella's ability to cause a chronic infection depends on how it interacts with the host. This paper describes the immune system, apoptosis, and metabolic control of host cells as part of the mechanism of Brucella survival in host cells. Brucella contributes to both the body's non-specific and specific immunity during chronic infection, and it can aid in its survival by causing the body's immune system to become suppressed. In addition, Brucella regulates apoptosis to avoid being detected by the host immune system. The BvrR/BvrS, VjbR, BlxR, and BPE123 proteins enable Brucella to fine-tune its metabolism while also ensuring its survival and replication and improving its ability to adapt to the intracellular environment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Guojing Gu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenhui Song
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Bo Zhou, ; Yuefeng Chu, ; Hanwei Jiao,
| |
Collapse
|
10
|
Li J, Qi L, Diao Z, Zhang M, Li B, Zhai Y, Hao M, Zhou D, Liu W, Jin Y, Wang A. Brucella BtpB Manipulates Apoptosis and Autophagic Flux in RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms232214439. [PMID: 36430916 PMCID: PMC9693124 DOI: 10.3390/ijms232214439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Brucella transfers effectors into host cells, manipulating cellular processes to its advantage; however, the mechanism by which effectors regulate cellular processes during infection is poorly understood. A growing number of studies have shown that apoptosis and autophagy are critical mechanisms for target cells to cope with pathogens and maintain cellular homeostasis. BtpB is a Brucella type IV secretion system effector with a complex mechanism for manipulating host infection. Here, we show that the ectopic expression of BtpB promoted DNA fragmentation. In contrast, an isogenic mutant strain, ΔbtpB, inhibited apoptosis compared to the wild-type strain B. suis S2 in RAW264.7 cells. In addition, BtpB inhibited autophagy, as determined by LC3-II protein levels, the number of LC3 puncta, and p62 degradation. We also found that BtpB reduced autophagolysosome formation and blocked the complete autophagic flux. Moreover, our results revealed that the autophagy inhibitor, chloroquine, reduces Brucella's intracellular survival. Overall, our data unveil new mechanisms of virulence implicating the effector BtpB in regulating host intracellular infection.
Collapse
Affiliation(s)
- Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ziyang Diao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Bin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
- Correspondence: or
| |
Collapse
|
11
|
Xiao Y, Li M, Guo X, Zeng H, Shuai X, Guo J, Huang Q, Chu Y, Zhou B, Wen J, Liu J, Jiao H. Inflammatory Mechanism of Brucella Infection in Placental Trophoblast Cells. Int J Mol Sci 2022; 23:13417. [PMID: 36362199 PMCID: PMC9657658 DOI: 10.3390/ijms232113417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.
Collapse
Affiliation(s)
- Yu Xiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Mengjuan Li
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoyi Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hui Zeng
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuehong Shuai
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jianhua Guo
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qingzhou Huang
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Jake Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130102, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- The Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLoS One 2022; 17:e0274397. [PMID: 36129877 PMCID: PMC9491525 DOI: 10.1371/journal.pone.0274397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class. It is related to the expression of genes required for host interaction and intracellular survival. Here we report that bvrR and bvrS are part of an operon composed of 16 genes encoding functions related to nitrogen metabolism, DNA repair and recombination, cell cycle arrest, and stress response. Synteny of this genomic region within close Alphaproteobacteria members suggests a conserved role in coordinating the expression of carbon and nitrogen metabolic pathways. In addition, we performed a ChIP-Seq analysis after exposure of bacteria to conditions that mimic the intracellular environment. Genes encoding enzymes at metabolic crossroads of the pentose phosphate shunt, gluconeogenesis, cell envelope homeostasis, nucleotide synthesis, cell division, and virulence are BvrR/BvrS direct targets. A 14 bp DNA BvrR binding motif was found and investigated in selected gene targets such as virB1, bvrR, pckA, omp25, and tamA. Understanding gene expression regulation is essential to elucidate how Brucella orchestrates a physiological response leading to a furtive pathogenic strategy.
Collapse
|
13
|
Zhang L, Yu S, Ning X, Fang H, Li J, Zhi F, Li J, Zhou D, Wang A, Jin Y. A LysR Transcriptional Regulator Manipulates Macrophage Autophagy Flux During Brucella Infection. Front Cell Infect Microbiol 2022; 12:858173. [PMID: 35392609 PMCID: PMC8980476 DOI: 10.3389/fcimb.2022.858173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Brucella, the intracellular bacteria, have evolved subtle strategies to efficiently survive and replicate in macrophages. However, the virulence effector proteins involved are still unclear. LysR-type transcriptional regulators (lttrs) are the largest regulator family with diverse function in prokaryotes. However, very little is known about the role of LysR regulators in the Brucella spp. Here, a BSS2_II0858 gene, encoded as one of the LysR-type regulators, was studied. We successfully constructed a BSS2_II0858 deletion mutant, Δ0858, and complementation strain CΔ0858 in Brucella suis S2. The cell apoptosis induced by B. suis S2 and its derivatives were detected by flow cytometry. The autophagy was then assessed by immunoblot analysis using the IL3I/II and p62 makers. In addition, the autophagy flux was evaluated by double fluorescent labeling method for autophagy marker protein LC3. Our studies demonstrated that B. suis S2 and its derivatives inhibited the programmed cell death in early stage and promoted apoptosis in the later stage during infection in RAW264.7 cells. The BSS2_II0858 gene was found to play no role during apoptosis according to these results. Compared with the wild-type strain, Δ0858 mutant can stimulate the conversion of LC3-I to LC3-II and markedly inhibited the autophagy flux at early stage leading to obvious autophagosome accumulation. This study explored the function of BSS2_II0858 gene and may provide new insights for understanding the mechanisms involved in the survival of Brucella in macrophages.
Collapse
Affiliation(s)
- Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xinnuan Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hui Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Yaping Jin, ; Aihua Wang,
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Yaping Jin, ; Aihua Wang,
| |
Collapse
|
14
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
15
|
Felletti M, Romilly C, Wagner EGH, Jonas K. A nascent polypeptide sequence modulates DnaA translation elongation in response to nutrient availability. eLife 2021; 10:71611. [PMID: 34524083 PMCID: PMC8443254 DOI: 10.7554/elife.71611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/15/2021] [Indexed: 01/01/2023] Open
Abstract
The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Cédric Romilly
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Moreno E. The one hundred year journey of the genus Brucella (Meyer and Shaw 1920). FEMS Microbiol Rev 2021; 45:5917985. [PMID: 33016322 DOI: 10.1093/femsre/fuaa045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Brucella, described by Meyer and Shaw in 1920, comprises bacterial pathogens of veterinary and public health relevance. For 36 years, the genus came to include three species that caused brucellosis in livestock and humans. In the second half of the 20th century, bacteriologists discovered five new species and several 'atypical' strains in domestic animals and wildlife. In 1990, the Brucella species were recognized as part of the Class Alphaproteobacteria, clustering with pathogens and endosymbionts of animals and plants such as Bartonella, Agrobacterium and Ochrobactrum; all bacteria that live in close association with eukaryotic cells. Comparisons with Alphaproteobacteria contributed to identify virulence factors and to establish evolutionary relationships. Brucella members have two circular chromosomes, are devoid of plasmids, and display close genetic relatedness. A proposal, asserting that all brucellae belong to a single species with several subspecies debated for over 70 years, was ultimately rejected in 2006 by the subcommittee of taxonomy, based on scientific, practical, and biosafety considerations. Following this, the nomenclature of having multiples Brucella species prevailed and defined according to their molecular characteristics, host preference, and virulence. The 100-year history of the genus corresponds to the chronicle of scientific efforts and the struggle for understanding brucellosis.
Collapse
Affiliation(s)
- Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Campues Benjamín Nuñez, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
17
|
Castillo-Zeledón A, Ruiz-Villalobos N, Altamirano-Silva P, Chacón-Díaz C, Barquero-Calvo E, Chaves-Olarte E, Guzmán-Verri C. A Sinorhizobium meliloti and Agrobacterium tumefaciens ExoR ortholog is not crucial for Brucella abortus virulence. PLoS One 2021; 16:e0254568. [PMID: 34388167 PMCID: PMC8362948 DOI: 10.1371/journal.pone.0254568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
Brucella is a facultative extracellular-intracellular pathogen that belongs to the Alphaproteobacteria class. Precise sensing of environmental changes and a proper response mediated by a gene expression regulatory network are essential for this pathogen to survive. The plant-related Alphaproteobacteria Sinorhizobium meliloti and Agrobacterium tumefaciens also alternate from a free to a host-associated life, where a regulatory invasion switch is needed for this transition. This switch is composed of a two-component regulatory system (TCS) and a global inhibitor, ExoR. In B. abortus, the BvrR/BvrS TCS is essential for intracellular survival. However, the presence of a TCS inhibitor, such as ExoR, in Brucella is still unknown. In this work, we identified a genomic sequence similar to S. meliloti exoR in the B. abortus 2308W genome, constructed an exoR mutant strain, and performed its characterization through ex vivo and in vivo assays. Our findings indicate that ExoR is related to the BvrR phosphorylation state, and is related to the expression of known BvrR/BrvS gene targets, such as virB8, vjbR, and omp25 when grown in rich medium or starving conditions. Despite this, the exoR mutant strain showed no significant differences as compared to the wild-type strain, related to resistance to polymyxin B or human non-immune serum, intracellular replication, or infectivity in a mice model. ExoR in B. abortus is related to BvrR/BvrS as observed in other Rhizobiales; however, its function seems different from that observed for its orthologs described in A. tumefaciens and S. meliloti.
Collapse
Affiliation(s)
- Amanda Castillo-Zeledón
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Nazareth Ruiz-Villalobos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
- * E-mail:
| |
Collapse
|
18
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
19
|
Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 2020; 401:1349-1363. [DOI: 10.1515/hsz-2020-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
AbstractWhile many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication. The DNA-binding activity of CtrA is controlled at the level of both protein phosphorylation and stability, dependent on an intricate network of regulatory proteins, whose function is tightly coordinated in time and space. CtrA is differentially activated in the two (developing) offspring, thereby establishing distinct transcriptional programs that ultimately determine their distinct cell fates. Phase-separated polar microdomains of changing composition sequester proteins involved in the (in-)activation and degradation of CtrA specifically at each pole. In this review, we summarize the current knowledge of the CtrA pathway and discuss how it has evolved to regulate the cell cycle of morphologically distinct alphaproteobacteria.
Collapse
|
20
|
Borriello G, Russo V, Paradiso R, Riccardi MG, Criscuolo D, Verde G, Marasco R, Pedone PV, Galiero G, Baglivo I. Different Impacts of MucR Binding to the babR and virB Promoters on Gene Expression in Brucella abortus 2308. Biomolecules 2020; 10:biom10050788. [PMID: 32438765 PMCID: PMC7277663 DOI: 10.3390/biom10050788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.
Collapse
Affiliation(s)
- Giorgia Borriello
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Rubina Paradiso
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Marita Georgia Riccardi
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Daniela Criscuolo
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
| | - Gaetano Verde
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), 80134 Naples, Italy;
- Flomics Biotech, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rosangela Marasco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
| | - Giorgio Galiero
- Experimental Zooprophylactic Institute of Southern Italy, via Salute, 2, 80055 Portici, Italy; (G.B.); (R.P.); (M.G.R.); (D.C.)
- Correspondence: (G.G.); (I.B.); Tel.: +39-081-7865201 (G.G.); +39-0823-274598 (I.B.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, via Vivaldi—43, 81100 Caserta, Italy; (V.R.); (R.M.); (P.V.P.)
- Correspondence: (G.G.); (I.B.); Tel.: +39-081-7865201 (G.G.); +39-0823-274598 (I.B.)
| |
Collapse
|
21
|
Verdiguel-Fernández L, Oropeza-Navarro R, Ortiz A, Robles-Pesina MG, Ramírez-Lezama J, Castañeda-Ramírez A, Verdugo-Rodríguez A. Brucella melitensis omp31 Mutant Is Attenuated and Confers Protection Against Virulent Brucella melitensis Challenge in BALB/c Mice. J Microbiol Biotechnol 2020; 30:497-504. [PMID: 31986561 PMCID: PMC9728373 DOI: 10.4014/jmb.1908.08056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.
Collapse
Affiliation(s)
- L Verdiguel-Fernández
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, colonia UNAM CU, Coyoacán C.P 04510, CdMx, México
| | - R Oropeza-Navarro
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adolfo Ortiz
- Unidad de Bioseguridad de Brucella, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - MG Robles-Pesina
- Centro Nacional de Servicios de Diagnóstico en Salud Animal (CENASA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, México
| | - J Ramírez-Lezama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - A Castañeda-Ramírez
- Departamento de Zootecnia, Universidad Autónoma de Chapingo, Texcoco, México
| | - A Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, colonia UNAM CU, Coyoacán C.P 04510, CdMx, México,Corresponding author Phone: +52-1-555622-58-97 E-mail:
| |
Collapse
|
22
|
Bialer MG, Ruiz-Ranwez V, Sycz G, Estein SM, Russo DM, Altabe S, Sieira R, Zorreguieta A. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci Rep 2019; 9:2158. [PMID: 30770847 PMCID: PMC6377625 DOI: 10.1038/s41598-018-37668-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.
Collapse
Affiliation(s)
- Magalí Graciela Bialer
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Verónica Ruiz-Ranwez
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Marcela Estein
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A), Tandil, Argentina
| | - Daniela Marta Russo
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Beroual W, Biondi EG. A new factor controlling cell envelope integrity in Alphaproteobacteria in the context of cell cycle, stress response and infection. Mol Microbiol 2019; 111:553-555. [PMID: 30657614 DOI: 10.1111/mmi.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 11/26/2022]
Abstract
The bacterial envelope is a remarkable and complex compartment of the prokaryotic cell in which many essential functions take place. The article by Herrou and collaborators (Herrou et al., in press), by a clever combination of structural analysis, genetics and functional characterization in free-living bacterial cells and during infection in animal models, elucidates a new factor, named EipA, that plays a major role in Brucella spp envelope biogenesis and cell division. The authors demonstrate a genetic connection between eipA and lipopolysaccharide synthesis, specifically genes involved in the synthesis of the O-antigen portion of lipopolysaccharide (LPS). Beyond its crucial role in Brucella physiology, the conservation of EipA in the class Alphaproteobacteria urges microbiologists to pursue future investigation of its homologs in other species belonging to this important group of bacteria.
Collapse
|
24
|
Heindl JE, Crosby D, Brar S, Pinto JF, Singletary T, Merenich D, Eagan JL, Buechlein AM, Bruger EL, Waters CM, Fuqua C. Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens. MICROBIOLOGY (READING, ENGLAND) 2019; 165:146-162. [PMID: 30620265 PMCID: PMC7003649 DOI: 10.1099/mic.0.000758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
A core regulatory pathway that directs developmental transitions and cellular asymmetries in Agrobacterium tumefaciens involves two overlapping, integrated phosphorelays. One of these phosphorelays putatively includes four histidine sensor kinase homologues, DivJ, PleC, PdhS1 and PdhS2, and two response regulators, DivK and PleD. In several different alphaproteobacteria, this pathway influences a conserved downstream phosphorelay that ultimately controls the phosphorylation state of the CtrA master response regulator. The PdhS2 sensor kinase reciprocally regulates biofilm formation and swimming motility. In the current study, the mechanisms by which the A. tumefaciens sensor kinase PdhS2 directs this regulation are delineated. PdhS2 lacking a key residue implicated in phosphatase activity is markedly deficient in proper control of attachment and motility phenotypes, whereas a kinase-deficient PdhS2 mutant is only modestly affected. A genetic interaction between DivK and PdhS2 is revealed, unmasking one of several connections between PdhS2-dependent phenotypes and transcriptional control by CtrA. Epistasis experiments suggest that PdhS2 may function independently of the CckA sensor kinase, the cognate sensor kinase for CtrA, which is inhibited by DivK. Global expression analysis of the pdhS2 mutant reveals a restricted regulon, most likely functioning through CtrA to separately control motility and regulate the levels of the intracellular signal cyclic diguanylate monophosphate (cdGMP), thereby affecting the production of adhesive polysaccharides and attachment. We hypothesize that in A. tumefaciens the CtrA regulatory circuit has expanded to include additional inputs through the addition of PdhS-type sensor kinases, likely fine-tuning the response of this organism to the soil microenvironment.
Collapse
Affiliation(s)
- Jason E. Heindl
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Crosby
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
- Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sukhdev Brar
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - John F. Pinto
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Tiyan Singletary
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Merenich
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Justin L. Eagan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aaron M. Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Eric L. Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Present address: Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Herrou J, Willett JW, Fiebig A, Varesio LM, Czyż DM, Cheng JX, Ultee E, Briegel A, Bigelow L, Babnigg G, Kim Y, Crosson S. Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus. Mol Microbiol 2019; 111:637-661. [PMID: 30536925 DOI: 10.1111/mmi.14178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight-stranded β-barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O-polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jonathan W Willett
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Lydia M Varesio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jason X Cheng
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Eveline Ultee
- Department of Biology, Universiteit Leiden, Leiden, Netherlands
| | - Ariane Briegel
- Department of Biology, Universiteit Leiden, Leiden, Netherlands
| | - Lance Bigelow
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Youngchang Kim
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Gómez L, Alvarez F, Betancur D, Oñate A. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus. Vaccine 2018; 36:2928-2936. [PMID: 29685597 DOI: 10.1016/j.vaccine.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 04/04/2018] [Indexed: 01/18/2023]
Abstract
Brucella abortus is the etiological agent of brucellosis, a zoonotic disease affecting cattle and humans. This disease has been partially controlled in cattle by immunization with live attenuated B. abortus S19 and RB51 strains. However, use of these vaccine strains has been associated with safety issues in animals and humans. New vaccines have since emerged in the prevention of brucellosis, particularly DNA vaccines, which have shown effectiveness and a good safety profile. Their protection efficacy in mice is associated with the induction of Th1 type and cytotoxic T cell mediated immune response against structural antigens and virulence factors expressed during B. abortus infection. Some antigenic candidate for vaccine design against brucellosis (mainly DNA vaccines) have been obtained from genomic island 3 (GI-3) of B. abortus, which encodes several open reading frames (ORFs) involved in the intracellular survival and virulence of this pathogen. The immunogenicity and protection conferred by these DNA vaccines in a murine model is reviewed in this article, suggesting that some of them could be safe and effective vaccine candidates against to prevent B. abortus infection.
Collapse
Affiliation(s)
- Leonardo Gómez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Daniel Betancur
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Faculty of Biological Sciences, Department of Microbiology, University of Concepción, Concepción, Chile.
| |
Collapse
|
27
|
Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Infect Immun 2018; 86:IAI.00312-18. [PMID: 29844240 DOI: 10.1128/iai.00312-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.
Collapse
|
28
|
Zhou D, Zhi FJ, Qi MZ, Bai FR, Zhang G, Li JM, Liu H, Chen HT, Lin PF, Tang KQ, Liu W, Jin YP, Wang AH. Brucella induces unfolded protein response and inflammatory response via GntR in alveolar macrophages. Oncotarget 2017; 9:5184-5196. [PMID: 29435171 PMCID: PMC5797042 DOI: 10.18632/oncotarget.23706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella is an intracellular bacterium that causes the zoonosis brucellosis worldwide. Alveolar macrophages (AM) constitute the main cell target of inhaled Brucella. Brucella thwarts immune surveillance and evokes endoplasmic reticulum (ER) stress to replicate in macrophages via virulence factors. The GntR regulators family was concentrated as an important virulence factor in controlling virulence and intracellular survival of Brucella. However, the detailed underlying mechanism for the host-pathogen interaction is poorly understood. In this study the BSS2_II0438 mutant (ΔGntR) was constructed. The type IV secretion system (T4SS) virulence factor genes (VirB2, VirB6, and VirB8) were down-expression in ΔGntR. ΔGntR could infect and proliferate to high titers in GAMs without a significant difference compared with the parental strain. ΔGntR infection increased the expression of ER stress marker genes GRP78, ATF6, and PERK in the early stages of its intracellular cycle but decreased the expression of these genes in the late stages. ΔGntR increased greatly the number of Brucella CFUs in the inactive ER stress state in GAMs. Meanwhile, ΔGntR infection increased the levels of IFN-γ, IL-1β, and TNF-α, indicating ΔGntR could induce the secretion of inflammatory but not anti-inflammatory cytokines IL-10. Taken together, our results clarified the role of the GntR in B. suis. S2 virulence expression and elucidated that GntR is potentially involved in the signaling pathway of the Brucella-induced UPR and inflammatory response in GAMs.
Collapse
Affiliation(s)
- Dong Zhou
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Fei-Jie Zhi
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mao-Zhen Qi
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Fu-Rong Bai
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guangdong Zhang
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Mei Li
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huan Liu
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hua-Tao Chen
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Peng-Fei Lin
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ke-Qiong Tang
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Liu
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ya-Ping Jin
- Key Laboratory of Animal Biotechnology of The Ministry of Agriculture, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ai-Hua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Pascual DW, Yang X, Wang H, Goodwin Z, Hoffman C, Clapp B. Alternative strategies for vaccination to brucellosis. Microbes Infect 2017; 20:599-605. [PMID: 29287984 DOI: 10.1016/j.micinf.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023]
Abstract
Brucellosis remains burdensome for livestock and humans worldwide. Better vaccines for protection are needed to reduce disease incidence. Immunity to brucellosis and barriers to protection are discussed. The benefits and limitations of conventional and experimental brucellosis vaccines are outlined, and novel vaccination strategies needed to ultimately protect against brucellosis are introduced.
Collapse
Affiliation(s)
- David W Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Xinghong Yang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Hongbin Wang
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Zakia Goodwin
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
30
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
31
|
Zai X, Yang Q, Liu K, Li R, Qian M, Zhao T, Li Y, Yin Y, Dong D, Fu L, Li S, Xu J, Chen W. A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M. BMC Genomics 2017; 18:402. [PMID: 28535754 PMCID: PMC5442703 DOI: 10.1186/s12864-017-3800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/16/2017] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Brucella spp. are Gram-negative, facultative intracellular pathogens that cause brucellosis in both humans and animals. The B. abortus vaccine strain 104 M is the only vaccine available in China for the prevention of brucellosis in humans. Although the B. abortus 104 M genome has been fully sequenced, the current genome annotations are not yet complete. In addition, the main mechanisms underpinning its residual toxicity and vaccine-induced immune protection have yet to be elucidated. Mapping the proteome of B. abortus 104 M will help to improve genome annotation quality, thereby facilitating a greater understanding of its biology. RESULTS In this study, we utilized a proteogenomic approach that combined subcellular fractionation and peptide fractionation to perform a whole-proteome analysis and genome reannotation of B. abortus 104 M using high-resolution mass spectrometry. In total, 1,729 proteins (56.3% of 3,072) including 218 hypothetical proteins were identified using the culture conditions that were employed this study. The annotations of the B. abortus 104 M genome were also refined following identification and validation by reverse transcription-PCR. In addition, 14 pivotal virulence factors and 17 known protective antigens known to be involved in residual toxicity and immune protection were confirmed at the protein level following induction by the 104 M vaccine. Moreover, a further insight into the cell biology of multichromosomal bacteria was obtained following the elucidation of differences in protein expression levels between the small and large chromosomes. CONCLUSIONS The work presented in this report used a proteogenomic approach to perform whole-proteome analysis and genome reannotation in B. abortus 104 M; this work helped to improve genome annotation quality. Our analysis of virulence factors, protective antigens and other protein effectors provided the basis for further research to elucidate the mechanisms of residual toxicity and immune protection induced by the 104 M vaccine. Finally, the potential link between replication dynamics, gene function, and protein expression levels in this multichromosomal bacterium was detailed.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Kun Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dayong Dong
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shanhu Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
32
|
Li T, Tong Z, Huang M, Tang L, Zhang H, Chen C. Brucella melitensis M5-90Δbp26 as a potential live vaccine that allows for the distinction between natural infection and immunization. Can J Microbiol 2017; 63:719-729. [PMID: 28482164 DOI: 10.1139/cjm-2017-0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brucella is Gram-negative intracellular bacterial pathogen that infects humans and animals and contributes to great economic losses in developing countries. Presently, live attenuated Brucella vaccines (Brucella melitensis M5-90) are the most effective means of brucellosis control and prevention in animals. However, these vaccines have several drawbacks, such as an inability to distinguish between a natural infection and immunization and an association with abortions in pregnant animals. Therefore, this study constructed a Brucella M5-90Δbp26 mutant and evaluated its virulence. The survival of the M5-90Δbp26 mutant was attenuated in human placenta trophoblastic 8 cells (HPT-8 cells) and in BALB/c mice, with a high immunoprotectivity noted in mice. Furthermore, safety tests showed that the M5-90Δbp26 mutant was less virulent than the M5-90 vaccine strain. Additionally, an indirect enzyme-linked immunosorbent assay (ELISA) screening was shown to detect the presence of Brucella protein 26 (BP26) with high sensitivity, with M5-90Δbp26 inoculation accompanied with a lack of BP26 expression, and was further confirmed by western blotting. Together, the M5-90Δbp26 mutant and the indirect ELISA can be employed to distinguish vaccinated livestock from infected animals.
Collapse
Affiliation(s)
- Tiansen Li
- a College of Animal Science and Technology, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Zhixia Tong
- a College of Animal Science and Technology, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Meiling Huang
- b College of Life Science, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Liyan Tang
- a College of Animal Science and Technology, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Hui Zhang
- a College of Animal Science and Technology, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Chuangfu Chen
- a College of Animal Science and Technology, Shihezi University, 832000, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
33
|
Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria. J Bacteriol 2017; 199:JB.00746-16. [PMID: 27994018 DOI: 10.1128/jb.00746-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 01/24/2023] Open
Abstract
Brucella abortus σE1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σS in Enterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers.IMPORTANCEBrucella abortus σE1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σE1 remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σE1 Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure of B. abortus YehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.
Collapse
|
34
|
Francis N, Poncin K, Fioravanti A, Vassen V, Willemart K, Ong TAP, Rappez L, Letesson JJ, Biondi EG, De Bolle X. CtrA controls cell division and outer membrane composition of the pathogenBrucella abortus. Mol Microbiol 2017; 103:780-797. [DOI: 10.1111/mmi.13589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Nayla Francis
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Katy Poncin
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Antonella Fioravanti
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 CNRS - Université de Lille; 50 Avenue Halley Villeneuve d'Ascq France
| | - Victoria Vassen
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Kevin Willemart
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Thi Anh Phuong Ong
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Luca Rappez
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Jean-Jacques Letesson
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| | - Emanuele G. Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 CNRS - Université de Lille; 50 Avenue Halley Villeneuve d'Ascq France
- Laboratoire de Chimie Bactérienne; Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS; UMR 7283 Marseille France
| | - Xavier De Bolle
- Microorganisms Biology Research Unit (URBM); Narilis, University of Namur; Namur Belgium
| |
Collapse
|
35
|
Ahmed W, Zheng K, Liu ZF. Establishment of Chronic Infection: Brucella's Stealth Strategy. Front Cell Infect Microbiol 2016; 6:30. [PMID: 27014640 PMCID: PMC4791395 DOI: 10.3389/fcimb.2016.00030] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultative intracellular pathogen that causes zoonotic infection known as brucellosis which results in abortion and infertility in natural host. Humans, especially in low income countries, can acquire infection by direct contact with infected animal or by consumption of animal products and show high morbidity, severe economic losses and public health problems. However for survival, host cells develop complex immune mechanisms to defeat and battle against attacking pathogens and maintain a balance between host resistance and Brucella virulence. On the other hand as a successful intracellular pathogen, Brucella has evolved multiple strategies to evade immune response mechanisms to establish persistent infection and replication within host. In this review, we mainly summarize the "Stealth" strategies employed by Brucella to modulate innate and the adaptive immune systems, autophagy, apoptosis and possible role of small noncoding RNA in the establishment of chronic infection. The purpose of this review is to give an overview for recent understanding how this pathogen evades immune response mechanisms of host, which will facilitate to understanding the pathogenesis of brucellosis and the development of novel, more effective therapeutic approaches to treat brucellosis.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| |
Collapse
|