1
|
Cotta SR, Dias ACF, Mendes R, Andreote FD. Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly. Braz J Microbiol 2024:10.1007/s42770-024-01583-9. [PMID: 39730778 DOI: 10.1007/s42770-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions. HGT, in particular, holds a pivotal role as it facilitates the generation of metabolic diversity, thus directly or indirectly influencing microorganisms' interactions and functioning within their habitat. In this study, we investigate the correlations between enhanced metabolic diversity through HGT and cooperative behavior in the rhizosphere. Despite the potential drawbacks of cooperative behavior, which renders it susceptible to exploitation by cheaters based on evolutionary theory, HGT emerges as a mitigating factor. It serves as a valuable and adaptive tool for survival in competitive environments, notably the rhizosphere. By initiating a comprehensive discussion on these processes combined, we anticipate achieving a profound understanding of the rhizosphere microbiome, ultimately enhancing soil microbiology management and the exploitation of this ecological niche.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Armando Cavalcante Franco Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Leininger A, Lu S, Jiang J, Bian Y, May HD, Ren ZJ. The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100459. [PMID: 39262839 PMCID: PMC11387266 DOI: 10.1016/j.ese.2024.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/13/2024]
Abstract
Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (Lactococcus, Lactobacillus, Weissella) to pure culture Lactiplantibacillus plantarum reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% L. plantarum retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched Lactococcus and Klebsiella spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Sidan Lu
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Harold D May
- Andlinger Center for Energy and the Environment, Princeton University, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, USA
- Andlinger Center for Energy and the Environment, Princeton University, USA
| |
Collapse
|
4
|
Pérez-Bernal MF, Berthomieu R, Quéméner EDL, Bernet N, Trably E. Influence of fumarate on interspecies electron transfer and the metabolic shift induced in Clostridium pasteurianum by Geobacter sulfurreducens. J Appl Microbiol 2024; 135:lxae122. [PMID: 38749675 DOI: 10.1093/jambio/lxae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
AIMS In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.
Collapse
Affiliation(s)
| | - Roland Berthomieu
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | | | - Nicolas Bernet
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | - Eric Trably
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
5
|
Feng L, Gao Z, Hu T, He S, Liu Y, Jiang J, Zhao Q, Wei L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. ENVIRONMENTAL RESEARCH 2023; 234:116589. [PMID: 37423354 DOI: 10.1016/j.envres.2023.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
7
|
Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol Adv 2023; 65:108129. [PMID: 36933869 DOI: 10.1016/j.biotechadv.2023.108129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nowadays, anaerobic digestion (AD) is being increasingly encouraged to increase the production of biogas and thus of biomethane. Due to the high diversity among feedstocks used, the variability of operating parameters and the size of collective biogas plants, different incidents and limitations may occur (e.g., inhibitions, foaming, complex rheology). To improve performance and overcome these limitations, several additives can be used. This literature review aims to summarize the effects of the addition of various additives in co-digestion continuous or semi-continuous reactors to fit as much as possible with collective biogas plant challenges. The addition of (i) microbial strains or consortia, (ii) enzymes and (iii) inorganic additives (trace elements, carbon-based materials) in digester is analyzed and discussed. Several challenges associated with the use of additives for AD process at collective biogas plant scale requiring further research work are highlighted: elucidation of mechanisms, dosage and combination of additives, environmental assessment, economic feasibility, etc.
Collapse
Affiliation(s)
- Estelle Leca
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France
| | - Bastien Zennaro
- INRAE Transfert, 60 Rue Nicolas Leblanc, 11100 Narbonne, France
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Hélène Carrère
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Cecilia Sambusiti
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France.
| |
Collapse
|
8
|
Gu Y, Qi X, Yang X, Jiang Y, Liu P, Quan X, Liang P. Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge. WATER RESEARCH 2023; 231:119630. [PMID: 36689883 DOI: 10.1016/j.watres.2023.119630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial extracellular electron transfer (EET) plays a crucial role in bioenergy production and resource recovery from wastewater. Interdisciplinary efforts have been made to unveil EET processes at various spatial scales, from nanowires to microbial aggregates. Electrical conductivity has been frequently measured as an indicator of EET efficiency. In this review, the conductivity of nanowires, biofilms, and granular sludge was summarized, and factors including subjects, measurement methods, and conducting conditions that affect the conductivity difference were discussed in detail. The high conductivity of nanowires does not necessarily result in efficient EET in microbial aggregates due to the existence of non-conductive substances and contact resistance. Improving the conductivity measurement of microbial aggregates is important because it enables the calculation of an EET flux from conductivity and a comparison of the flux with mass transfer coefficients. This review provides new insight into the significance, characterization, and optimization of EET in microbial aggregates during a wastewater treatment process.
Collapse
Affiliation(s)
- Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 USA
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Dzofou Ngoumelah D, Kuchenbuch A, Harnisch F, Kretzschmar J. Combining Geobacter spp. Dominated Biofilms and Anaerobic Digestion Effluents─The Effect of Effluent Composition and Electrode Potential on Biofilm Activity and Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2584-2594. [PMID: 36731122 DOI: 10.1021/acs.est.2c07574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of anaerobic digestion (AD) and microbial electrochemical technologies (METs) offers different opportunities to increase the efficiency and sustainability of AD processes. However, methanogenic archaea and/or particles may partially hinder combining MET and AD processes. Furthermore, it is unclear if the applied anode potential affects the activity and efficiency of electroactive microorganisms in AD-MET combinations as it is described for more controlled experimental conditions. In this study, we confirm that 6-week-old Geobacter spp. dominated biofilms are by far more active and stable in AD-effluents than 3-week-old Geobacter spp. dominated biofilms. Furthermore, we show that the biofilms are twice as active at -0.2 V compared to 0.4 V, even under challenging conditions occurring in AD-MET systems. Paired-end amplicon sequencing at the DNA level using 16S-rRNA and mcrA gene shows that hydrogenotrophic methanogens incorporate into biofilms immersed in AD-effluent without any negative effect on biofilm stability and electrochemical activity.
Collapse
Affiliation(s)
- Daniel Dzofou Ngoumelah
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Leipzig04347, Saxony, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Anne Kuchenbuch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig04318, Saxony, Germany
| | - Jörg Kretzschmar
- Department of Biochemical Conversion, DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH (German Biomass Research Centre), Leipzig04347, Saxony, Germany
| |
Collapse
|
10
|
Leininger A, Ren ZJ. Circular utilization of food waste to biochar enhances thermophilic co-digestion performance. BIORESOURCE TECHNOLOGY 2021; 332:125130. [PMID: 33857865 DOI: 10.1016/j.biortech.2021.125130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Codigestion is an emerging approach to improve wastewater sludge biogas production and valorize food waste (FW). This study explores FW-derived biochar as a codigestion amendment for the first time and reports a matrix experiment using four diverse biochar amendments (mixed food waste, pinewood, bonechar, unamended control) across four FW types (vegetable, rice, chicken, mixed). It demonstrated that biochar derived from mixed FW can greatly improve the performance of biogas production and yield relative to unamended control and other biochars. The mixed food waste (MFW) biochar amendment led to 34.5%, 35.6%, and 47.5% increase in methane production from mixed FW compared to biochars made of wood, bone and non-amendment control, and the maximum methane production rate of MFW biochar reactors could be up to 6.7-9.9 times of the control. These results suggest that a more circular utilization of FW by integrating biochar production with codigestion can bring great benefits to FW management.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
11
|
López-García P, Moreira D. Physical connections: prokaryotes parasitizing their kin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:54-61. [PMID: 33225570 DOI: 10.1111/1758-2229.12910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Orsay, AgroParisTech, 91400, France
| |
Collapse
|
12
|
Desmond-Le Quéméner E, Moscoviz R, Bernet N, Marcus A. Modeling of interspecies electron transfer in anaerobic microbial communities. Curr Opin Biotechnol 2021; 67:49-57. [PMID: 33465544 DOI: 10.1016/j.copbio.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Interspecies electron transfer (IET) is a key phenomenon in anaerobic ecosystems, which is traditionally modeled as hydrogen transfer. Recently discovered alternative mediated IET (MIET) or direct IET (DIET) offer exciting alternative mechanisms of microbial partnerships that could lead to new strategies for the improvement of biotechnologies. Here, we analyze mathematical modeling of DIET and MIET in anaerobic ecosystems. Bioenergetics approaches already enable the evaluation of different energy sharing scenarios between microorganisms and give interesting clues on redox mediators and on possible ways of driving microbial communities relying on IET. The modeling of DIET kinetics however is currently only in its infancy. Recent concepts introduced for the modeling of electroactive biofilms should be further exploited. Recent modeling examples confirms the potential of DIET to increase the IET rates compared to H2-MIET, but also point out the need for additional characterizations of biological components supporting IET to improve predictions.
Collapse
Affiliation(s)
| | - Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), Le Pecq, France
| | - Nicolas Bernet
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100, Narbonne, France
| | - Andrew Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Hao DC, Li XJ, Xiao PG, Wang LF. The Utility of Electrochemical Systems in Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Discourse, Diversity and Design. Front Microbiol 2020; 11:557400. [PMID: 33193139 PMCID: PMC7644954 DOI: 10.3389/fmicb.2020.557400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade. Microbial remediation is a popular method for the PAH removal in diverse environments and yet it is limited by the lack of electron acceptors. An emerging solution is to use the microbial electrochemical system, in which the solid anode is used as an inexhaustible electron acceptor and the microbial activity is stimulated by biocurrent in situ to ensure the PAH removal and avoid the defects of bioremediation. Based on the extensive investigation of recent literatures, this paper summarizes and comments on the research progress of PAH removal by the microbial electrochemical system of diversified design, enhanced measures and functional microorganisms. First, the bioelectrochemical degradation of PAHs is reviewed in separate and mixed PAH degradation, and the removal performance of PAHs in different system configurations is compared with the anode modification, the enhancement of substrate and electron transfer, the addition of chemical reagents, and the combination with phytoremediation. Second, the key functional microbiota including PAH degrading microbes and exoelectrogens are overviewed as well as the reduced microbes without competitive advantage. Finally, the typical representations of electrochemical activity especially the internal resistance, power density and current density of systems and influence factors are reviewed with the correlation analysis between PAH removal and energy generation. Presently, most studies focused on the anode modification in the bioelectrochemical degradation of PAHs and actually more attentions need to be paid to enhance the mass transfer and thus larger remediation radius, and other smart designs are also proposed, especially that the combined use of phytoremediation could be an eco-friendly and sustainable approach. Additionally, exoelectrogens and PAH degraders are partially overlapping, but the exact functional mechanisms of interaction network are still elusive, which could be revealed with the aid of advanced bioinformatics technology. In order to optimize the efficacy of functional community, more advanced techniques such as omics technology, photoelectrocatalysis and nanotechnology should be considered in the future research to improve the energy generation and PAH biodegradation rate simultaneously.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Xiao-Jing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian-Feng Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| |
Collapse
|