1
|
Souza-Costa LP, Santos FRS, Pimenta JC, Queiroz-Junior CM, Tana FL, Teixeira DC, Couto MGG, Oliveira NFM, Pereira RD, Beltrami VA, Costa PAC, Lacerda LSB, Andrade-Chaves JT, Guimarães PPG, Aguiar RS, Teixeira MM, Costa VV, Franco LH. E3 Ubiquitin Ligase Smurf1 Regulates the Inflammatory Response in Macrophages and Attenuates Hepatic Damage during Betacoronavirus Infection. Pathogens 2024; 13:871. [PMID: 39452742 PMCID: PMC11510589 DOI: 10.3390/pathogens13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The E3 ubiquitin ligase Smurf1 catalyzes the ubiquitination and proteasomal degradation of several protein substrates related to inflammatory responses and antiviral signaling. This study investigated the role of Smurf1 in modulating inflammation induced by Betacoronavirus infection. Bone marrow-derived macrophages (BMDMs) from C57BL/6 (wild-type) or Smurf1-deficient (Smurf1-/-) mice were infected with MHV-A59 to evaluate the inflammatory response in vitro. Smurf1 was found to be required to downregulate the macrophage production of pro-inflammatory mediators, including TNF, and CXCL1; to control viral release from infected cells; and to increase cell viability. To assess the impact of Smurf 1 in vivo, we evaluated the infection of mice with MHV-A59 through the intranasal route. Smurf1-/- mice infected with a lethal inoculum of MHV-A59 succumbed earlier to infection. Intranasal inoculation with a 10-fold lower dose of MHV-A59 resulted in hematological parameter alterations in Smurf1-/- mice suggestive of exacerbated systemic inflammation. In the lung parenchyma, Smurf1 expression was essential to promote viral clearance, downregulating IFN-β mRNA and controlling the inflammatory profile of macrophages and neutrophils. Conversely, Smurf1 did not affect IFN-β mRNA regulation in the liver, but it was required to increase TNF and iNOS expression in neutrophils and decrease TNF expression in macrophages. In addition, Smurf1-/- mice exhibited augmented liver injuries, accompanied by high serum levels of alanine aminotransferase (ALT). These findings suggest that Smurf1 plays a critical role in regulating the inflammatory response in macrophages and attenuating systemic inflammation during Betacoronavirus infection.
Collapse
Affiliation(s)
- Luiz P. Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Felipe R. S. Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Jordane C. Pimenta
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Celso M. Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Fernanda L. Tana
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Danielle C. Teixeira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Manoela G. G. Couto
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Natalia F. M. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Rafaela D. Pereira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Vinicius A. Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Pedro A. C. Costa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Larisse S. B. Lacerda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Josiane T. Andrade-Chaves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Pedro P. G. Guimarães
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Renato S. Aguiar
- Departamento de Genética e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| | - Vivian V. Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Luis H. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (L.P.S.-C.)
| |
Collapse
|
2
|
Sharma J, Mudalagiriyappa S, Abdelaal HFM, Kelly TC, Choi W, Ponnuraj N, Vieson MD, Talaat AM, Nanjappa SG. E3 ubiquitin ligase CBLB regulates innate immune responses and bacterial dissemination during nontuberculous mycobacteria infection. J Leukoc Biol 2024; 115:1118-1130. [PMID: 38271280 PMCID: PMC11135617 DOI: 10.1093/jleuko/qiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.
Collapse
Affiliation(s)
- Jaishree Sharma
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Srinivasu Mudalagiriyappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Hazem F M Abdelaal
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Thomas C Kelly
- Integrative Biology Honors Program, University Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Miranda D Vieson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Som Gowda Nanjappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
3
|
Xie J, Meijer AH. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against Mycobacterium marinum. Front Cell Infect Microbiol 2024; 13:1331818. [PMID: 38264729 PMCID: PMC10803470 DOI: 10.3389/fcimb.2023.1331818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Anti-bacterial autophagy, also known as xenophagy, is a crucial innate immune process that helps maintain cellular homeostasis by targeting invading microbes. This defense pathway is widely studied in the context of infections with mycobacteria, the causative agents of human tuberculosis and tuberculosis-like disease in animal models. Our previous work in a zebrafish tuberculosis model showed that host defense against Mycobacterium marinum (Mm) is impaired by deficiencies in xenophagy receptors, optineurin (Optn) or sequestome 1 (p62), and Damage-regulated autophagy modulator 1 (Dram1). However, the interdependency of these receptors and their interaction with Dram1 remained unknown. In the present study, we used single and double knockout zebrafish lines in combination with overexpression experiments. We show that Optn and p62 can compensate for the loss of each other's function, as their overexpression restores the infection susceptibility of the mutant phenotypes. Similarly, Dram1 can compensate for deficiencies in Optn and p62, and, vice versa, Optn and p62 compensate for the loss of Dram1, indicating that these xenophagy receptors and Dram1 do not rely on each other for host defense against Mm. In agreement, Dram1 overexpression in optn/p62 double mutants restored the interaction of autophagosome marker Lc3 with Mm. Finally, optn/p62 double mutants displayed more severe infection susceptibility than the single mutants. Taken together, these results suggest that Optn and p62 do not function downstream of each other in the anti-mycobacterial xenophagy pathway, and that the Dram1-mediated defense against Mm infection does not rely on specific xenophagy receptors.
Collapse
|
4
|
Souza-Costa LP, Andrade-Chaves JT, Andrade JM, Costa VV, Franco LH. Uncovering new insights into the role of the ubiquitin ligase Smurf1 on the regulation of innate immune signaling and resistance to infection. Front Immunol 2023; 14:1185741. [PMID: 37228615 PMCID: PMC10203584 DOI: 10.3389/fimmu.2023.1185741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
Innate immunity is the body's first line of defense against infections. Innate immune cells express pattern recognition receptors in distinct cellular compartments that are responsible to detect either pathogens-associated molecules or cellular components derived from damaged cells, to trigger intracellular signaling pathways that lead to the activation of inflammatory responses. Inflammation is essential to coordinate immune cell recruitment, pathogen elimination and to keep normal tissue homeostasis. However, uncontrolled, misplaced or aberrant inflammatory responses could lead to tissue damage and drive chronic inflammatory diseases and autoimmunity. In this context, molecular mechanisms that tightly regulate the expression of molecules required for the signaling of innate immune receptors are crucial to prevent pathological immune responses. In this review, we discuss the ubiquitination process and its importance in the regulation of innate immune signaling and inflammation. Then, we summarize the roles of Smurf1, a protein that works on ubiquitination, on the regulation of innate immune signaling and antimicrobial mechanisms, emphasizing its substrates and highlighting its potential as a therapeutic target for infectious and inflammatory conditions.
Collapse
Affiliation(s)
- Luiz Pedro Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane Teixeira Andrade-Chaves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juvana Moreira Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Henrique Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Xiao S, Zhou T, Pan J, Ma X, Shi G, Jiang B, Xiang YG. Identifying autophagy-related genes as potential targets for immunotherapy in tuberculosis. Int Immunopharmacol 2023; 118:109956. [PMID: 36931175 DOI: 10.1016/j.intimp.2023.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Identifying of host-directed targets and molecular markers of immune response for tuberculosis (TB) immunotherapy is urgent and meaningful. Previous studies have demonstrated an important role of autophagy in the course and pathophysiology of TB and is associated with the efficacy of TB treatment. However, its role in TB immunotherapy is still incomplete. METHODS The effect of autophagy on intracellular bacteria load was examined in sulforaphane (SFN)-treated THP-1 cells. The immune infiltration was assessed based on public databases. Functional enrichment analysis revealed the pathways involved. LASSO Cox regression analysis was employed to identify hub genes. Moreover, machine learning analysis was used to obtain important targets of TB immunotherapy. Finally, the relationship between hub genes and immune infiltration was assessed, as well as the relevance of chemokines. RESULTS We found that SFN reduced intracellular bacteria load by enhancing autophagy in THP-1 cells. Thirty-two autophagy-related genes (ARGs) were identified, three types of immune cells (macrophages, neutrophils, and DC cells) were significantly enriched in TB patients, and 6 hub genes (RAB5A, SQSTM1, MYC, MAPK8, MAPK3, and FOXO1) were closely related to TB immune infiltration. The 32 ARGs were mainly involved in autophagy, apoptosis, and tuberculosis pathways. FOXO1, SQSTM1, and RAB5A were identified as important target genes according to the ranking of variable importance, with FOXO1 being a potential autophagy-related target of TB immunotherapy. CONCLUSION This study highlights the association between autophagy-related genes and immune infiltration in TB. Three key genes, especially FOXO1, regulated by SFN, will provide new insights into diagnostic and immunotherapy strategies for clinical tuberculosis.
Collapse
Affiliation(s)
- Sifang Xiao
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Ting Zhou
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jianhua Pan
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Xiaohua Ma
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Guomin Shi
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yan-Gen Xiang
- Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
6
|
Bi K, Cao D, Ding C, Lu S, Lu H, Zhang G, Zhang W, Li L, Xu K, Li L, Zhang Y. The past, present and future of tuberculosis treatment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:657-668. [PMID: 36915970 PMCID: PMC10262004 DOI: 10.3724/zdxbyxb-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023]
Abstract
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Collapse
Affiliation(s)
- Kefan Bi
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Dan Cao
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Cheng Ding
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Shuihua Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Hongzhou Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Guangyu Zhang
- 4. Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wenhong Zhang
- 5. Department of Infectious Diseases, Huashan Hospital, Fudan University, National Medical Center for Infectious Diseases, Shanghai 200040, China
| | - Liang Li
- 6. Beijing Chest Hospital, Capital Medical University, Beijing 101199, China
| | - Kaijin Xu
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Lanjuan Li
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Ying Zhang
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|