1
|
Undurraga JA, Luke R, Van Yper L, Monaghan JJM, McAlpine D. The neural representation of an auditory spatial cue in the primate cortex. Curr Biol 2024; 34:2162-2174.e5. [PMID: 38718798 DOI: 10.1016/j.cub.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
Humans make use of small differences in the timing of sounds at the two ears-interaural time differences (ITDs)-to locate their sources. Despite extensive investigation, however, the neural representation of ITDs in the human brain is contentious, particularly the range of ITDs explicitly represented by dedicated neural detectors. Here, using magneto- and electro-encephalography (MEG and EEG), we demonstrate evidence of a sparse neural representation of ITDs in the human cortex. The magnitude of cortical activity to sounds presented via insert earphones oscillated as a function of increasing ITD-within and beyond auditory cortical regions-and listeners rated the perceptual quality of these sounds according to the same oscillating pattern. This pattern was accurately described by a population of model neurons with preferred ITDs constrained to the narrow, sound-frequency-dependent range evident in other mammalian species. When scaled for head size, the distribution of ITD detectors in the human cortex is remarkably like that recorded in vivo from the cortex of rhesus monkeys, another large primate that uses ITDs for source localization. The data solve a long-standing issue concerning the neural representation of ITDs in humans and suggest a representation that scales for head size and sound frequency in an optimal manner.
Collapse
Affiliation(s)
- Jaime A Undurraga
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Interacoustics Research Unit, Technical University of Denmark, Ørsteds Plads, Building 352, 2800 Kgs. Lyngby, Denmark.
| | - Robert Luke
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; The Bionics Institute, 384-388 Albert St., East Melbourne, VIC 3002, Australia
| | - Lindsey Van Yper
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark; Research Unit for ORL, Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, 5230 Odense, Denmark
| | - Jessica J M Monaghan
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; National Acoustic Laboratories, Australian Hearing Hub, 16 University Avenue, Sydney, NSW 2109, Australia
| | - David McAlpine
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Macquarie University Hearing and the Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Sierksma MC, Borst JGG. Developmental fine-tuning of medial superior olive neurons mitigates their predisposition to contralateral sound sources. PLoS Biol 2024; 22:e3002586. [PMID: 38683852 PMCID: PMC11081505 DOI: 10.1371/journal.pbio.3002586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Wang R, Gu H, Zhang X. Dynamics of interaction between IH and IKLT currents to mediate double resonances of medial superior olive neurons related to sound localization. Cogn Neurodyn 2024; 18:715-740. [PMID: 38699604 PMCID: PMC11061090 DOI: 10.1007/s11571-023-10024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 05/05/2024] Open
Abstract
Neurons in the medial superior olive (MSO) exhibit high frequency responses such as subthreshold resonance, which is helpful to sensitively detect a small difference in the arrival time of sounds between two ears for precise sound localization. Recently, except for the high frequency depolarization resonance mediated by a low threshold potassium (IKLT) current, a low frequency hyperpolarization resonance mediated by a hyperpolarization-activated cation (IH) current is observed in experiments on the MSO neurons, forming double resonances. The complex dynamics underlying double resonances are studied in an MSO neuron model in the present paper. Firstly, double resonances similar to the experimental observations are simulated as the resting membrane potential is between half-activation voltages of IH and IKLT currents, and stimulation current (IZAP) with large amplitude and exponentially increasing frequency is applied. Secondly, multiple effective factors to modulate double resonances are obtained. Especially, the decrease of time constant of IKLT current and increase of conductance of IH and IKLT currents can enhance the depolarization resonance frequency for precise sound localization. Last, different frequency responses of slow IH and fast IKLT currents in formation of the resonances are acquired. A middle phase difference between IZAP and IKLT currents appears at a high frequency, and the interaction between the positive part of IZAP and the negative IKLT current forms the depolarization resonance. Interaction between the negative part of IZAP and positive IH current with a middle phase difference results in hyperpolarization resonance at a low frequency. Furthermore, the phase difference between IZAP and resonance current can well explain the increase of depolarization resonance frequency modulated by the increase of conductance of IH or IKLT currents. The results present the dynamical and biophysical mechanisms for the double resonances mediated by two currents in the MSO neurons, which is helpful to enhance the depolarization resonance frequency for precise sound localization.
Collapse
Affiliation(s)
- Runxia Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Xinjing Zhang
- School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, 450000 China
| |
Collapse
|
4
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
5
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
6
|
Wang M, Zhang C, Lin S, Xie R. Dendritic Degeneration and Altered Synaptic Innervation of a Central Auditory Neuron During Age-related Hearing Loss. Neuroscience 2023; 514:25-37. [PMID: 36738912 PMCID: PMC9992229 DOI: 10.1016/j.neuroscience.2023.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Cellular morphology and synaptic configuration are key determinants of neuronal function and are often modified under pathological conditions. In the first nucleus of the central auditory system, the cochlear nucleus (CN), principal bushy neurons specialize in processing temporal information of sound critical for hearing. These neurons alter their physiological properties during aging that contribute to age-related hearing loss (ARHL). The structural basis of such changes remains unclear, especially age-related modifications in their dendritic morphology and the innervating auditory nerve (AN) synapses. Using young (2-5 months) and aged (28-33 months) CBA/CaJ mice of either sex, we filled individual bushy neurons with fluorescent dye in acute brain slices to characterize their dendritic morphology, followed by immunostaining against vesicular glutamate transporter 1 (VGluT1) and calretinin (CR) to identify innervating AN synapses. We found that dendritic morphology of aged bushy neurons had significantly reduced complexity, suggesting age-dependent dendritic degeneration, especially in neurons with predominantly non-CR-expressing synapses on the soma. These dendrites were innervated by AN bouton synapses, which were predominantly non-CR-expressing in young mice but had increased proportion of CR-expressing synapses in old mice. While somatic AN synapses degenerated substantially with age, as quantified by VGluT1-labeled puncta volume, no significant difference was observed in the total volume of dendritic synapses between young and old mice. Consequently, synaptic density on dendrites was significantly higher in old mice. The findings suggest that dendritic degeneration and altered synaptic innervation in bushy neurons during aging may underlie their changed physiological activity and contribute to the development of ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Shengyin Lin
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Smith SS, Sollini J, Akeroyd MA. Inferring the basis of binaural detection with a modified autoencoder. Front Neurosci 2023; 17:1000079. [PMID: 36777633 PMCID: PMC9909603 DOI: 10.3389/fnins.2023.1000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
The binaural system utilizes interaural timing cues to improve the detection of auditory signals presented in noise. In humans, the binaural mechanisms underlying this phenomenon cannot be directly measured and hence remain contentious. As an alternative, we trained modified autoencoder networks to mimic human-like behavior in a binaural detection task. The autoencoder architecture emphasizes interpretability and, hence, we "opened it up" to see if it could infer latent mechanisms underlying binaural detection. We found that the optimal networks automatically developed artificial neurons with sensitivity to timing cues and with dynamics consistent with a cross-correlation mechanism. These computations were similar to neural dynamics reported in animal models. That these computations emerged to account for human hearing attests to their generality as a solution for binaural signal detection. This study examines the utility of explanatory-driven neural network models and how they may be used to infer mechanisms of audition.
Collapse
Affiliation(s)
- Samuel S Smith
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Joseph Sollini
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael A Akeroyd
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Goldsworthy RL. Computational Modeling of Synchrony in the Auditory Nerve in Response to Acoustic and Electric Stimulation. Front Comput Neurosci 2022; 16:889992. [PMID: 35782089 PMCID: PMC9249013 DOI: 10.3389/fncom.2022.889992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cochlear implants are medical devices that provide hearing to nearly one million people around the world. Outcomes are impressive with most recipients learning to understand speech through this new way of hearing. Music perception and speech reception in noise, however, are notably poor. These aspects of hearing critically depend on sensitivity to pitch, whether the musical pitch of an instrument or the vocal pitch of speech. The present article examines cues for pitch perception in the auditory nerve based on computational models. Modeled neural synchrony for pure and complex tones is examined for three different electric stimulation strategies including Continuous Interleaved Sampling (CIS), High-Fidelity CIS (HDCIS), and Peak-Derived Timing (PDT). Computational modeling of current spread and neuronal response are used to predict neural activity to electric and acoustic stimulation. It is shown that CIS does not provide neural synchrony to the frequency of pure tones nor to the fundamental component of complex tones. The newer HDCIS and PDT strategies restore synchrony to both the frequency of pure tones and to the fundamental component of complex tones. Current spread reduces spatial specificity of excitation as well as the temporal fidelity of neural synchrony, but modeled neural excitation restores precision of these cues. Overall, modeled neural excitation to electric stimulation that incorporates temporal fine structure (e.g., HDCIS and PDT) indicates neural synchrony comparable to that provided by acoustic stimulation. Discussion considers the importance of stimulation rate and long-term rehabilitation to provide temporal cues for pitch perception.
Collapse
|
9
|
Yamada R, Kuba H. Cellular Strategies for Frequency-Dependent Computation of Interaural Time Difference. Front Synaptic Neurosci 2022; 14:891740. [PMID: 35602551 PMCID: PMC9120351 DOI: 10.3389/fnsyn.2022.891740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Binaural coincidence detection is the initial step in encoding interaural time differences (ITDs) for sound-source localization. In birds, neurons in the nucleus laminaris (NL) play a central role in this process. These neurons receive excitatory synaptic inputs on dendrites from both sides of the cochlear nucleus and compare their coincidences at the soma. The NL is tonotopically organized, and individual neurons receive a pattern of synaptic inputs that are specific to their tuning frequency. NL neurons differ in their dendritic morphology along the tonotopic axis; their length increases with lower tuning frequency. In addition, our series of studies have revealed several frequency-dependent refinements in the morphological and biophysical characteristics of NL neurons, such as the amount and subcellular distribution of ion channels and excitatory and inhibitory synapses, which enable the neurons to process the frequency-specific pattern of inputs appropriately and encode ITDs at each frequency band. In this review, we will summarize these refinements of NL neurons and their implications for the ITD coding. We will also discuss the similarities and differences between avian and mammalian coincidence detectors.
Collapse
|
10
|
Saak SK, Hildebrandt A, Kollmeier B, Buhl M. Predicting Common Audiological Functional Parameters (CAFPAs) as Interpretable Intermediate Representation in a Clinical Decision-Support System for Audiology. Front Digit Health 2021; 2:596433. [PMID: 34713064 PMCID: PMC8521966 DOI: 10.3389/fdgth.2020.596433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
The application of machine learning for the development of clinical decision-support systems in audiology provides the potential to improve the objectivity and precision of clinical experts' diagnostic decisions. However, for successful clinical application, such a tool needs to be accurate, as well as accepted and trusted by physicians. In the field of audiology, large amounts of patients' data are being measured, but these are distributed over local clinical databases and are heterogeneous with respect to the applied assessment tools. For the purpose of integrating across different databases, the Common Audiological Functional Parameters (CAFPAs) were recently established as abstract representations of the contained audiological information describing relevant functional aspects of the human auditory system. As an intermediate layer in a clinical decision-support system for audiology, the CAFPAs aim at maintaining interpretability to the potential users. Thus far, the CAFPAs were derived by experts from audiological measures. For designing a clinical decision-support system, in a next step the CAFPAs need to be automatically derived from available data of individual patients. Therefore, the present study aims at predicting the expert generated CAFPA labels using three different machine learning models, namely the lasso regression, elastic nets, and random forests. Furthermore, the importance of different audiological measures for the prediction of specific CAFPAs is examined and interpreted. The trained models are then used to predict CAFPAs for unlabeled data not seen by experts. Prediction of unlabeled cases is evaluated by means of model-based clustering methods. Results indicate an adequate prediction of the ten distinct CAFPAs. All models perform comparably and turn out to be suitable choices for the prediction of CAFPAs. They also generalize well to unlabeled data. Additionally, the extracted relevant features are plausible for the respective CAFPAs, facilitating interpretability of the predictions. Based on the trained models, a prototype of a clinical decision-support system in audiology can be implemented and extended towards clinical databases in the future.
Collapse
Affiliation(s)
- Samira K Saak
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Birger Kollmeier
- Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Medizinische Physik, Medizinische Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,HörTech gGmbH, Oldenburg, Germany.,Hearing, Speech and Audio Technology, Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg, Germany
| | - Mareike Buhl
- Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Medizinische Physik, Medizinische Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
12
|
Bondy BJ, Haimes DB, Golding NL. Physiological Diversity Influences Detection of Stimulus Envelope and Fine Structure in Neurons of the Medial Superior Olive. J Neurosci 2021; 41:6234-6245. [PMID: 34083255 PMCID: PMC8287997 DOI: 10.1523/jneurosci.2354-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
The neurons of the medial superior olive (MSO) of mammals extract azimuthal information from the delays between sounds reaching the two ears [interaural time differences (ITDs)]. Traditionally, all models of sound localization have assumed that MSO neurons represent a single population of cells with specialized and homogeneous intrinsic and synaptic properties that enable the detection of synaptic coincidence on a timescale of tens to hundreds of microseconds. Here, using patch-clamp recordings from large populations of anatomically labeled neurons in brainstem slices from male and female Mongolian gerbils (Meriones unguiculatus), we show that MSO neurons are far more physiologically diverse than previously appreciated, with properties that depend regionally on cell position along the topographic map of frequency. Despite exhibiting a similar morphology, neurons in the MSO exhibit subthreshold oscillations of differing magnitudes that drive action potentials at rates between 100 and 800 Hz. These oscillations are driven primarily by voltage-gated sodium channels and are distinct from resonant properties derived from other active membrane properties. We show that graded differences in these and other physiological properties across the MSO neuron population enable the MSO to duplex the encoding of ITD information in both fast, submillisecond time-varying signals as well as in slower envelopes.SIGNIFICANCE STATEMENT Neurons in the medial superior olive (MSO) encode sound localization cues by detecting microsecond differences in the arrival times of inputs from the left and right ears, and it has been assumed that this computation is made possible by highly stereotyped structural and physiological specializations. Here we report using a large (>400) sample size in which MSO neurons show a strikingly large continuum of functional properties despite exhibiting similar morphologies. We demonstrate that subthreshold oscillations mediated by voltage-gated Na+ channels play a key role in conferring graded differences in firing properties. This functional diversity likely confers capabilities of processing both fast, submillisecond-scale synaptic activity (acoustic "fine structure"), and slow-rising envelope information that is found in amplitude-modulated sounds and speech patterns.
Collapse
Affiliation(s)
- Brian J Bondy
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - David B Haimes
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Nace L Golding
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
13
|
Auditory motion perception emerges from successive sound localizations integrated over time. Sci Rep 2019; 9:16437. [PMID: 31712688 PMCID: PMC6848124 DOI: 10.1038/s41598-019-52742-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022] Open
Abstract
Humans rely on auditory information to estimate the path of moving sound sources. But unlike in vision, the existence of motion-sensitive mechanisms in audition is still open to debate. Psychophysical studies indicate that auditory motion perception emerges from successive localization, but existing models fail to predict experimental results. However, these models do not account for any temporal integration. We propose a new model tracking motion using successive localization snapshots but integrated over time. This model is derived from psychophysical experiments on the upper limit for circular auditory motion perception (UL), defined as the speed above which humans no longer identify the direction of sounds spinning around them. Our model predicts ULs measured with different stimuli using solely static localization cues. The temporal integration blurs these localization cues rendering them unreliable at high speeds, which results in the UL. Our findings indicate that auditory motion perception does not require motion-sensitive mechanisms.
Collapse
|
14
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-Type Specific Glycine Receptor α Subunits. Neuroscience 2019; 415:77-88. [PMID: 31325562 DOI: 10.1016/j.neuroscience.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
Signal processing in the principal neurons of the anteroventral cochlear nucleus (AVCN) is modulated by glycinergic inhibition. The kinetics of IPSCs are specific to the target neurons. It remains unclear what glycine receptor subunits are involved in generating such target-specific IPSC kinetics in AVCN principal neurons. We investigated the expression patterns of glycine receptor α (GlyRα) subunits in AVCN using immunohistochemical labeling of four isoforms of GlyRα subunits (GlyRα1-α4), and found that AVCN neurons express GlyRα1 and GlyRα4, but not GlyRα2 and GlyRα3 subunits. To further identify the cell type-specific expression patterns of GlyRα subunits, we combined whole-cell patch clamp recording with immunohistochemistry by recording from all three types of AVCN principal neurons, characterizing the synaptic properties of their glycinergic inhibition, dye-filling the neurons, and processing the slice for immunostaining of different GlyRα subunits. We found that AVCN bushy neurons express both GlyRα1 and GlyRα4 subunits that underlie their slow IPSC kinetics, whereas both T-stellate and D-stellate neurons express only GlyRα1 subunit that underlies their fast IPSC kinetics. In conclusion, AVCN principal neurons express cell-type specific GlyRα subunits that underlie their distinct IPSC kinetics, which enables glycinergic inhibition from the same source to exert target cell-specific modulation of activity to support the unique physiological function of these neurons.
Collapse
|
16
|
Köppl C. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken. ACTA ACUST UNITED AC 2019; 222:jeb.199232. [PMID: 31138639 DOI: 10.1242/jeb.199232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
Interaural time differences (ITDs) are one of several principal cues for localizing sounds. However, ITDs are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD range for a given species and its usefulness - relative to other localization cues - has been a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITDs, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in investigations of the neurophysiology of ITD-coding circuits, i.e. with headphone stimulation and skull openings. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only -5.5 dB; the mean interaural delay was 264 µs. CM amplitude was strongly modulated as a function of ITD, confirming significant interaural coupling. The 'ITD heard' derived from the CM phases in both ears showed enhancement, compared with the acoustic stimuli, by a factor of up to 1.8. However, the experimental conditions impaired interaural transmission at low frequencies (<1 kHz). I identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions and relating them to the natural free-field condition.
Collapse
Affiliation(s)
- Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
17
|
Kettler L, Carr CE. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs. J Neurosci 2019; 39:3882-3896. [PMID: 30886018 PMCID: PMC6520516 DOI: 10.1523/jneurosci.2989-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.
Collapse
Affiliation(s)
- Lutz Kettler
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising, Germany, and
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
18
|
Madadi Asl M, Valizadeh A, Tass PA. Dendritic and Axonal Propagation Delays May Shape Neuronal Networks With Plastic Synapses. Front Physiol 2018; 9:1849. [PMID: 30618847 PMCID: PMC6307091 DOI: 10.3389/fphys.2018.01849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Biological neuronal networks are highly adaptive and plastic. For instance, spike-timing-dependent plasticity (STDP) is a core mechanism which adapts the synaptic strengths based on the relative timing of pre- and postsynaptic spikes. In various fields of physiology, time delays cause a plethora of biologically relevant dynamical phenomena. However, time delays increase the complexity of model systems together with the computational and theoretical analysis burden. Accordingly, in computational neuronal network studies propagation delays were often neglected. As a downside, a classic STDP rule in oscillatory neurons without propagation delays is unable to give rise to bidirectional synaptic couplings, i.e., loops or uncoupled states. This is at variance with basic experimental results. In this mini review, we focus on recent theoretical studies focusing on how things change in the presence of propagation delays. Realistic propagation delays may lead to the emergence of neuronal activity and synaptic connectivity patterns, which cannot be captured by classic STDP models. In fact, propagation delays determine the inventory of attractor states and shape their basins of attractions. The results reviewed here enable to overcome fundamental discrepancies between theory and experiments. Furthermore, these findings are relevant for the development of therapeutic brain stimulation techniques aiming at shifting the diseased brain to more favorable attractor states.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
John RA, Tiwari N, Yaoyi C, Tiwari N, Kulkarni M, Nirmal A, Nguyen AC, Basu A, Mathews N. Ultralow Power Dual-Gated Subthreshold Oxide Neuristors: An Enabler for Higher Order Neuronal Temporal Correlations. ACS NANO 2018; 12:11263-11273. [PMID: 30395439 DOI: 10.1021/acsnano.8b05903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inspired by neural computing, the pursuit of ultralow power neuromorphic architectures with highly distributed memory and parallel processing capability has recently gained more traction. However, emulation of biological signal processing via artificial neuromorphic architectures does not exploit the immense interplay between local activities and global neuromodulations observed in biological neural networks and hence are unable to mimic complex biologically plausible adaptive functions like heterosynaptic plasticity and homeostasis. Here, we demonstrate emulation of complex neuronal behaviors like heterosynaptic plasticity, homeostasis, association, correlation, and coincidence in a single neuristor via a dual-gated architecture. This multiple gating approach allows one gate to capture the effect of local activity correlations and the second gate to represent global neuromodulations, allowing additional modulations which augment their plasticity, enabling higher order temporal correlations at a unitary level. Moreover, the dual-gate operation extends the available dynamic range of synaptic conductance while maintaining symmetry in the weight-update operation, expanding the number of accessible memory states. Finally, operating neuristors in the subthreshold regime enable synaptic weight changes with high gain while maintaining ultralow power consumption of the order of femto-Joules.
Collapse
Affiliation(s)
- Rohit Abraham John
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Nidhi Tiwari
- Energy Research Institute at NTU (ERI@N) , Nanyang Technological University , Singapore 637553
| | - Chen Yaoyi
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Naveen Tiwari
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Mohit Kulkarni
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Amoolya Nirmal
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Anh Chien Nguyen
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Arindam Basu
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Nripan Mathews
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
- Energy Research Institute at NTU (ERI@N) , Nanyang Technological University , Singapore 637553
| |
Collapse
|
20
|
Stasiak A, Sayles M, Winter IM. Perfidious synaptic transmission in the guinea-pig auditory brainstem. PLoS One 2018; 13:e0203712. [PMID: 30286113 PMCID: PMC6172016 DOI: 10.1371/journal.pone.0203712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 02/02/2023] Open
Abstract
The presence of 'giant' synapses in the auditory brainstem is thought to be a specialization designed to encode temporal information to support perception of pitch, frequency, and sound-source localisation. These 'giant' synapses have been found in the ventral cochlear nucleus, the medial nucleus of the trapezoid body and the ventral nucleus of the lateral lemniscus. An interpretation of these synapses as simple relays has, however, been challenged by the observation in the gerbil that the action potential frequently fails in the ventral cochlear nucleus. Given the prominence of these synapses it is important to establish whether this phenomenon is unique to the gerbil or can be observed in other species. Here we examine the responses of units, thought to be the output of neurons in receipt of 'giant' synaptic endings, in the ventral cochlear nucleus and the medial nucleus of the trapezoid body in the guinea pig. We found that failure of the action-potential component, recorded from cells in the ventral cochlear nucleus, occurred in ~60% of spike waveforms when recording spontaneous activity. In the medial nucleus of the trapezoid body, we did not find evidence for action-potential failure. In the ventral cochlear nucleus action-potential failures transform the receptive field between input and output of bushy cells. Additionally, the action-potential failures result in "non-primary-like" temporal-adaptation patterns. This is important for computational models of the auditory system, which commonly assume the responses of ventral cochlear nucleus bushy cells are very similar to their "primary like" auditory-nerve-fibre inputs.
Collapse
Affiliation(s)
- Arkadiusz Stasiak
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
| | - Mark Sayles
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
| | - Ian M. Winter
- Centre for the Neural Basis of Hearing, The Physiological Laboratory, Downing Street, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing. J Neurosci 2018; 38:8563-8573. [PMID: 30126974 DOI: 10.1523/jneurosci.1211-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
The binaural interaction component (BIC) of the auditory brainstem response is a noninvasive electroencephalographic signature of neural processing of binaural sounds. Despite its potential as a clinical biomarker, the neural structures and mechanism that generate the BIC are not known. We explore here the hypothesis that the BIC emerges from excitatory-inhibitory interactions in auditory brainstem neurons. We measured the BIC in response to click stimuli while varying interaural time differences (ITDs) in subjects of either sex from five animal species. Species had head sizes spanning a 3.5-fold range and correspondingly large variations in the sizes of the auditory brainstem nuclei known to process binaural sounds [the medial superior olive (MSO) and the lateral superior olive (LSO)]. The BIC was reliably elicited in all species, including those that have small or inexistent MSOs. In addition, the range of ITDs where BIC was elicited was independent of animal species, suggesting that the BIC is not a reflection of the processing of ITDs per se. Finally, we provide a model of the amplitude and latency of the BIC peak, which is based on excitatory-inhibitory synaptic interactions, without assuming any specific arrangement of delay lines. Our results show that the BIC is preserved across species ranging from mice to humans. We argue that this is the result of generic excitatory-inhibitory synaptic interactions at the level of the LSO, and thus best seen as reflecting the integration of binaural inputs as opposed to their spatial properties.SIGNIFICANCE STATEMENT Noninvasive electrophysiological measures of sensory system activity are critical for the objective clinical diagnosis of human sensory processing deficits. The binaural component of sound-evoked auditory brainstem responses is one such measure of binaural auditory coding fidelity in the early stages of the auditory system. Yet, the precise neurons that lead to this evoked potential are not fully understood. This paper provides a comparative study of this potential in different mammals and shows that it is preserved across species, from mice to men, despite large variations in morphology and neuroanatomy. Our results confirm its relevance to the assessment of binaural hearing integrity in humans and demonstrates how it can be used to bridge the gap between rodent models and humans.
Collapse
|
22
|
Yang S, Chung J, Jin SH, Bao S, Yang S. A circuit mechanism of time-to-space conversion for perception. Hear Res 2018; 366:32-37. [PMID: 29804722 DOI: 10.1016/j.heares.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Sensory information in a temporal sequence is processed as a collective unit by the nervous system. The cellular mechanisms underlying how sequential inputs are incorporated into the brain has emerged as an important subject in neuroscience. Here, we hypothesize that information-bearing (IB) signals can be entrained and amplified by a clock signal, allowing them to efficiently propagate along in a feedforward circuit. IB signals can remain latent on individual dendrites of the receiving neurons until they are read out by an oscillatory clock signal. In such a way, the IB signals pass through the next neurons along a linear chain. This hypothesis identifies a cellular process of time-to-space and sound-to-map conversion in primary auditory cortex, providing insight into a mechanistic principle underlying the representation and memory of temporal sequences of information.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, South Korea.
| | - Jaeyong Chung
- Department of Electronics Engineering, Incheon National University, Incheon, 22012, South Korea
| | - Sung Hun Jin
- Department of Electronics Engineering, Incheon National University, Incheon, 22012, South Korea
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Beiderbeck B, Myoga MH, Müller NIC, Callan AR, Friauf E, Grothe B, Pecka M. Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem. Nat Commun 2018; 9:1771. [PMID: 29720589 PMCID: PMC5932051 DOI: 10.1038/s41467-018-04210-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Abstract
The integration of excitatory and inhibitory synaptic inputs is fundamental to neuronal processing. In the mammalian auditory brainstem, neurons compare excitatory and inhibitory inputs from the ipsilateral and contralateral ear, respectively, for sound localization. However, the temporal precision and functional roles of inhibition in this integration process are unclear. Here, we demonstrate by in vivo recordings from the lateral superior olive (LSO) that inhibition controls spiking with microsecond precision throughout high frequency click trains. Depending on the relative timing of excitation and inhibition, neuronal spike probability is either suppressed or-unexpectedly-facilitated. In vitro conductance-clamp LSO recordings establish that a reduction in the voltage threshold for spike initiation due to a prior hyperpolarization results in post-inhibitory facilitation of otherwise sub-threshold synaptic events. Thus, microsecond-precise differences in the arrival of inhibition relative to excitation can facilitate spiking in the LSO, thereby promoting spatial sensitivity during the processing of faint sounds.
Collapse
Affiliation(s)
- Barbara Beiderbeck
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany
| | - Michael H Myoga
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany.,Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Nicolas I C Müller
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Kaiserslautern, D-67653, Germany
| | - Alexander R Callan
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany
| | - Eckhard Friauf
- Department of Biology, Animal Physiology Group, University of Kaiserslautern, Kaiserslautern, D-67653, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany. .,Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried, 82152, Germany.
| | - Michael Pecka
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, D-82152, Germany.
| |
Collapse
|
24
|
Litovsky RY, Moua K, Godar S, Kan A, Misurelli SM, Lee DJ. Restoration of spatial hearing in adult cochlear implant users with single-sided deafness. Hear Res 2018; 372:69-79. [PMID: 29729903 DOI: 10.1016/j.heares.2018.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 01/16/2023]
Abstract
In recent years, cochlear implants (CIs) have been provided in growing numbers to people with not only bilateral deafness but also to people with unilateral hearing loss, at times in order to alleviate tinnitus. This study presents audiological data from 15 adult participants (ages 48 ± 12 years) with single sided deafness. Results are presented from 9/15 adults, who received a CI (SSD-CI) in the deaf ear and were tested in Acoustic or Acoustic + CI hearing modes, and 6/15 adults who are planning to receive a CI, and were tested in the unilateral condition only. Testing included (1) audiometric measures of threshold, (2) speech understanding for CNC words and AzBIO sentences, (3) tinnitus handicap inventory, (4) sound localization with stationary sound sources, and (5) perceived auditory motion. Results showed that when listening to sentences in quiet, performance was excellent in the Acoustic and Acoustic + CI conditions. In noise, performance was similar between Acoustic and Acoustic + CI conditions in 4/6 participants tested, and slightly worse in the Acoustic + CI in 2/6 participants. In some cases, the CI provided reduced tinnitus handicap scores. When testing sound localization ability, the Acoustic + CI condition resulted in improved sound localization RMS error of 29.2° (SD: ±6.7°) compared to 56.6° (SD: ±16.5°) in the Acoustic-only condition. Preliminary results suggest that the perception of motion direction, whereby subjects are required to process and compare directional cues across multiple locations, is impaired when compared with that of normal hearing subjects.
Collapse
Affiliation(s)
- Ruth Y Litovsky
- University of Wisconsin Madison, Waisman Center, USA; University of Wisconsin Madison, Department of Surgery, Division of Otolaryngology, USA.
| | - Keng Moua
- University of Wisconsin Madison, Waisman Center, USA
| | - Shelly Godar
- University of Wisconsin Madison, Waisman Center, USA
| | - Alan Kan
- University of Wisconsin Madison, Waisman Center, USA
| | - Sara M Misurelli
- University of Wisconsin Madison, Waisman Center, USA; University of Wisconsin Madison, Department of Surgery, Division of Otolaryngology, USA
| | - Daniel J Lee
- Department of Otolaryngology, Massachusetts Eye and Ear, USA; Department of Otology and Laryngology, Harvard Medical School, USA
| |
Collapse
|
25
|
Aralla R, Ashida G, Köppl C. Binaural responses in the auditory midbrain of chicken (Gallus gallus). Eur J Neurosci 2018; 51:1290-1304. [PMID: 29582488 DOI: 10.1111/ejn.13891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
The auditory midbrain is the location in which neurons represent binaural acoustic information necessary for sound localization. The external nucleus of the midbrain inferior colliculus (IC) of the barn owl is a classic example of an auditory space map, but it is unknown to what extent the principles underlying its formation generalize to other, less specialized animals. We characterized the spiking responses of 139 auditory neurons in the IC of the chicken (Gallus gallus) in vivo, focusing on their sensitivities to the binaural localization cues of interaural time (ITD) and level (ILD) differences. Most units were frequency-selective, with best frequencies distributed unevenly into low-frequency and high-frequency (> 2 kHz) clusters. Many units showed sensitivity to either ITD (65%) or ILD (66%) and nearly half to both (47%). ITD selectivity was disproportionately more common among low-frequency units, while ILD-only selective units were predominantly tuned to high frequencies. ILD sensitivities were diverse, and we thus developed a decision tree defining five types. One rare type with a bell-like ILD tuning was also selective for ITD but typically not frequency-selective, and thus matched the characteristics of neurons in the auditory space map of the barn owl. Our results suggest that generalist birds such as the chicken show a prominent representation of ITD and ILD cues in the IC, providing complementary information for sound localization, according to the duplex theory. A broadband response type narrowly selective for both ITD and ILD may form the basis for a representation of auditory space.
Collapse
Affiliation(s)
- Roberta Aralla
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Go Ashida
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Research Center for Neurosensory Sciences and Cluster of Excellence 'Hearing4all', Carl von Ossietzky University, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
26
|
Olsen T, Capurro A, Pilati N, Large CH, Hamann M. Kv3 K + currents contribute to spike-timing in dorsal cochlear nucleus principal cells. Neuropharmacology 2018; 133:319-333. [PMID: 29421326 PMCID: PMC5869058 DOI: 10.1016/j.neuropharm.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 02/01/2023]
Abstract
Exposure to loud sound increases burst-firing of dorsal cochlear nucleus (DCN) fusiform cells in the auditory brainstem, which has been suggested to be an electrophysiological correlate of tinnitus. The altered activity of DCN fusiform cells may be due to down-regulation of high voltage-activated (Kv3-like) K+ currents. Whole cell current-clamp recordings were obtained from DCN fusiform cells in brain slices from P15-P18 CBA mice. We first studied whether acoustic over-exposure (performed at P15) or pharmacological inhibition of K+ currents with tetraethylamonium (TEA) affect fusiform cell action potential characteristics, firing frequency and spike-timing relative to evoking current stimuli. We then tested whether AUT1, a modulator of Kv3 K+ currents reverses the effects of sound exposure or TEA. Both loud sound exposure and TEA decreased the amplitude of action potential after-hyperpolarization, reduced the maximum firing frequency, and disrupted spike-timing. These treatments also increased post-synaptic voltage fluctuations at baseline. AUT1 applied in the presence of TEA or following acoustic over-exposure, did not affect the firing frequency, but enhanced action potential after-hyperpolarization, prevented the increased voltage fluctuations and restored spike-timing. Furthermore AUT1 prevented the occurrence of bursts. Our study shows that the effect on spike-timing is significantly correlated with the amplitude of the action potential after-hyperpolarization and the voltage fluctuations at baseline. In conclusion, modulation of putative Kv3 K+ currents may restore regular spike-timing of DCN fusiform cell firing following noise exposure, and could provide a means to restore deficits in temporal encoding observed during noise-induced tinnitus. Whole cell recordings were performed in dorsal cochlear nucleus fusiform cells. Spike-timing is dependent on the action potential after-hyperpolarization. Spike-timing is dependent on synaptic baseline voltage fluctuations. Inhibition of K+ currents using TEA or acoustic over-exposure disrupt spike-timing. AUT1, a Kv3.1/3.2 K+ current modulator, counteracts the disruptive effects on spike-timing.
Collapse
Affiliation(s)
- Timothy Olsen
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Alberto Capurro
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Nadia Pilati
- Autifony Srl, Via Ugo Bassi 58b, Universita' di Padova, 35131 Padova, Italy
| | - Charles H Large
- Autifony Therapeutics Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Martine Hamann
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|
27
|
Ashida G, Tollin DJ, Kretzberg J. Physiological models of the lateral superior olive. PLoS Comput Biol 2017; 13:e1005903. [PMID: 29281618 PMCID: PMC5744914 DOI: 10.1371/journal.pcbi.1005903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD), which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones (‘shot-noise’ models) to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1) that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2) that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub-neuronal nonlinear processes play important roles, and (3) that, for general purposes, intermediate models might be a reasonable compromise between simplicity and biological plausibility. Computational models help our understanding of complex biological systems, by identifying their key elements and revealing their operational principles. Close comparisons between model predictions and empirical observations ensure our confidence in a model as a building block for further applications. Most current neuronal models, however, are constructed to replicate only a small specific set of experimental data. Thus, it is usually unclear how these models can be generalized to different datasets and how they compare with each other. In this paper, seven neuronal models are examined that are designed to reproduce known physiological characteristics of auditory neurons involved in the detection of sound source location. Despite their different levels of complexity, the models generate largely similar results when their parameters are tuned with common criteria. Comparisons show that simple models are computationally more efficient and theoretically transparent, and therefore suitable for rigorous mathematical analyses and engineering applications including real-time simulations. In contrast, complex models are necessary for investigating the relationship between underlying biophysical processes and sub- and suprathreshold spiking properties, although they have a large number of unconstrained, unverified parameters. Having identified their advantages and drawbacks, these auditory neuron models may readily be used for future studies and applications.
Collapse
Affiliation(s)
- Go Ashida
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jutta Kretzberg
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Dietz M, Lestang JH, Majdak P, Stern RM, Marquardt T, Ewert SD, Hartmann WM, Goodman DFM. A framework for testing and comparing binaural models. Hear Res 2017; 360:92-106. [PMID: 29208336 DOI: 10.1016/j.heares.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
Abstract
Auditory research has a rich history of combining experimental evidence with computational simulations of auditory processing in order to deepen our theoretical understanding of how sound is processed in the ears and in the brain. Despite significant progress in the amount of detail and breadth covered by auditory models, for many components of the auditory pathway there are still different model approaches that are often not equivalent but rather in conflict with each other. Similarly, some experimental studies yield conflicting results which has led to controversies. This can be best resolved by a systematic comparison of multiple experimental data sets and model approaches. Binaural processing is a prominent example of how the development of quantitative theories can advance our understanding of the phenomena, but there remain several unresolved questions for which competing model approaches exist. This article discusses a number of current unresolved or disputed issues in binaural modelling, as well as some of the significant challenges in comparing binaural models with each other and with the experimental data. We introduce an auditory model framework, which we believe can become a useful infrastructure for resolving some of the current controversies. It operates models over the same paradigms that are used experimentally. The core of the proposed framework is an interface that connects three components irrespective of their underlying programming language: The experiment software, an auditory pathway model, and task-dependent decision stages called artificial observers that provide the same output format as the test subject.
Collapse
Affiliation(s)
- Mathias Dietz
- National Centre for Audiology, Western University, London, ON, Canada.
| | - Jean-Hugues Lestang
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Piotr Majdak
- Institut für Schallforschung, Österreichische Akademie der Wissenschaften, Wien, Austria
| | | | | | - Stephan D Ewert
- Medizinische Physik, Universität Oldenburg, Oldenburg, Germany
| | | | - Dan F M Goodman
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
He N, Kong L, Lin T, Wang S, Liu X, Qi J, Yan J. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons. Hear Res 2017; 355:54-63. [DOI: 10.1016/j.heares.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
30
|
Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials. J Neurosci 2017; 37:10451-10467. [PMID: 28947575 DOI: 10.1523/jneurosci.0600-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/20/2023] Open
Abstract
Extracellular voltage recordings (Ve ; field potentials) provide an accessible view of in vivo neural activity, but proper interpretation of field potentials is a long-standing challenge. Computational modeling can aid in identifying neural generators of field potentials. In the auditory brainstem of cats, spatial patterns of sound-evoked Ve can resemble, strikingly, Ve generated by current dipoles. Previously, we developed a biophysically-based model of a binaural brainstem nucleus, the medial superior olive (MSO), that accounts qualitatively for observed dipole-like Ve patterns in sustained responses to monaural tones with frequencies >∼1000 Hz (Goldwyn et al., 2014). We have observed, however, that Ve patterns in cats of both sexes appear more monopole-like for lower-frequency tones. Here, we enhance our theory to accurately reproduce dipole and non-dipole features of Ve responses to monaural tones with frequencies ranging from 600 to 1800 Hz. By applying our model to data, we estimate time courses of paired input currents to MSO neurons. We interpret these inputs as dendrite-targeting excitation and soma-targeting inhibition (the latter contributes non-dipole-like features to Ve responses). Aspects of inferred inputs are consistent with synaptic inputs to MSO neurons including the tendencies of inhibitory inputs to attenuate in response to high-frequency tones and to precede excitatory inputs. Importantly, our updated theory can be tested experimentally by blocking synaptic inputs. MSO neurons perform a critical role in sound localization and binaural hearing. By solving an inverse problem to uncover synaptic inputs from Ve patterns we provide a new perspective on MSO physiology.SIGNIFICANCE STATEMENT Extracellular voltages (field potentials) are a common measure of brain activity. Ideally, one could infer from these data the activity of neurons and synapses that generate field potentials, but this "inverse problem" is not easily solved. We study brainstem field potentials in the region of the medial superior olive (MSO); a critical center in the auditory pathway. These field potentials exhibit distinctive spatial and temporal patterns in response to pure tone sounds. We use mathematical modeling in combination with physiological and anatomical knowledge of MSO neurons to plausibly explain how dendrite-targeting excitation and soma-targeting inhibition generate these field potentials. Inferring putative synaptic currents from field potentials advances our ability to study neural processing of sound in the MSO.
Collapse
|
31
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Costa M, Lepore F, Guillemot JP. Spectral and temporal auditory processing in the superior colliculus of aged rats. Neurobiol Aging 2017; 57:64-74. [DOI: 10.1016/j.neurobiolaging.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/04/2017] [Accepted: 05/13/2017] [Indexed: 12/01/2022]
|
33
|
Tellers P, Lehmann J, Führ H, Wagner H. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls. J Neurophysiol 2017; 118:1871-1887. [PMID: 28679844 DOI: 10.1152/jn.01166.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit.NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species.
Collapse
Affiliation(s)
- Philipp Tellers
- Institute of Biology II, RWTH Aachen University, Aachen, Germany; and
| | - Jessica Lehmann
- Lehrstuhl A für Mathematik, RWTH Aachen University, Aachen, Germany
| | - Hartmut Führ
- Lehrstuhl A für Mathematik, RWTH Aachen University, Aachen, Germany
| | - Hermann Wagner
- Institute of Biology II, RWTH Aachen University, Aachen, Germany; and
| |
Collapse
|
34
|
David M, Lavandier M, Grimault N, Oxenham AJ. Discrimination and streaming of speech sounds based on differences in interaural and spectral cues. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1674. [PMID: 28964066 PMCID: PMC5617732 DOI: 10.1121/1.5003809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 05/29/2023]
Abstract
Differences in spatial cues, including interaural time differences (ITDs), interaural level differences (ILDs) and spectral cues, can lead to stream segregation of alternating noise bursts. It is unknown how effective such cues are for streaming sounds with realistic spectro-temporal variations. In particular, it is not known whether the high-frequency spectral cues associated with elevation remain sufficiently robust under such conditions. To answer these questions, sequences of consonant-vowel tokens were generated and filtered by non-individualized head-related transfer functions to simulate the cues associated with different positions in the horizontal and median planes. A discrimination task showed that listeners could discriminate changes in interaural cues both when the stimulus remained constant and when it varied between presentations. However, discrimination of changes in spectral cues was much poorer in the presence of stimulus variability. A streaming task, based on the detection of repeated syllables in the presence of interfering syllables, revealed that listeners can use both interaural and spectral cues to segregate alternating syllable sequences, despite the large spectro-temporal differences between stimuli. However, only the full complement of spatial cues (ILDs, ITDs, and spectral cues) resulted in obligatory streaming in a task that encouraged listeners to integrate the tokens into a single stream.
Collapse
Affiliation(s)
- Marion David
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mathieu Lavandier
- Univ Lyon, ENTPE, Laboratoire Génie Civil et bâtiment, Rue Maurice Audin, 69518 Vaulx-en-Velin Cedex, France
| | - Nicolas Grimault
- Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Cognition Auditive et Psychoacoustique, Avenue Tony Garnier, 69366 Lyon Cedex 07, France
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
35
|
Sakano H, Zorio DAR, Wang X, Ting YS, Noble WS, MacCoss MJ, Rubel EW, Wang Y. Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. J Comp Neurol 2017; 525:3341-3359. [PMID: 28685837 DOI: 10.1002/cne.24281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
The avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input. More recently, fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates local protein translation, has been shown to be enriched in NL dendrites, suggesting its potential role in the structural dynamics of these dendrites. To explore the molecular role of FMRP in this nucleus, we performed proteomic analysis of NL, using micro laser capture and liquid chromatography tandem mass spectrometry. We identified 657 proteins, greatly represented in pathways involved in mitochondria, translation and metabolism, consistent with high levels of activity of NL neurons. Of these, 94 are potential FMRP targets, by comparative analysis with previously proposed FMRP targets in mammals. These proteins are enriched in pathways involved in cellular growth, cellular trafficking and transmembrane transport. Immunocytochemistry verified the dendritic localization of several proteins in NL. Furthermore, we confirmed the direct interaction of FMRP with one candidate, RhoC, by in vitro RNA binding assays. In summary, we provide a database of highly expressed proteins in NL and in particular a list of potential FMRP targets, with the goal of facilitating molecular characterization of FMRP signaling in future studies.
Collapse
Affiliation(s)
- Hitomi Sakano
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Diego A R Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Ying S Ting
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
36
|
Ozmeral EJ, Eddins DA, Eddins AC. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference. J Neurophysiol 2016; 116:2720-2729. [PMID: 27683889 PMCID: PMC5133308 DOI: 10.1152/jn.00560.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/24/2016] [Indexed: 11/22/2022] Open
Abstract
Previous electrophysiological studies of interaural time difference (ITD) processing have demonstrated that ITDs are represented by a nontopographic population rate code. Rather than narrow tuning to ITDs, neural channels have broad tuning to ITDs in either the left or right auditory hemifield, and the relative activity between the channels determines the perceived lateralization of the sound. With advancing age, spatial perception weakens and poor temporal processing contributes to declining spatial acuity. At present, it is unclear whether age-related temporal processing deficits are due to poor inhibitory controls in the auditory system or degraded neural synchrony at the periphery. Cortical processing of spatial cues based on a hemifield code are susceptible to potential age-related physiological changes. We consider two distinct predictions of age-related changes to ITD sensitivity: declines in inhibitory mechanisms would lead to increased excitation and medial shifts to rate-azimuth functions, whereas a general reduction in neural synchrony would lead to reduced excitation and shallower slopes in the rate-azimuth function. The current study tested these possibilities by measuring an evoked response to ITD shifts in a narrow-band noise. Results were more in line with the latter outcome, both from measured latencies and amplitudes of the global field potentials and source-localized waveforms in the left and right auditory cortices. The measured responses for older listeners also tended to have reduced asymmetric distribution of activity in response to ITD shifts, which is consistent with other sensory and cognitive processing models of aging.
Collapse
Affiliation(s)
- Erol J Ozmeral
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Ann C Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| |
Collapse
|
37
|
Curry RJ, Lu Y. Synaptic Inhibition in Avian Interaural Level Difference Sound Localizing Neurons. eNeuro 2016; 3:ENEURO.0309-16.2016. [PMID: 28032116 PMCID: PMC5168645 DOI: 10.1523/eneuro.0309-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Synaptic inhibition plays a fundamental role in the neural computation of the interaural level difference (ILD), an important cue for the localization of high-frequency sound. Here, we studied the inhibitory synaptic currents in the chicken posterior portion of the dorsal nucleus of the lateral lemniscus (LLDp), the first binaural level difference encoder of the avian auditory pathway. Using whole-cell recordings in brain slices, we provide the first evidence confirming a monosynaptic inhibition driven by direct electrical and chemical stimulation of the contralateral LLDp, establishing the reciprocal inhibitory connection between the two LLDps, a long-standing assumption in the field. This inhibition was largely mediated by GABAA receptors; however, functional glycine receptors were also identified. The reversal potential for the Cl- channels measured with gramicidin-perforated patch recordings was hyperpolarizing (-88 mV), corresponding to a low intracellular Cl- concentration (5.2 mm). Pharmacological manipulations of KCC2 (outwardly Cl- transporter) activity demonstrate that LLDp neurons can maintain a low intracellular Cl- concentration under a high Cl- load, allowing for the maintenance of hyperpolarizing inhibition. We further demonstrate that hyperpolarizing inhibition was more effective at regulating cellular excitability than depolarizing inhibition in LLDp neurons.
Collapse
Affiliation(s)
- Rebecca J. Curry
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44240
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio 44272
- School of Biomedical Sciences, Kent State University, Kent, Ohio 44240
| |
Collapse
|
38
|
Zohar O, Shamir M. A Readout Mechanism for Latency Codes. Front Comput Neurosci 2016; 10:107. [PMID: 27812332 PMCID: PMC5071334 DOI: 10.3389/fncom.2016.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Response latency has been suggested as a possible source of information in the central nervous system when fast decisions are required. The accuracy of latency codes was studied in the past using a simplified readout algorithm termed the temporal-winner-take-all (tWTA). The tWTA is a competitive readout algorithm in which populations of neurons with a similar decision preference compete, and the algorithm selects according to the preference of the population that reaches the decision threshold first. It has been shown that this algorithm can account for accurate decisions among a small number of alternatives during short biologically relevant time periods. However, one of the major points of criticism of latency codes has been that it is unclear how can such a readout be implemented by the central nervous system. Here we show that the solution to this long standing puzzle may be rather simple. We suggest a mechanism that is based on reciprocal inhibition architecture, similar to that of the conventional winner-take-all, and show that under a wide range of parameters this mechanism is sufficient to implement the tWTA algorithm. This is done by first analyzing a rate toy model, and demonstrating its ability to discriminate short latency differences between its inputs. We then study the sensitivity of this mechanism to fine-tuning of its initial conditions, and show that it is robust to wide range of noise levels in the initial conditions. These results are then generalized to a Hodgkin-Huxley type of neuron model, using numerical simulations. Latency codes have been criticized for requiring a reliable stimulus-onset detection mechanism as a reference for measuring latency. Here we show that this frequent assumption does not hold, and that, an additional onset estimator is not needed to trigger this simple tWTA mechanism.
Collapse
Affiliation(s)
- Oran Zohar
- Department of Brain and Cognitive Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Maoz Shamir
- Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-Sheva, Israel; Department of Physiology and Cell Biology, Ben-Gurion University of the NegevBeer-Sheva, Israel; Department of Physics, Ben-Gurion University of the NegevBeer-Sheva, Israel
| |
Collapse
|
39
|
Xie R, Manis PB. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss. J Physiol 2016; 595:919-934. [PMID: 27618790 DOI: 10.1113/jp272683] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Synaptic transmission at the endbulb of Held was assessed by whole-cell patch clamp recordings from auditory neurons in mature (2-4 months) and aged (20-26 months) mice. Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age-related hearing loss. The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential-evoked calcium influx. These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. ABSTRACT Age-related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2-4 months) and old (20-26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA-AM or decreasing calcium influx with ω-agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA-AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium-dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7545, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7070, USA
| |
Collapse
|
40
|
Franken TP, Smith PH, Joris PX. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem. Front Neural Circuits 2016; 10:69. [PMID: 27605909 PMCID: PMC4995217 DOI: 10.3389/fncir.2016.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar to their primary input from the cochlear nucleus.
Collapse
Affiliation(s)
- Tom P Franken
- Laboratory of Auditory Neurophysiology, Department of Neurosciences, Katholieke Universiteit Leuven Leuven, Belgium
| | - Philip H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, Department of Neurosciences, Katholieke Universiteit Leuven Leuven, Belgium
| |
Collapse
|
41
|
Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds. PLoS Comput Biol 2016; 12:e1004997. [PMID: 27322612 PMCID: PMC4920552 DOI: 10.1371/journal.pcbi.1004997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory and inhibitory synaptic inputs is essential for LSO neurons to encode both monaural and binaural AM sounds. Detecting coincident arrivals of synaptic inputs is a shared fundamental property of many sensory neurons. Such 'coincidence detection' usually refers to the detection of synchronized excitatory inputs only. Experimental evidence, however, indicated that some auditory neurons are also sensitive to the relative timing of excitatory and inhibitory synaptic inputs. This type of sensitivity is suggested to be important for coding temporal information of amplitude-modulated sounds, such as speech and other naturalistic sounds. In this study, we used a minimal model of coincidence detection to identify the key elements for temporal information processing. Our series of simulations demonstrated that (1) the threshold and time window for coincidence detection were the major factors for determining the response properties to excitatory inputs, and that (2) timed interactions between excitatory and inhibitory synaptic inputs are responsible for determining the temporal tuning properties of the neuron. These results suggest that coincidence detection is an essential function of neurons that detect the 'anti-coincidence' of excitatory and inhibitory inputs to encode temporal information of sounds.
Collapse
|
42
|
Yger P, Benichoux V, Stimberg M, Brette R. Emergence of ITD tuning in the MSO with a realistic periphery model. BMC Neurosci 2015. [PMCID: PMC4697577 DOI: 10.1186/1471-2202-16-s1-p20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
A Neural Model of Auditory Space Compatible with Human Perception under Simulated Echoic Conditions. PLoS One 2015; 10:e0137900. [PMID: 26355676 PMCID: PMC4565656 DOI: 10.1371/journal.pone.0137900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022] Open
Abstract
In a typical auditory scene, sounds from different sources and reflective surfaces summate in the ears, causing spatial cues to fluctuate. Prevailing hypotheses of how spatial locations may be encoded and represented across auditory neurons generally disregard these fluctuations and must therefore invoke additional mechanisms for detecting and representing them. Here, we consider a different hypothesis in which spatial perception corresponds to an intermediate or sub-maximal firing probability across spatially selective neurons within each hemisphere. The precedence or Haas effect presents an ideal opportunity for examining this hypothesis, since the temporal superposition of an acoustical reflection with sounds arriving directly from a source can cause otherwise stable cues to fluctuate. Our findings suggest that subjects’ experiences may simply reflect the spatial cues that momentarily arise under various acoustical conditions and how these cues are represented. We further suggest that auditory objects may acquire “edges” under conditions when interaural time differences are broadly distributed.
Collapse
|
44
|
Palanca-Castan N, Köppl C. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris. Front Neural Circuits 2015; 9:43. [PMID: 26347616 PMCID: PMC4542463 DOI: 10.3389/fncir.2015.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022] Open
Abstract
Interaural time differences (ITDs) are an important cue for the localization of sounds in azimuthal space. Both birds and mammals have specialized, tonotopically organized nuclei in the brain stem for the processing of ITD: medial superior olive in mammals and nucleus laminaris (NL) in birds. The specific way in which ITDs are derived was long assumed to conform to a delay-line model in which arrays of systematically arranged cells create a representation of auditory space with different cells responding maximally to specific ITDs. This model was supported by data from barn owl NL taken from regions above 3 kHz and from chicken above 1 kHz. However, data from mammals often do not show defining features of the Jeffress model such as a systematic topographic representation of best ITDs or the presence of axonal delay lines, and an alternative has been proposed in which neurons are not topographically arranged with respect to ITD and coding occurs through the assessment of the overall response of two large neuron populations, one in each hemisphere. Modeling studies have suggested that the presence of different coding systems could be related to the animal’s head size and frequency range rather than their phylogenetic group. Testing this hypothesis requires data from across the tonotopic range of both birds and mammals. The aim of this study was to obtain in vivo recordings from neurons in the low-frequency range (<1000 Hz) of chicken NL. Our data argues for the presence of a modified Jeffress system that uses the slopes of ITD-selective response functions instead of their peaks to topographically represent ITD at mid- to high frequencies. At low frequencies, below several 100 Hz, the data did not support any current model of ITD coding. This is different to what was previously shown in the barn owl and suggests that constraints in optimal ITD processing may be associated with the particular demands on sound localization determined by the animal’s ecological niche in the same way as other perceptual systems such as field of best vision.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
45
|
Carr CE, Shah S, McColgan T, Ashida G, Kuokkanen PT, Brill S, Kempter R, Wagner H. Maps of interaural delay in the owl's nucleus laminaris. J Neurophysiol 2015. [PMID: 26224776 DOI: 10.1152/jn.00644.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland;
| | - Sahil Shah
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas McColgan
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Go Ashida
- Department of Biology, University of Maryland, College Park, Maryland
| | - Paula T Kuokkanen
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Sandra Brill
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, and Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Hermann Wagner
- Institute for Biology II, RWTH Aachen, Aachen, Germany; and
| |
Collapse
|
46
|
Palanca-Castan N, Köppl C. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:271-86. [PMID: 26182962 DOI: 10.1159/000433513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022]
Abstract
Localization of sound sources relies on 2 main binaural cues: interaural time differences (ITD) and interaural level differences. ITD computing is first carried out in tonotopically organized areas of the brainstem nucleus laminaris (NL) in birds and the medial superior olive (MSO) in mammals. The specific way in which ITD are derived was long assumed to conform to a delay line model in which arrays of systematically arranged cells create a representation of auditory space, with different cells responding maximally to specific ITD. This model conforms in many details to the particular case of the high-frequency regions (above 3 kHz) in the barn owl NL. However, data from recent studies in mammals are not consistent with a delay line model. A new model has been suggested in which neurons are not topographically arranged with respect to ITD and coding occurs through assessment of the overall response of 2 large neuron populations – 1 in each brainstem hemisphere. Currently available data comprise mainly low-frequency (<1,500 Hz) recordings in the case of mammals and higher-frequency recordings in the case of birds. This makes it impossible to distinguish between group-related adaptations and frequency-related adaptations. Here we report the first comprehensive data set from low-frequency NL in the barn owl and compare it to data from other avian and mammalian studies. Our data are consistent with a delay line model, so differences between ITD processing systems are more likely to have originated through divergent evolution of different vertebrate groups.
Collapse
Affiliation(s)
- Nicolas Palanca-Castan
- Cluster of Excellence Hearing4all, Research Center Neurosensory Science and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | | |
Collapse
|
47
|
Bierman HS, Carr CE. Sound localization in the alligator. Hear Res 2015; 329:11-20. [PMID: 26048335 DOI: 10.1016/j.heares.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
In early tetrapods, it is assumed that the tympana were acoustically coupled through the pharynx and therefore inherently directional, acting as pressure difference receivers. The later closure of the middle ear cavity in turtles, archosaurs, and mammals is a derived condition, and would have changed the ear by decoupling the tympana. Isolation of the middle ears would then have led to selection for structural and neural strategies to compute sound source localization in both archosaurs and mammalian ancestors. In the archosaurs (birds and crocodilians) the presence of air spaces in the skull provided connections between the ears that have been exploited to improve directional hearing, while neural circuits mediating sound localization are well developed. In this review, we will focus primarily on directional hearing in crocodilians, where vocalization and sound localization are thought to be ecologically important, and indicate important issues still awaiting resolution.
Collapse
Affiliation(s)
- Hilary S Bierman
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Catherine E Carr
- Center for Comparative and Evolutionary Biology of Hearing, Department of Biology, University of Maryland College Park, College Park, Maryland 20742, USA.
| |
Collapse
|
48
|
Poblete V, Espic F, King S, Stern RM, Huenupán F, Fredes J, Yoma NB. A perceptually-motivated low-complexity instantaneous linear channel normalization technique applied to speaker verification. COMPUT SPEECH LANG 2015. [DOI: 10.1016/j.csl.2014.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Benichoux V, Fontaine B, Franken TP, Karino S, Joris PX, Brette R. Neural tuning matches frequency-dependent time differences between the ears. eLife 2015; 4. [PMID: 25915620 PMCID: PMC4439524 DOI: 10.7554/elife.06072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/25/2015] [Indexed: 11/15/2022] Open
Abstract
The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI:http://dx.doi.org/10.7554/eLife.06072.001 When you hear a sound, such as someone calling your name, it is often possible to make a good estimate of where that sound came from. If the sound came from the left, it would reach your left ear before your right ear, and vice versa if the sound originated from your right. The time that passes between the sound reaching each ear is known as the ‘interaural time difference’. Previous research has suggested that specific neurons in the brain respond to specific interaural time differences, and the brain then uses this interaural time difference to locate the sound. Sounds come in various frequencies from high-pitched alarms to low bass tones, and how a neuron responds to interaural time differences appears to change according to the frequency of the sound being played. For example, a given neuron may respond to a 200- microsecond interaural time difference when a tone is played at a high frequency, but show no response to this time difference when the tone is played at a low frequency. To date, researchers had been unable to explain why this occurs. Here, Benichoux et al. investigated this topic by playing a variety of sounds to anaesthetized cats. Electrodes were used to record the responses of individual neurons in the cats' brains, and the properties of the sound waves that reached the cats' ears were also recorded. These experiments revealed that the time it took a sound to travel from a location to each of the cats' ears, and consequently the interaural time difference, depended on whether it was a high-pitched or a low-pitched sound. This happened because different properties of the environment, such as the angle of the cat's head, affected specific frequencies in different ways. As expected, the neurons' responses were also affected by sound frequency. Indeed, the neurons' behaviour mirrored that of the sound waves themselves. This shows that neurons do not, as previously thought, simply react to specific interaural differences. Instead, these neurons use both sound frequency and interaural time differences to produce a thorough approximation of the sound's location. The precise mechanisms that generate this brain adaptation to the animal's environment remain to be determined. DOI:http://dx.doi.org/10.7554/eLife.06072.002
Collapse
Affiliation(s)
- Victor Benichoux
- Institut d'Etudes de la Cognition, Ecole Normale Supérieure, Paris, France
| | - Bertrand Fontaine
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Tom P Franken
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Shotaro Karino
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Leuven, Belgium
| | - Romain Brette
- Institut d'Etudes de la Cognition, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
50
|
Minimal conductance-based model of auditory coincidence detector neurons. PLoS One 2015; 10:e0122796. [PMID: 25844803 PMCID: PMC4386812 DOI: 10.1371/journal.pone.0122796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Sound localization is a fundamental sensory function of a wide variety of animals. The interaural time difference (ITD), an important cue for sound localization, is computed in the auditory brainstem. In our previous modeling study, we introduced a two-compartment Hodgkin-Huxley type model to investigate how cellular and synaptic specializations may contribute to precise ITD computation of the barn owl's auditory coincidence detector neuron. Although our model successfully reproduced fundamental physiological properties observed in vivo, it was unsuitable for mathematical analyses and large scale simulations because of a number of nonlinear variables. In the present study, we reduce our former model into three types of conductance-based integrate-and-fire (IF) models. We test their electrophysiological properties using data from published in vivo and in vitro studies. Their robustness to parameter changes and computational efficiencies are also examined. Our numerical results suggest that the single-compartment active IF model is superior to other reduced models in terms of physiological reproducibility and computational performance. This model will allow future theoretical studies that use more rigorous mathematical analysis and network simulations.
Collapse
|