1
|
Xue C, Wang Y, Peng J, Feng S, Guan Y, Hao Y. Unraveling the pathogenic mechanism of a novel filamin a frameshift variant in periventricular nodular heterotopia. Front Pharmacol 2024; 15:1429177. [PMID: 39399465 PMCID: PMC11466872 DOI: 10.3389/fphar.2024.1429177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Background Periventricular nodular heterotopia (PVNH) is a neuronal migration disorder caused by the inability of neurons to move to the cortex. Patients with PVNH often experience epilepsy due to ectopic neuronal discharges. Most cases of PVNH are associated with variations in filamin A (FLNA), which encodes an actin-binding protein. However, the underlying pathological mechanisms remain unclear. Methods Next-generation sequencing was performed to detect variants in the patient with PVNH, and the findings were confirmed using Sanger sequencing. Iterative threading assembly refinement was used to predict the structures of the variant proteins, and the search tool for the retrieval of interacting genes/proteins database was used to determine the interactions between FLNA and motility-related proteins. An induced pluripotent stem cell (iPSC) line was generated as a disease model by reprogramming human peripheral blood mononuclear cells. The FLNA expression in iPSCs was assessed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Immunofluorescence analysis was performed to determine the arrangement of F-actin. Results A novel FLNA frameshift variant (NM_001456.3: c.1466delG, p. G489Afs*9) was identified in a patient with PVNH and epilepsy. Bioinformatic analysis indicated that this variation was likely to impair FLNA function. Western blot and qRT-PCR analysis of iPSCs derived from the patient's peripheral blood mononuclear cells revealed the absence of FLNA protein and mRNA. Immunofluorescence analysis suggested an irregular arrangement and disorganization of F-actin compared to that observed in healthy donors. Conclusion Our findings indicate that the frameshift variant of FLNA (NM_001456.3: c.1466delG, p. G489Afs*9) impairs the arrangement and organization of F-actin, potentially influencing cell migration and causing PVNH.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Punan Branch, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Binder MS, Escobar I, Xu Y, Sokolov AM, Zhang L, Bordey A. Reducing Filamin A Restores Cortical Synaptic Connectivity and Early Social Communication Following Cellular Mosaicism in Autism Spectrum Disorder Pathways. J Neurosci 2024; 44:e1245232024. [PMID: 39164108 PMCID: PMC11426378 DOI: 10.1523/jneurosci.1245-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024] Open
Abstract
Communication in the form of nonverbal, social vocalization, or crying is evolutionary conserved in mammals and is impaired early in human infants that are later diagnosed with autism spectrum disorder (ASD). Defects in infant vocalization have been proposed as an early sign of ASD that may exacerbate ASD development. However, the neural mechanisms associated with early communicative deficits in ASD are not known. Here, we expressed a constitutively active mutant of Rheb (RhebS16H), which is known to upregulate two ASD core pathways, mTOR complex 1 (mTORC1) and ERK1/2, in Layer (L) 2/3 pyramidal neurons of the neocortex of mice of either sex. We found that cellular mosaic expression of RhebS16H in L2/3 pyramidal neurons altered the production of isolation calls from neonatal mice. This was accompanied by an expected misplacement of neurons and dendrite overgrowth, along with an unexpected increase in spine density and length, which was associated with increased excitatory synaptic activity. This contrasted with the known decrease in spine density in RhebS16H neurons of 1-month-old mice. Reducing the levels of the actin cross-linking and adaptor protein filamin A (FLNA), known to be increased downstream of ERK1/2, attenuated dendrite overgrowth and fully restored spine properties, synaptic connectivity, and the production of pup isolation calls. These findings suggest that upper-layer cortical pyramidal neurons contribute to communicative deficits in a condition known to affect two core ASD pathways and that these mechanisms are regulated by FLNA.
Collapse
Affiliation(s)
- Matthew S Binder
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Iris Escobar
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Youfen Xu
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Aidan M Sokolov
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Longbo Zhang
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| |
Collapse
|
3
|
Rocha-Martins M. Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. Curr Top Dev Biol 2023; 159:30-58. [PMID: 38729679 DOI: 10.1016/bs.ctdb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.
Collapse
|
4
|
|
5
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Constanthin PE, Contestabile A, Petrenko V, Quairiaux C, Salmon P, Hüppi PS, Kiss JZ. Endogenous erythropoietin signaling regulates migration and laminar positioning of upper-layer neurons in the developing neocortex. Development 2020; 147:dev190249. [PMID: 32764029 PMCID: PMC7561482 DOI: 10.1242/dev.190249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023]
Abstract
Erythropoietin (EPO), the hypoxia-inducible hematopoietic hormone, has well-established neuroprotective/neurotrophic roles in the developing central nervous system and the therapeutic potential of EPO has been widely explored in clinical studies for the treatment of perinatal hypoxic brain lesion, as well as prematurity. Here, we reveal that both EPO and Epo receptor (EPOR) are expressed in the developing rat somatosensory cortex during radial migration and laminar positioning of granular and supragranular neurons. Experimental deregulation of EPO signaling using genetic approaches results in aberrant migration, as well as permanent neuronal misplacement leading to abnormal network activity and protracted sensory behavioral deficits. We identify ERK as the downstream effector of the EPO signaling pathway for neuronal migration. These findings reveal a crucial role for endogenous EPO signaling in neuronal migration, and offer important insights for understanding how the temporary deregulation of EPO could result in migration defects that lead to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Paul E Constanthin
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, 1201 Geneva, Switzerland
- Department of Cell Physiology and Metabolism; Diabetes Center, Faculty of Medicine, University of Geneva; Institute of Genetics and Genomics in Geneva (iGE3), 1201 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Patrick Salmon
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| | - Petra S Hüppi
- Department of Pediatrics, Faculty of Medicine, University Hospital of Geneva, 1201 Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Fundamental Neurosciences, University Medical Center, University of Geneva, 1201 Geneva, Switzerland
| |
Collapse
|
7
|
Urra H, Pihán P, Hetz C. The UPRosome - decoding novel biological outputs of IRE1α function. J Cell Sci 2020; 133:133/15/jcs218107. [PMID: 32788208 DOI: 10.1242/jcs.218107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile.,The Buck Institute for Research in Aging, Novato, CA 94945, USA
| |
Collapse
|
8
|
Long non-coding RNA LncKdm2b regulates cortical neuronal differentiation by cis-activating Kdm2b. Protein Cell 2019; 11:161-186. [PMID: 31317506 PMCID: PMC7026249 DOI: 10.1007/s13238-019-0650-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying spatial and temporal control of cortical neurogenesis of the brain are largely elusive. Long non-coding RNAs (lncRNAs) have emerged as essential cell fate regulators. Here we found LncKdm2b (also known as Kancr), a lncRNA divergently transcribed from a bidirectional promoter of Kdm2b, is transiently expressed during early differentiation of cortical projection neurons. Interestingly, Kdm2b’s transcription is positively regulated in cis by LncKdm2b, which has intrinsic-activating function and facilitates a permissive chromatin environment at the Kdm2b’s promoter by associating with hnRNPAB. Lineage tracing experiments and phenotypic analyses indicated LncKdm2b and Kdm2b are crucial in proper differentiation and migration of cortical projection neurons. These observations unveiled a lncRNA-dependent machinery in regulating cortical neuronal differentiation.
Collapse
|
9
|
Deloison B, Sonigo P, Millischer-Bellaiche AE, Quibel T, Cavallin M, Benoist G, Quelin C, Jouk PS, Lev D, Alison M, Baumann C, Beldjord C, Razavi F, Bessières B, Boddaert N, Ville Y, Salomon LJ, Bahi-Buisson N. Prenatally diagnosed periventricular nodular heterotopia: Further delineation of the imaging phenotype and outcome. Eur J Med Genet 2018; 61:773-782. [PMID: 30391507 DOI: 10.1016/j.ejmg.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periventricular nodular heterotopia (PNH) is a malformation of cortical development which presents with heterogeneous imaging, neurological phenotype and outcome. There is a paucity of comprehensive description detailing the prenatal diagnosis of PNH. The aim of this study is to report neuroimaging features and correlated outcomes in order to delineate the spectrum of prenatally diagnosed PNH. METHODS It was a retrospective study over 15 years in five tertiary centers. All fetuses with prenatally diagnosed PNH were collected. Fetal ultrasound and MRI were reviewed and genetic screening collected. Prenatal findings were analyzed in correlation to fetopathological analyses and post-natal follow up. RESULTS Thirty fetuses (22 females and 8 males) with PNH were identified. The two major ultrasound signs were ventriculomegaly associated with dysmorphic frontal horns (60%) and posterior fossa anomalies (73.3%). On MRI, two groups of PNH were identified: the contiguous and diffuse PNH (n = 15, 50%), often associated with megacisterna magna, and the non-diffuse, either anterior, posterior or unilateral PNH. FLNA mutations were found in 6/11 cases with diffuse PNH. Additional cortical malformations were exclusively observed in non diffuse PNH (9/15; 60%). Twenty-four pregnancies (80%) were terminated. Six children aged 6 months to 5 years are alive. Five have normal neurodevelopment (all had diffuse PNH) whereas one case with non diffuse PNH has developmental delay and epilepsy. CONCLUSION PNH is heterogeneous but patients with diffuse PNH are a common subgroup with specific findings on prenatal imaging and implications for prenatal counseling.
Collapse
Affiliation(s)
- B Deloison
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - P Sonigo
- Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - A E Millischer-Bellaiche
- Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - T Quibel
- Department of Obstetrics and Gynecology, Poissy Saint-Germain Hospital, Poissy, France
| | - M Cavallin
- Université Paris Descartes - Sorbonne Paris Cités, France; Institut Imagine-INSERM UMR-1163, Embryology and genetics of congenital malformations, France; Pediatric Neurology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - G Benoist
- Department of Obstetrics and Gynecology, Caen Hospital, Caen Basse Normandie University, France
| | - C Quelin
- Clinical Genetic Department, Rennes Hospital, France
| | - P S Jouk
- Clinical Genetic Department, Grenoble Hospital, France
| | - D Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - M Alison
- Pediatric Radiology, Robert Debre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Baumann
- Clinical Genetics Department, Robert Debre Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Beldjord
- Department of Molecular Genetics, Cochin-Port-Royal Université Paris Descartes - Sorbonne Paris Cités, Paris, France
| | - F Razavi
- Fetopathology Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - B Bessières
- Fetopathology Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - N Boddaert
- Université Paris Descartes - Sorbonne Paris Cités, France; Pediatric Radiology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Y Ville
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - L J Salomon
- Department of Obstetrics and Gynecology and SFAPE Société Française pour l'Amélioration des Pratiques Echographiques, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes - Sorbonne Paris Cités, France; EA 7328 FETUS, Université Paris Descartes, France
| | - N Bahi-Buisson
- Université Paris Descartes - Sorbonne Paris Cités, France; Institut Imagine-INSERM UMR-1163, Embryology and genetics of congenital malformations, France; Pediatric Neurology, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
10
|
Martínez G, Khatiwada S, Costa-Mattioli M, Hetz C. ER Proteostasis Control of Neuronal Physiology and Synaptic Function. Trends Neurosci 2018; 41:610-624. [PMID: 29945734 PMCID: PMC7268632 DOI: 10.1016/j.tins.2018.05.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Neuronal proteostasis is maintained by the dynamic integration of different processes that regulate the synthesis, folding, quality control, and localization of proteins. The endoplasmic reticulum (ER) serves as a fundamental pillar of the proteostasis network, and is emerging as a key compartment to sustain normal brain function. The unfolded protein response (UPR), the main mechanism that copes with ER stress, plays a central role in the quality control of many ion channels and receptors, in addition to crosstalk with signaling pathways that regulate connectivity, synapse formation, and neuronal plasticity. We provide here an overview of recent advances in the involvement of the UPR in maintaining neuronal proteostasis, and discuss its emerging role in brain development, neuronal physiology, and behavior, as well as the implications for neurodegenerative diseases involving cognitive decline.
Collapse
Affiliation(s)
- Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Sanjeev Khatiwada
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
11
|
IRE1α governs cytoskeleton remodelling and cell migration
through a direct interaction with filamin A. Nat Cell Biol 2018; 20:942-953. [DOI: 10.1038/s41556-018-0141-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
|
12
|
Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun 2017; 8:1158. [PMID: 29079819 PMCID: PMC5660087 DOI: 10.1038/s41467-017-01046-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans. Functional consequence of transient delay in neuronal migration is unclear. This study shows that Wnt/C-Kit signaling regulates radial migration in rat somatosensory cortex, and that transient delay of L2/3 neuronal migration leads to interhemispheric connectivity alteration and abnormal social behavior.
Collapse
|
13
|
Human Cytomegalovirus IE2 Protein Disturbs Brain Development by the Dysregulation of Neural Stem Cell Maintenance and the Polarization of Migrating Neurons. J Virol 2017; 91:JVI.00799-17. [PMID: 28615204 DOI: 10.1128/jvi.00799-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
Despite the high incidence of severe defects in the central nervous system caused by human cytomegalovirus (HCMV) congenital infection, the mechanism of HCMV neuropathogenesis and the roles of individual viral genes have not yet been fully determined. In this study, we show that the immediate-early 2 (IE2) protein may play a key role in HCMV-caused neurodevelopmental disorders. IE2-transduced neural progenitor cells gave rise to neurospheres with a lower frequency and produced smaller neurospheres than control cells in vitro, indicating reduction of self-renewal and expansion of neural progenitors by IE2. At 2 days after in utero electroporation into the ventricle of the developing brain, a dramatically lower percentage of IE2-expressing cells was detected in the ventricular zone (VZ) and cortical plate (CP) compared to control cells, suggesting that IE2 concurrently dysregulates neural stem cell maintenance in the VZ and neuronal migration to the CP. In addition, most IE2+ cells in the lower intermediate zone either showed multipolar morphology with short neurites or possessed nonradially oriented processes, whereas control cells had long, radially oriented monopolar or bipolar neurites. IE2+ callosal axons also failed to cross the midline to form the corpus callosum. Furthermore, we provide molecular evidence that the cell cycle arrest and DNA binding activities of IE2 appear to be responsible for the increased neural stem cell exit from the VZ and cortical migrational defects, respectively. Collectively, our results demonstrate that IE2 disrupts the orderly process of brain development in a stepwise manner to further our understanding of neurodevelopmental HCMV pathogenesis.IMPORTANCE HCMV brain pathogenesis has been studied in limited experimental settings, such as in vitro HCMV infection of neural progenitor cells or in vivo murine CMV infection of the mouse brain. Here, we show that IE2 is a pivotal factor that contributes to HCMV-induced abnormalities in the context of the embryonic brain using an in utero gene transfer tool. Surprisingly, IE2, but not HCMV IE1 or murine CMV ie3, interferes pleiotropically with key neurodevelopmental processes, including neural stem cell regulation, proper positioning of migrating neurons, and the callosal axon projections important for communication between the hemispheres. Our data suggest that the wide spectrum of clinical outcomes, ranging from mental retardation to microcephaly, caused by congenital HCMV infection can be sufficiently explained in terms of IE2 action alone.
Collapse
|
14
|
Matsumoto N, Hoshiba Y, Morita K, Uda N, Hirota M, Minamikawa M, Ebisu H, Shinmyo Y, Kawasaki H. Pathophysiological analyses of periventricular nodular heterotopia using gyrencephalic mammals. Hum Mol Genet 2017; 26:1173-1181. [PMID: 28158406 DOI: 10.1093/hmg/ddx038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Although periventricular nodular heterotopia (PNH) is often found in the cerebral cortex of people with thanatophoric dysplasia (TD), the pathophysiology of PNH in TD is largely unknown. This is mainly because of difficulties in obtaining brain samples of TD patients and a lack of appropriate animal models for analyzing the pathophysiology of PNH in TD. Here we investigate the pathophysiological mechanisms of PNH in the cerebral cortex of TD by utilizing a ferret TD model which we recently developed. To make TD ferrets, we electroporated fibroblast growth factor 8 (FGF8) into the cerebral cortex of ferrets. Our immunohistochemical analyses showed that PNH nodules in the cerebral cortex of TD ferrets were mostly composed of cortical neurons, including upper layer neurons and GABAergic neurons. We also found disorganizations of radial glial fibers and of the ventricular lining in the TD ferret cortex, indicating that PNH may result from defects in radial migration of cortical neurons along radial glial fibers during development. Our findings provide novel mechanistic insights into the pathogenesis of PNH in TD.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| | - Yoshio Hoshiba
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| | - Kazuya Morita
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University.,Medical Research Training Program, School of Medicine, Kanazawa University
| | - Natsu Uda
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University.,Medical Research Training Program, School of Medicine, Kanazawa University
| | - Miwako Hirota
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University.,Medical Research Training Program, School of Medicine, Kanazawa University
| | - Maki Minamikawa
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University.,Medical Research Training Program, School of Medicine, Kanazawa University
| | - Haruka Ebisu
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University.,Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
15
|
Haushalter C, Schuhbaur B, Dollé P, Rhinn M. Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development. Biol Open 2017; 6:148-160. [PMID: 28011626 PMCID: PMC5312094 DOI: 10.1242/bio.021063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinoic acid (RA) is a diffusible molecule involved in early forebrain patterning. Its later production in the meninges by the retinaldehyde dehydrogenase RALDH2 coincides with the time of cortical neuron generation. A function of RA in this process has not been adressed directly as Raldh2−/− mouse mutants are embryonic lethal. Here, we used a conditional genetic strategy to inactivate Raldh2 just prior to onset of its expression in the developing meninges. This inactivation does not affect the formation of the cortical progenitor populations, their rate of division, or timing of differentiation. However, migration of late-born cortical neurons is delayed, with neurons stalling in the intermediate zone and exhibiting an abnormal multipolar morphology. This suggests that RA controls the multipolar-to-bipolar transition that occurs in the intermediate zone and allows neurons to start locomotion in the cortical plate. Our work also shows a role for RA in cortical lamination, as deep layers are expanded and a subset of layer IV neurons are not formed in the Raldh2-ablated mutants. These data demonstrate that meninges are a source of extrinsic signals important for cortical development. Summary: Involvement of the signalling molecule retinoic acid in neurogenesis of the developing cerebral cortex is shown through targeted deletion of its synthesizing enzyme.
Collapse
Affiliation(s)
- Carole Haushalter
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Brigitte Schuhbaur
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Muriel Rhinn
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
16
|
Kawasaki H, Kosugi I, Meguro S, Iwashita T. Pathogenesis of developmental anomalies of the central nervous system induced by congenital cytomegalovirus infection. Pathol Int 2017; 67:72-82. [PMID: 28074532 DOI: 10.1111/pin.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
Abstract
In humans, the herpes virus family member cytomegalovirus (CMV) is the most prevalent mediator of intrauterine infection-induced congenital defect. Central nervous system (CNS) dysfunction is a distinguishing symptom of CMV infection, and characterized by ventriculoencephalitis and microglial nodular encephalitis. Reports on the initial distribution of CMV particles and its receptors on the blood brain barrier (BBB) are rare. Nevertheless, several factors are suggested to affect CMV etiology. Viral particle size is the primary factor in determining the pattern of CNS infections, followed by the expression of integrin β1 in endothelial cells, pericytes, meninges, choroid plexus, and neural stem progenitor cells (NSPCs), which are the primary targets of CMV infection. After initial infection, CMV disrupts BBB structural integrity to facilitate the spread of viral particles into parenchyma. Then, the initial meningitis and vasculitis eventually reaches NSPC-dense areas such as ventricular zone and subventricular zone, where viral infection inhibits NSPC proliferation and differentiation and results in neuronal cell loss. These cellular events clinically manifest as brain malformations such as a microcephaly. The purpose of this review is to clearly delineate the pathophysiological basis of congenital CNS anomalies caused by CMV.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Meguro
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
17
|
Tsc1 haploinsufficiency is sufficient to increase dendritic patterning and Filamin A levels. Neurosci Lett 2016; 629:15-18. [PMID: 27345385 DOI: 10.1016/j.neulet.2016.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
Most individuals with tuberous sclerosis complex (TSC) are born with a mutant allele of either TSC1 or TSC2 and a mosaic of psychological and cognitive defects. Tsc1 loss of heterozygosity contributes to severe dendritic abnormalities that are rescued by normalizing the levels of the actin-cross linking protein, Filamin A (FLNA). However, it is unclear whether dendrites and FLNA levels are abnormal in an heterozygote Tsc1 condition. Here, we examined dendritic morphology and FLNA levels in the olfactory bulb of Tsc1 wild type and heterozygote mice. Using in vivo neonatal electroporation to label newborn neurons followed by sholl analysis, we found that Tsc1 haploinsufficiency is associated with increased dendritic complexity and total dendritic length as well as increased FLNA levels. Since reducing FLNA levels has been shown to decrease Tsc1(+/-) dendritic complexity, these data suggest that increased FLNA levels in Tsc1(+/-) mice contribute to abnormal dendritic patterning in the Tsc1 heterozygote condition of individuals with TSC.
Collapse
|
18
|
Abstract
UNLABELLED Mechanosensory hair cells (HCs) residing in the inner ear are critical for hearing and balance. Precise coordination of proliferation, sensory specification, and differentiation during development is essential to ensure the correct patterning of HCs in the cochlear and vestibular epithelium. Recent studies have revealed that FGF20 signaling is vital for proper HC differentiation. However, the mechanisms by which FGF20 signaling promotes HC differentiation remain unknown. Here, we show that mitogen-activated protein 3 kinase 4 (MEKK4) expression is highly regulated during inner ear development and is critical to normal cytoarchitecture and function. Mice homozygous for a kinase-inactive MEKK4 mutation exhibit significant hearing loss. Lack of MEKK4 activity in vivo also leads to a significant reduction in the number of cochlear and vestibular HCs, suggesting that MEKK4 activity is essential for overall development of HCs within the inner ear. Furthermore, we show that loss of FGF20 signaling in vivo inhibits MEKK4 activity, whereas gain of Fgf20 function stimulates MEKK4 expression, suggesting that Fgf20 modulates MEKK4 activity to regulate cellular differentiation. Finally, we demonstrate, for the first time, that MEKK4 acts as a critical node to integrate FGF20-FGFR1 signaling responses to specifically influence HC development and that FGFR1 signaling through activation of MEKK4 is necessary for outer hair cell differentiation. Collectively, this study provides compelling evidence of an essential role for MEKK4 in inner ear morphogenesis and identifies the requirement of MEKK4 expression in regulating the specific response of FGFR1 during HC development and FGF20/FGFR1 signaling activated MEKK4 for normal sensory cell differentiation. SIGNIFICANCE STATEMENT Sensory hair cells (HCs) are the mechanoreceptors within the inner ear responsible for our sense of hearing. HCs are formed before birth, and mammals lack the ability to restore the sensory deficits associated with their loss. In this study, we show, for the first time, that MEKK4 signaling is essential for the development of normal cytoarchitecture and hearing function as MEKK4 signaling-deficient mice exhibit a significant reduction of HCs and a hearing loss. We also identify MEKK4 as a critical hub kinase for FGF20-FGFR1 signaling to induce HC differentiation in the mammalian cochlea. These results reveal a new paradigm in the regulation of HC differentiation and provide significant new insights into the mechanism of Fgf signaling governing HC formation.
Collapse
|
19
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
20
|
Guglielmi V, Floris R, D'Adamo M, Garaci F, Novelli G, Sbraccia P. Massive obesity and hyperphagia in posterior bilateral periventricular heterotopias: case report. BMC MEDICAL GENETICS 2016; 17:18. [PMID: 26956990 PMCID: PMC4784440 DOI: 10.1186/s12881-016-0282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022]
Abstract
Background Bilateral posterior periventricular nodular heterotopia PNH is a complex malformation of cortical development with imaging features distinguishing it from classic bilateral PNH associated with filamin (FLNA) mutations. It distinctively consists of variably sized nodules of neurons along the trigones and temporal or occipital horns of the lateral ventricles and spectrum of developmental disorders of the mid-/hindbrain. This association suggests that pPNH is part of a more diffuse process of posterior or infrasylvian brain developmental abnormalities other than just a disorder of neuronal migration. Case presentation This report describes the first case of an Italian young girl featuring pPNH and severe hyperphagic obesity. At the time of our first examination at age 3 years of age she was severely obese (body mass index, BMI 45.9 Kg/m2) and food-seeking behavior in the free-living situation was reported by the relatives. She showed normal linear growth and cognition, but mildly dysmorphic facial traits including deeply-set eyes, prominent zygomatic bones, downturned mouth corners and low-set ears. Over the years, the patient progressively developed further massive weight gain (at age 9 years, her BMI was 60.4 Kg/m2) and hyperphagia was confirmed by an ad libitum test meal. During follow-up, she presented limitations in walking capacity and in physical functioning due to the disabling obesity. On the basis of distinctive neuro-radiological findings pPNH was diagnosed, in absence of history of seizures. Conclusion The present case may contribute to the expansion of the phenotypic expressions of this distinctive complex malformation.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Roberto Floris
- Diagnostic Imaging, University Hospital Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Monica D'Adamo
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Francesco Garaci
- Diagnostic Imaging, University Hospital Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Medical Genetics Unit, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy. .,Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Abstract
Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.
Collapse
|
22
|
Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex. Cell Rep 2015; 10:1349-61. [DOI: 10.1016/j.celrep.2015.01.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/17/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022] Open
|
23
|
Zhang L, Bartley CM, Gong X, Hsieh LS, Lin TV, Feliciano DM, Bordey A. MEK-ERK1/2-dependent FLNA overexpression promotes abnormal dendritic patterning in tuberous sclerosis independent of mTOR. Neuron 2015; 84:78-91. [PMID: 25277454 DOI: 10.1016/j.neuron.2014.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 12/17/2022]
Abstract
Abnormal dendritic complexity is a shared feature of many neurodevelopmental disorders associated with neurological defects. Here, we found that the actin-crosslinking protein filamin A (FLNA) is overexpressed in tuberous sclerosis complex (TSC) mice, a PI3K-mTOR model of neurodevelopmental disease that is associated with abnormal dendritic complexity. Both under- and overexpression of FLNA in wild-type neurons led to more complex dendritic arbors in vivo, suggesting that an optimal level of FLNA expression is required for normal dendritogenesis. In Tsc1(null) neurons, knocking down FLNA in vivo prevented dendritic abnormalities. Surprisingly, FLNA overexpression in Tsc1(null) neurons was dependent on MEK1/2 but not mTOR activity, despite both pathways being hyperactive. In addition, increasing MEK-ERK1/2 activity led to dendritic abnormalities via FLNA, and decreasing MEK-ERK1/2 signaling in Tsc1(null) neurons rescued dendritic defects. These data demonstrate that altered FLNA expression increases dendritic complexity and contributes to pathologic dendritic patterning in TSC in an mTOR-independent, ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 85 Xiangya Street, Changsha, 410008, China; Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Christopher M Bartley
- Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA; Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, 85 Xiangya Street, Changsha, 410008, China; Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Lawrence S Hsieh
- Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Tiffany V Lin
- Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - David M Feliciano
- Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | - Angélique Bordey
- Department of Neurosurgery and Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| |
Collapse
|
24
|
Mayilswami S, Krishnan K, Megharaj M, Naidu R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:288-297. [PMID: 25285771 DOI: 10.1016/j.ecoenv.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
PFOS is a toxic, persistent environmental pollutant which is widespread worldwide. PFOS contamination has entered the food chain and is interfering with normal development in man and is neurotoxic, hepatotoxic and tumorigenic. The earthworm, Eisenia fetida is one of the organisms which can help to diagnose soil health and contamination at lower levels in the food chain. Studying the chronic effects of sub-lethal PFOS exposure in such an organism is therefore appropriate. As PFOS bioaccumulates and is not easily biodegraded, it is biomagnified up the food chain. Gene expression studies will give us information to develop biomarkers for early diagnosis of soil contamination, well before this contaminant passes up the food chain. We have carried out mRNA sequencing of control and chronically PFOS exposed E. fetida and reconstructed the transcripts in silico and identified the differentially expressed genes. Our findings suggest that PFOS up/down regulates neurodegenerative-related human homologues and can cause neuronal damage in E. fetida. This information will help to understand the links between neurodegenerative disorders and environmental pollutants such as PFOS. Furthermore, these up/down regulated genes can be used as biomarkers to detect a sub-lethal presence of PFOS in soil. Neuronal calcium sensor-2, nucleoside diphosphate kinase, polyadenylate-binding protein-1 and mitochondrial Pyruvate dehydrogenase protein-X component, could be potential biomarkers for sub lethal concentrations of PFOS.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| |
Collapse
|
25
|
Komuro Y, Galas L, Lebon A, Raoult E, Fahrion JK, Tilot A, Kumada T, Ohno N, Vaudry D, Komuro H. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Dev Neurobiol 2014; 75:369-87. [PMID: 25066767 DOI: 10.1002/dneu.22219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 11/07/2022]
Abstract
In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.
Collapse
Affiliation(s)
- Yutaro Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 2014; 17:923-33. [DOI: 10.1038/nn.3729] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
|
27
|
Noam Y, Ehrengruber MU, Koh A, Feyen P, Manders EMM, Abbott GW, Wadman WJ, Baram TZ. Filamin A promotes dynamin-dependent internalization of hyperpolarization-activated cyclic nucleotide-gated type 1 (HCN1) channels and restricts Ih in hippocampal neurons. J Biol Chem 2014; 289:5889-903. [PMID: 24403084 PMCID: PMC3937658 DOI: 10.1074/jbc.m113.522060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/27/2013] [Indexed: 11/06/2022] Open
Abstract
The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response ("voltage-sag") of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.
Collapse
Affiliation(s)
- Yoav Noam
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Annie Koh
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| | | | - Erik M. M. Manders
- van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Geoffrey W. Abbott
- Pharmacology, University of California at Irvine, Irvine, California 92697-4475 and
| | | | - Tallie Z. Baram
- From the Departments of Anatomy/Neurobiology and Pediatrics and
| |
Collapse
|
28
|
Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal. BMC Genet 2013; 14:107. [PMID: 24176111 PMCID: PMC3818969 DOI: 10.1186/1471-2156-14-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Richard L Prince
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim D Spector
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| | - Frank Dudbridge
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| |
Collapse
|
29
|
Cappello S, Gray MJ, Badouel C, Lange S, Einsiedler M, Srour M, Chitayat D, Hamdan FF, Jenkins ZA, Morgan T, Preitner N, Uster T, Thomas J, Shannon P, Morrison V, Di Donato N, Van Maldergem L, Neuhann T, Newbury-Ecob R, Swinkells M, Terhal P, Wilson LC, Zwijnenburg PJG, Sutherland-Smith AJ, Black MA, Markie D, Michaud JL, Simpson MA, Mansour S, McNeill H, Götz M, Robertson SP. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet 2013; 45:1300-8. [DOI: 10.1038/ng.2765] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/26/2013] [Indexed: 02/08/2023]
|
30
|
Razinia Z, Baldassarre M, Cantelli G, Calderwood DA. ASB2α, an E3 ubiquitin ligase specificity subunit, regulates cell spreading and triggers proteasomal degradation of filamins by targeting the filamin calponin homology 1 domain. J Biol Chem 2013; 288:32093-105. [PMID: 24052262 DOI: 10.1074/jbc.m113.496604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Filamins are actin-binding and cross-linking proteins that organize the actin cytoskeleton and anchor transmembrane proteins to the cytoskeleton and scaffold signaling pathways. During hematopoietic cell differentiation, transient expression of ASB2α, the specificity subunit of an E3-ubiquitin ligase complex, triggers acute proteasomal degradation of filamins. This led to the proposal that ASB2α regulates hematopoietic cell differentiation by modulating cell adhesion, spreading, and actin remodeling through targeted degradation of filamins. Here, we show that the calponin homology domain 1 (CH1), within the filamin A (FLNa) actin-binding domain, is the minimal fragment sufficient for ASB2α-mediated degradation. Combining an in-depth flow cytometry analysis with mutagenesis of lysine residues within CH1, we find that arginine substitution at each of a cluster of three lysines (Lys-42, Lys-43, and Lys-135) renders FLNa resistant to ASB2α-mediated degradation without altering ASB2α binding. These lysines lie within previously predicted actin-binding sites, and the ASB2α-resistant filamin mutant is defective in targeting to F-actin-rich structures in cells. However, by swapping CH1 with that of α-actinin1, which is resistant to ASB2α-mediated degradation, we generated an ASB2α-resistant chimeric FLNa with normal subcellular localization. Notably, this chimera fully rescues the impaired cell spreading induced by ASB2α expression. Our data therefore reveal ubiquitin acceptor sites in FLNa and establish that ASB2α-mediated effects on cell spreading are due to loss of filamins.
Collapse
|
31
|
Itoh Y, Tyssowski K, Gotoh Y. Transcriptional coupling of neuronal fate commitment and the onset of migration. Curr Opin Neurobiol 2013; 23:957-64. [PMID: 23973158 DOI: 10.1016/j.conb.2013.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
During mammalian CNS development, when the neural precursor cells commit to the neuronal fate they must delaminate and migrate toward the pial surface in order to reach the appropriate final location. Thus, the coordination of delamination and fate commitment is important in creating the correct structure. Although previous studies have proposed that spindle orientation during mitosis plays a role in both delamination and fate commitment, thus coordinating these events, subsequent studies have challenged this model. Recent work has identified several transcriptional mechanisms associated with neurogenesis that inhibit cell adhesion of newborn neurons and intermediate neuronal progenitors, thereby triggering delamination and linking it with fate commitment.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | |
Collapse
|
32
|
Itoh Y, Moriyama Y, Hasegawa T, Endo TA, Toyoda T, Gotoh Y. Scratch regulates neuronal migration onset via an epithelial-mesenchymal transition-like mechanism. Nat Neurosci 2013; 16:416-25. [PMID: 23434913 DOI: 10.1038/nn.3336] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/23/2013] [Indexed: 12/15/2022]
Abstract
During neocortical development, the neuroepithelial or neural precursor cells that commit to neuronal fate need to delaminate and start migration toward the pial surface. However, the mechanism that couples neuronal fate commitment to detachment from the neuroepithelium remains largely unknown. Here we show that Scratch1 and Scratch2, members of the Snail superfamily of transcription factors, are expressed upon neuronal fate commitment under the control of proneural genes and promote apical process detachment and radial migration in the developing mouse neocortex. Scratch-induced delamination from the apical surface was mediated by transcriptional repression of the adhesion molecule E-cadherin. These findings suggest that Scratch proteins constitute a molecular link between neuronal fate commitment and the onset of neuronal migration. On the basis of their similarity to proteins involved in the epithelial-mesenchymal transition (EMT), we propose that Scratch proteins mediate the conversion of neuroepithelial cells to migrating neurons or intermediate neuronal progenitors through an EMT-related mechanism.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons. J Neurosci 2012; 32:12673-83. [PMID: 22972992 DOI: 10.1523/jneurosci.0016-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.
Collapse
|
34
|
Noam Y, Phan L, McClelland S, Manders EM, Ehrengruber MU, Wadman WJ, Baram TZ, Chen Y. Distinct regional and subcellular localization of the actin-binding protein filamin A in the mature rat brain. J Comp Neurol 2012; 520:3013-34. [PMID: 22434607 DOI: 10.1002/cne.23106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Filamin A (FLNa) is an actin-binding protein that regulates cell motility, adhesion, and elasticity by cross-linking filamentous actin. Additional roles of FLNa include regulation of protein trafficking and surface expression. Although the functions of FLNa during brain development are well studied, little is known on its expression, distribution, and function in the adult brain. Here we characterize in detail the neuroanatomical distribution and subcellular localization of FLNa in the mature rat brain, by using two antisera directed against epitopes at either the N' or the C' terminus of the protein, further validated by mRNA expression. FLNa was widely and selectively expressed throughout the brain, and the intensity of immunoreactivity was region dependent. The most intensely FLNa-labeled neurons were found in discrete neuronal systems, including basal forebrain structures, anterior nuclear group of thalamus, and hypothalamic parvocellular neurons. Pyramidal neurons in neocortex and hippocampus and magnocellular cells in basolateral amygdaloid nucleus were also intensely FLNa immunoreactive, and strong FLNa labeling was evident in the pontine and medullary raphe nuclei and in sensory and spinal trigeminal nuclei. The subcellular localization of FLNa was evaluated in situ as well as in primary hippocampal neurons. Punctate expression was found in somata and along the dendritic shaft, but FLNa was not detected in dendritic spines. These subcellular distribution patterns were recapitulated in hippocampal and neocortical pyramidal neurons in vivo. The characterization of the expression and subcellular localization of FLNa may provide new clues to the functional roles of this cytoskeletal protein in the adult brain.
Collapse
Affiliation(s)
- Yoav Noam
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697-4475, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
González G, Vedolin L, Barry B, Poduri A, Walsh C, Barkovich AJ. Location of periventricular nodular heterotopia is related to the malformation phenotype on MRI. AJNR Am J Neuroradiol 2012; 34:877-83. [PMID: 23064591 DOI: 10.3174/ajnr.a3312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Periventricular nodular heterotopia are common malformations of cortical development that are associated with many clinical syndromes and with many different neuroimaging phenotypes. The purpose of this study was to determine whether specific malformation phenotypes may be related to location, side, or number of PNH as assessed by MR imaging. MATERIALS AND METHODS MR images of 200 patients previously diagnosed with PNH were retrospectively analyzed. PNH were classified according to their location along the ventricles (anterior, posterior, or diffuse), side (unilateral or bilateral), and number of nodules (<5, 6-10, or >10). The cerebrum, brain stem and cerebellum were analyzed to assess associated anomalies. Associations between PNH location and the presence of other anomalies were tested by using Fisher exact test and χ2 test. RESULTS Posterior PNH were significantly associated with malformations of the cerebral cortex, diminished white matter volume, and mid-/hindbrain anomalies. Diffuse PNH were associated with diminished white matter volume, callosal "anomalies," and the presence of megacisterna magna. Unilateral PNH were strongly associated with cortical malformations. CONCLUSIONS Certain malformation complexes are associated with PNH in specific locations: posterior PNH with cerebral cortical and mid-/hindbrain malformations and diffuse PNH with callosal anomalies and megacisterna magna. Knowledge of these associations should allow more directed analyses of brain MR imaging in patients with PNH. In addition, knowledge of these associations may help to direct studies to elucidate the causes of these malformation complexes.
Collapse
Affiliation(s)
- G González
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Guiet R, Vérollet C, Lamsoul I, Cougoule C, Poincloux R, Labrousse A, Calderwood DA, Glogauer M, Lutz PG, Maridonneau-Parini I. Macrophage mesenchymal migration requires podosome stabilization by filamin A. J Biol Chem 2012; 287:13051-62. [PMID: 22334688 PMCID: PMC3339984 DOI: 10.1074/jbc.m111.307124] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/08/2012] [Indexed: 11/06/2022] Open
Abstract
Filamin A (FLNa) is a cross-linker of actin filaments and serves as a scaffold protein mostly involved in the regulation of actin polymerization. It is distributed ubiquitously, and null mutations have strong consequences on embryonic development in humans, with organ defects which suggest deficiencies in cell migration. We have reported previously that macrophages, the archetypal migratory cells, use the protease- and podosome-dependent mesenchymal migration mode in dense three-dimensional environments, whereas they use the protease- and podosome-independent amoeboid mode in more porous matrices. Because FLNa has been shown to localize to podosomes, we hypothesized that the defects seen in patients carrying FLNa mutations could be related to the capacity of certain cell types to form podosomes. Using strategies based on FLNa knock-out, knockdown, and rescue, we show that FLNa (i) is involved in podosome stability and their organization as rosettes and three-dimensional podosomes, (ii) regulates the proteolysis of the matrix mediated by podosomes in macrophages, (iii) is required for podosome rosette formation triggered by Hck, and (iv) is necessary for mesenchymal migration but dispensable for amoeboid migration. These new functions assigned to FLNa, particularly its role in mesenchymal migration, could be directly related to the defects in cell migration described during the embryonic development in FLNa-defective patients.
Collapse
Affiliation(s)
- Romain Guiet
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Christel Vérollet
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Isabelle Lamsoul
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Céline Cougoule
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Renaud Poincloux
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Arnaud Labrousse
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - David A. Calderwood
- the Department of Pharmacology and Cell Biology and Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Michael Glogauer
- the CIHR Group in Matrix Dynamics, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Pierre G. Lutz
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| | - Isabelle Maridonneau-Parini
- From the CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Unité Mixte de Recherche 5089, 205 route de Narbonne, Toulouse, France
- Université de Toulouse, Université Paul Sabatier (UPS), IPBS, 31077 Toulouse, France
| |
Collapse
|
37
|
Manent JB, Beguin S, Ganay T, Represa A. Cell-autonomous and cell-to-cell signalling events in normal and altered neuronal migration. Eur J Neurosci 2012; 34:1595-608. [PMID: 22103417 DOI: 10.1111/j.1460-9568.2011.07867.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cerebral cortex is a complex six-layered structure that contains an important diversity of neurons, and has rich local and extrinsic connectivity. Among the mechanisms governing the cerebral cortex construction, neuronal migration is perhaps the most crucial as it ensures the timely formation of specific and selective neuronal circuits. Here, we review the main extrinsic and extrinsic factors involved in regulating neuronal migration in the cortex and describe some environmental factors interfering with their actions.
Collapse
|
38
|
Abstract
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
39
|
Light stimuli control neuronal migration by altering of insulin-like growth factor 1 (IGF-1) signaling. Proc Natl Acad Sci U S A 2012; 109:2630-5. [PMID: 22308338 DOI: 10.1073/pnas.1111326109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of genetic inheritance in brain development has been well characterized, but little is known about the contributions of natural environmental stimuli, such as the effect of light-dark cycles, to brain development. In this study, we determined the role of light stimuli in neuronal cell migration to elucidate how environmental factors regulate brain development. We show that in early postnatal mouse cerebella, granule cell migration accelerates during light cycles and decelerates during dark cycles. Furthermore, cerebellar levels of insulin-like growth factor 1 (IGF-1) are high during light cycles and low during dark cycles. There are causal relationships between light-dark cycles, speed of granule cell migration, and cerebellar IGF-1 levels. First, changes in light-dark cycles result in corresponding changes in the fluctuations of both speed of granule cell migration and cerebellar IGF-1 levels. Second, in vitro studies indicate that exogenous IGF-1 accelerates the migration of isolated granule cells through the activation of IGF-1 receptors. Third, in vivo studies reveal that inhibiting the IGF-1 receptors decelerates granule cell migration during light cycles (high IGF-1 levels) but does not alter migration during dark cycles (low IGF-1 levels). In contrast, stimulating the IGF-1 receptors accelerates granule cell migration during dark cycles (low IGF-1 levels) but does not alter migration during light cycles (high IGF-1 levels). These results suggest that during early postnatal development light stimuli control granule cell migration by altering the activity of IGF-1 receptors through modification of cerebellar IGF-1 levels.
Collapse
|
40
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
41
|
Zheng L, Michelson Y, Freger V, Avraham Z, Venken KJT, Bellen HJ, Justice MJ, Wides R. Drosophila Ten-m and filamin affect motor neuron growth cone guidance. PLoS One 2011; 6:e22956. [PMID: 21857973 PMCID: PMC3152545 DOI: 10.1371/journal.pone.0022956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/03/2011] [Indexed: 12/11/2022] Open
Abstract
The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression.
Collapse
Affiliation(s)
- Lihua Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yehudit Michelson
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Vita Freger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ziva Avraham
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Koen J. T. Venken
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Department of Neuroscience, and Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (RW); (MJJ)
| | - Ron Wides
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (RW); (MJJ)
| |
Collapse
|
42
|
Sutherland-Smith AJ. Filamin structure, function and mechanics: are altered filamin-mediated force responses associated with human disease? Biophys Rev 2011; 3:15-23. [PMID: 28510233 DOI: 10.1007/s12551-011-0042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023] Open
Abstract
The cytoskeleton framework is essential not only for cell structure and stability but also for dynamic processes such as cell migration, division and differentiation. The F-actin cytoskeleton is mechanically stabilised and regulated by various actin-binding proteins, one family of which are the filamins that cross-link F-actin into networks that greatly alter the elastic properties of the cytoskeleton. Filamins also interact with cell membrane-associated extracellular matrix receptors and intracellular signalling proteins providing a potential mechanism for cells to sense their external environment by linking these signalling systems. The stiffness of the external matrix to which cells are attached is an important environmental variable for cellular behaviour. In order for a cell to probe matrix stiffness, a mechanosensing mechanism functioning via alteration of protein structure and/or binding events in response to external tension is required. Current structural, mechanical, biochemical and human disease-associated evidence suggests filamins are good candidates for a role in mechanosensing.
Collapse
Affiliation(s)
- Andrew J Sutherland-Smith
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
43
|
Higginbotham H, Yokota Y, Anton ES. Strategies for analyzing neuronal progenitor development and neuronal migration in the developing cerebral cortex. ACTA ACUST UNITED AC 2010; 21:1465-74. [PMID: 21078821 DOI: 10.1093/cercor/bhq197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on 1) neural progenitor differentiation, which leads to the generation of appropriate number and types of neurons, and 2) neuronal migration, which enables the appropriate positioning of neurons so that the correct patterns of functional synaptic connectivity between neurons can emerge. In this review, we discuss 1) currently available methods to study neural progenitor development and differentiation in the developing cerebral cortex and emerging technologies in this regard, 2) assays to study the migration of descendents of progenitors (i.e., neurons) in vitro and in vivo, and 3) the use of these assays to probe the molecular control of these events in the developing brain and evaluation of gene functions disrupted in human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Holden Higginbotham
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
44
|
Abstract
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| | | | | | | |
Collapse
|
45
|
Mullin JP, Van Gompel JJ, Lee KH, Meyer FB, Stead M. Surgically treated movement disorders associated with heterotopia: report of 2 cases. J Neurosurg Pediatr 2010; 6:267-72. [PMID: 20809711 DOI: 10.3171/2010.5.peds10220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotopic gray matter has been implicated in epilepsy; however, not much is known regarding heterotopia beyond epilepsy. Here, the authors describe 2 pediatric patients with deep heterotopias contiguous with basal ganglia structures. These heterotopias appear to have manifested as movement disorders. One patient presented with a left-sided myoclonus and choreiform movements associated with a right caudate heterotopia; she experienced vast improvement after resection of periventricular heterotopia. The other patient presented with progressive dystonia and a ballistic movement disorder. Initial bilateral globus pallidus internus stimulation resulted in successful treatment of the dystonia; however, her movement disorder worsened. After an extensive workup, including STATISCOM (statistical ictal SPECT coregistered to MR imaging), the patient underwent cortical stimulation with improvement in her movement disorder. To the best of our knowledge, these cases are the first reported instances of heterotopic gray matter associated with movement disorders. Both patients experienced significant improvements following resection of their heterotopias.
Collapse
Affiliation(s)
- Jeffrey P Mullin
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
46
|
Marchetti G, Escuin S, van der Flier A, De Arcangelis A, Hynes RO, Georges-Labouesse E. Integrin alpha5beta1 is necessary for regulation of radial migration of cortical neurons during mouse brain development. Eur J Neurosci 2010; 31:399-409. [PMID: 20105241 PMCID: PMC3460545 DOI: 10.1111/j.1460-9568.2009.07072.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During cerebral cortex development, post-mitotic neurons interact with radial glial fibers and the extracellular environment to migrate away from the ventricular region and form a correct laminar structure. Integrin receptors are major mediators of cell–cell and cell–extracellular matrix interactions. Several integrin heterodimers are present during formation of the cortical layers. The α5β1 receptor is expressed in the neural progenitors of the ventricular zone during cerebral cortex formation. Using in utero electroporation to introduce short hairpin RNAs in the brain at embryonic day 15.5, we were able to inhibit acutely the expression of α5 integrin in the developing cortex. The knockdown of α5 integrin expression level in neural precursors resulted in an inhibition of radial migration, without perturbing the glial scaffold. Moreover, the same inhibitory effect on neuronal migration was observed after electroporation of a Cre recombinase expression plasmid into the neural progenitors of conditional knockout mice for α5 integrin. In both types of experiments, the electroporated cells expressing reduced levels of α5 integrin accumulated in the premigratory region with an abnormal morphology. At postnatal day 2, ectopic neurons were observed in cortical layer V, while a deficit of neurons was observed in cortical layer II–IV. We show that these neurons do not express a layer V-specific marker, suggesting that they have not undergone premature differentiation. Overall, these results indicate that α5β1 integrin functions in the regulation of neural morphology and migration during cortical development, playing a role in cortical lamination.
Collapse
Affiliation(s)
- Giovanni Marchetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Cell Biology and Development, CNRS UMR7104, Inserm U964, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | | | |
Collapse
|
47
|
Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci 2010; 33:38-47. [DOI: 10.1016/j.tins.2009.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
|
48
|
Clark AR, Sawyer GM, Robertson SP, Sutherland-Smith AJ. Skeletal dysplasias due to filamin A mutations result from a gain-of-function mechanism distinct from allelic neurological disorders†. Hum Mol Genet 2009; 18:4791-800. [DOI: 10.1093/hmg/ddp442] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Sawyer GM, Clark AR, Robertson SP, Sutherland-Smith AJ. Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: Insights from the crystal structures of filamin B actin binding domains. J Mol Biol 2009; 390:1030-47. [PMID: 19505475 DOI: 10.1016/j.jmb.2009.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Missense mutations in filamin B (FLNB) are associated with the autosomal dominant atelosteogenesis (AO) and the Larsen group of skeletal malformation disorders. These mutations cluster in particular FLNB protein domains and act in a presumptive gain-of-function mechanism. In contrast the loss-of-function disorder, spondylocarpotarsal synostosis syndrome, is characterised by the complete absence of FLNB. One cluster of AO missense mutations is found within the second of two calponin homology (CH) domains that create a functional actin-binding domain (ABD). This N-terminal ABD is required for filamin F-actin crosslinking activity, a crucial aspect of filamin's role of integrating cell-signalling events with cellular scaffolding and mechanoprotection. This study characterises the wild type FLNB ABD and investigates the effects of two disease-associated mutations on the structure and function of the FLNB ABD that could explain a gain-of-function mechanism for the AO diseases. We have determined high-resolution X-ray crystal structures of the human filamin B wild type ABD, plus W148R and M202V mutants. All three structures display the classic compact monomeric conformation for the ABD with the CH1 and CH2 domains in close contact. The conservation of tertiary structure in the presence of these mutations shows that the compact ABD conformation is stable to the sequence substitutions. In solution the mutant ABDs display reduced melting temperatures (by 6-7 degrees C) as determined by differential scanning fluorimetry. Characterisation of the wild type and mutant ABD F-actin binding activities via co-sedimentation assays shows that the mutant FLNB ABDs have increased F-actin binding affinities, with dissociation constants of 2.0 microM (W148R) and 0.56 microM (M202V), compared to the wild type ABD K(d) of 7.0 microM. The increased F-actin binding affinity of the mutants presents a biochemical mechanism that differentiates the autosomal dominant gain-of-function FLNB disorders from those that arise through the complete loss of FLNB protein.
Collapse
Affiliation(s)
- Gregory M Sawyer
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
50
|
Decision by division: making cortical maps. Trends Neurosci 2009; 32:291-301. [PMID: 19380167 DOI: 10.1016/j.tins.2009.01.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 11/22/2022]
Abstract
In the past three decades, mounting evidence has revealed that specification of the basic cortical neuronal classes starts at the time of their final mitotic divisions in the embryonic proliferative zones. This early cell determination continues during the migration of the newborn neurons across the widening cerebral wall, and it is in the cortical plate that they attain their final positions and establish species-specific cytoarchitectonic areas. Here, the development and evolutionary expansion of the neocortex is viewed in the context of the radial unit and protomap hypotheses. A broad spectrum of findings gave insight into the pathogenesis of cortical malformations and the biological bases for the evolution of the modern human neocortex. We examine the history and evidence behind the concept of early specification of neurons and provide the latest compendium of genes and signaling molecules involved in neuronal fate determination and specification.
Collapse
|