1
|
Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal 2024; 22:421. [PMID: 39215343 PMCID: PMC11365204 DOI: 10.1186/s12964-024-01791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as β-amyloid (Aβ), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, 4A Chodzki St., Lublin, 20-093, Poland
- Department of Biochemistry and Toxicology, University of Life Sciences, 13 Akademicka St, Lublin, 20-950, Poland
| |
Collapse
|
2
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered microtubule-associated protein-IDR condensates. J Biol Chem 2024; 300:107544. [PMID: 38992434 PMCID: PMC11342785 DOI: 10.1016/j.jbc.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Microtubule filaments are assembled into higher-order structures using microtubule-associated proteins. However, synthetic MAPs that direct the formation of new structures are challenging to design, as nanoscale biochemical activities must be organized across micron length-scales. Here, we develop modular MAP-IDR condensates (synMAPs) that enable inducible assembly of higher-order microtubule structures for synthetic exploration in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity we show can be rewired by interaction with unrelated condensate-forming IDR sequences. This combination is sufficient to allow synMAPs to self-organize multivalent structures that bind and bridge microtubules into higher-order architectures. By regulating the connection between the microtubule-binding domain and condensate-forming components of a synMAP, the formation of these structures can be triggered by small molecules or cell-signaling inputs. We systematically test a panel of synMAP circuit designs to define how the assembly of these synthetic microtubule structures can be controlled at the nanoscale (via microtubule-binding affinity) and microscale (via condensate formation). synMAPs thus provide a modular starting point for the design of higher-order microtubule systems and an experimental testbed for exploring condensate-directed mechanisms of higher-order microtubule assembly from the bottom-up.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Folke J, Skougaard M, Korsholm TL, Laursen ALS, Salvesen L, Hejl AM, Bech S, Løkkegaard A, Brudek T, Ditlev SB, Aznar S. Assessing serum anti-nuclear antibodies HEp-2 patterns in synucleinopathies. Immun Ageing 2024; 21:49. [PMID: 39026277 PMCID: PMC11256463 DOI: 10.1186/s12979-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the presence of antinuclear antibodies (ANA) in three primary synucleinopathies - Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), compared to healthy controls. Autoinflammatory disorders typically involve the immune system mistakenly attacking the body's own cells and start producing ANA. There is an increasing body of evidence that immune-mediated inflammation is a pathological feature linked to synucleinopathies. To investigate whether this could be autoimmune mediated we analyzed for ANA in the plasma of 25 MSA, 25 PD, and 17 DLB patients, along with 25 healthy controls, using the ANA HEp-2 indirect immunofluorescence antibody assay (ANA HEp-2 IFA). Contrary to initial expectations, results showed ANA HEp-2 positivity in 12% of PD, 8% of MSA patients, 18% of DLB patients, and 17% of healthy controls, indicating no increased prevalence of ANA in synucleinopathies compared to age-matched healthy individuals. Various ANA HEp-2 patterns were identified, but no specific pattern was associated with individual synucleinopathies. We conclude hereby that synucleinopathies are not associated with detectable presence of ANA in plasma.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Skougaard
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine-Line Korsholm
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
4
|
Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of Amyloidogenic and Non-Amyloidogenic Protein Spaces in Neurodegenerative Diseases and their Mitigation Using Theranostic Agents. Chembiochem 2024; 25:e202400224. [PMID: 38668376 DOI: 10.1002/cbic.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Mansi Bhandari
- Department of computer science and engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062
| | - Vishakha Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Virendra Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
5
|
Yu Z, Zheng Y, Cai H, Li S, Liu G, Kou W, Yang C, Cao S, Chen L, Liu X, Wan Z, Zhang N, Li X, Cui G, Chang Y, Huang Y, Lv H, Feng T. Molecular beacon-based detection of circulating microRNA-containing extracellular vesicle as an α-synucleinopathy biomarker. SCIENCE ADVANCES 2024; 10:eadl6442. [PMID: 38748787 PMCID: PMC11095448 DOI: 10.1126/sciadv.adl6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Early and precise diagnosis of α-synucleinopathies is challenging but critical. In this study, we developed a molecular beacon-based assay to evaluate microRNA-containing extracellular vesicles (EVs) in plasma. We recruited 1203 participants including healthy controls (HCs) and patients with isolated REM sleep behavior disorder (iRBD), α-synucleinopathies, or non-α-synucleinopathies from eight centers across China. Plasma miR-44438-containing EV levels were significantly increased in α-synucleinopathies, including those in the prodromal stage (e.g., iRBD), compared to both non-α-synucleinopathy patients and HCs. However, there are no significant differences between Parkinson's disease (PD) and multiple system atrophy. The miR-44438-containing EV levels negatively correlated with age and the Hoehn and Yahr stage of PD patients, suggesting a potential association with disease progression. Furthermore, a longitudinal analysis over 16.3 months demonstrated a significant decline in miR-44438-containing EV levels in patients with PD. These results highlight the potential of plasma miR-44438-containing EV as a biomarker for early detection and progress monitoring of α-synucleinopathies.
Collapse
Affiliation(s)
- Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Genliang Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuangshuang Cao
- Department of Neurology, Yidu Central Hospital of Weifang, Shandong, China
| | - Lei Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Xuedong Liu
- Department of Neurology, Fourth Military Medical University, Xi’an, China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- Department of Neurology, Dalian Friendship Hospital, Dalian, China
| | - Guiyun Cui
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Huang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Human Brain and Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Hong Lv
- Department of Clinical Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Melki R. Disease Mechanisms of Multiple System Atrophy: What a Parallel Between the Form of Pasta and the Alpha-Synuclein Assemblies Involved in MSA and PD Tells Us. CEREBELLUM (LONDON, ENGLAND) 2024; 23:13-21. [PMID: 35657577 PMCID: PMC10864476 DOI: 10.1007/s12311-022-01417-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Intracellular deposits rich in aggregated alpha-synuclein that appear within the central nervous system are intimately associated to Parkinson's disease and multiple system atrophy. While it is understandable that the aggregation of proteins, which share no primary structure identity, such as alpha-synuclein and tau protein, leads to different diseases, that of a given protein yielding distinct pathologies is counterintuitive. This short review relates molecular and mechanistic processes to the observed pathological diversity associated to alpha-synuclein aggregation.
Collapse
Affiliation(s)
- Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
| |
Collapse
|
7
|
Lin L, Cheng Y, Huang P, Zhang J, Zheng J, Pan X. Synchronous monitoring of brain-heart electrophysiology using heart rate variability coupled with rapid quantitative electroencephalography in orthostatic hypotension patients with α-synucleinopathies: Rapid prediction of orthostatic hypotension and preliminary exploration of brain stimulation therapy. CNS Neurosci Ther 2024; 30:e14571. [PMID: 38421092 PMCID: PMC10850923 DOI: 10.1111/cns.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In α-synucleinopathies, the dysfunction of the autonomic nervous system which typically manifests as orthostatic hypotension (OH) often leads to severe consequences and poses therapeutic challenges. This study aims to discover the brain-cardiac electrophysiological changes in OH patients with α-synucleinopathies using the rapid quantitative electroencephalography (qEEG) coupled with heart rate variability (HRV) technique to identify rapid, noninvasive biomarkers for early warning and diagnosis, as well as shed new light on complementary treatment approaches such as brain stimulation targets. METHODS In this study, 26 subjects of α-synucleinopathies with OH (α-OH group), 21 subjects of α-synucleinopathies without OH (α-NOH group), and 34 healthy controls (control group) were included from September 2021 to August 2023 (NCT05527067). The heart rate-blood pressure variations in supine and standing positions were monitored, and synchronization parameters of seated resting-state HRV coupled with qEEG were collected. Time-domain and frequency-domain of HRV measures as well as peak frequency and power of the brainwaves were extracted. Differences between these three groups were compared, and correlations between brain-heart parameters were analyzed. RESULTS The research results showed that the time-domain parameters such as MxDMn, pNN50, RMSSD, and SDSD of seated resting-state HRV exhibited a significant decrease only in the α-OH group compared to the healthy control group (p < 0.05), while there was no significant difference between the α-NOH group and the healthy control group. Several time-domain and frequency-domain parameters of seated resting-state HRV were found to be correlated with the blood pressure changes within the first 5 min of transitioning from supine to standing position (p < 0.05). Differences were observed in the power of beta1 waves (F4 and Fp2) and beta2 waves (Fp2 and F4) in the seated resting-state qEEG between the α-OH and α-NOH groups (p < 0.05). The peak frequency of theta waves in the Cz region also showed a difference (p < 0.05). The power of beta2 waves in the Fp2 and F4 brain regions correlated with frequency-domain parameters of HRV (p < 0.05). Additionally, abnormal electrical activity in the alpha, theta, and beta1 waves was associated with changes in heart rate and blood pressure within the first 5 min of transitioning from supine to standing position (p < 0.05). CONCLUSION Rapid resting-state HRV with certain time-domain parameters below normal levels may serve as a predictive indicator for the occurrence of orthostatic hypotension (OH) in patients with α-synucleinopathies. Additionally, the deterioration of HRV parameters correlates with synchronous abnormal qEEG patterns, which can provide insights into the brain stimulation target areas for OH in α-synucleinopathy patients.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Peilin Huang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
- Center for GeriatricsHainan General HospitalHaikou CityHainan ProvinceChina
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| |
Collapse
|
8
|
Corbin-Stein NJ, Childers GM, Webster JM, Zane A, Yang YT, Mudium N, Gupta R, Manfredsson FP, Kordower JH, Harms AS. IFNγ drives neuroinflammation, demyelination, and neurodegeneration in a mouse model of multiple system atrophy. Acta Neuropathol Commun 2024; 12:11. [PMID: 38238869 PMCID: PMC10797897 DOI: 10.1186/s40478-023-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.
Collapse
Affiliation(s)
- Nicole J Corbin-Stein
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Gabrielle M Childers
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Jhodi M Webster
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Asta Zane
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Ya-Ting Yang
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Nikhita Mudium
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Rajesh Gupta
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ashley S Harms
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1719 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
9
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532644. [PMID: 38105997 PMCID: PMC10723337 DOI: 10.1101/2023.03.14.532644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Scott M. Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
10
|
Wang Z, Mo J, Zhang J, Feng T, Zhang K. Surface-Based Neuroimaging Pattern of Multiple System Atrophy. Acad Radiol 2023; 30:2999-3009. [PMID: 37495425 DOI: 10.1016/j.acra.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 07/28/2023]
Abstract
RATIONALE AND OBJECTIVES Overlapping parkinsonism, cerebellar ataxia, and pyramidal signs render challenges in the clinical diagnosis of multiple system atrophy (MSA). The neuroimaging pattern is valuable to understand its pathophysiology and improve its diagnostic effect. MATERIALS AND METHODS We retrospectively obtained magnetic resonance imaging and susceptibility-weighted imaging in patients with MSA (including parkinsonian type [MSA-P] and cerebellar type [MSA-C]), Parkinson's disease, and normal controls. We quantified neuroimaging features to identify the optimal threshold for diagnosis. Furthermore, we explore neuroimaging patterns of MSA by mapping the subcortical morphological alterations and constructing a diagnostic model. RESULTS Compared to controls, normalized putaminal volume significantly decreased in patients with MSA-P (P < .001) and normalized pontine volume significantly decreased in patients with MSA-C (P < .001). The Youden index of the threshold-based clinical prediction model was 0.871-0.928 in patients with MSA. The neuroimaging pattern in patients with MSA was jointly located in the lateral putamen, and the neuroimaging pattern prediction model achieved a classification accuracy of 83.9%-100%. CONCLUSION The quantitative neuroimaging features and surface-based morphologic anomalies represent the markers of MSA and open new avenues for personalized clinical diagnosis.
Collapse
Affiliation(s)
- Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.).
| |
Collapse
|
11
|
Wei J, Ho G, Masliah E, Hashimoto M. Differential involvement of amyloidogenic evolvability in oligodendropathies; Multiple Sclerosis and Multiple System Atrophy. Prion 2023; 17:29-34. [PMID: 36785484 PMCID: PMC9928476 DOI: 10.1080/19336896.2023.2172912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Although multiple sclerosis (MS) and multiple system atrophy (MSA) are both characterized by impaired oligodendrocytes (OLs), the aetiological relevance remains obscure. Given inherent stressors affecting OLs, the objective of the present study was to discuss the possible role of amyloidogenic evolvability (aEVO) in these conditions. Hypothetically, in aEVO, protofibrils of amyloidogenic proteins (APs), including β-synuclein and β-amyloid, might form in response to diverse stressors in parental brain. Subsequently, the AP protofibrils might be transmitted to offspring via germ cells in a prion-like fashion. By virtue of the stress information conferred by protofibrillar APs, the OLs in offspring's brain might be more resilient to forthcoming stressors, perhaps reducing MS risk. aEVO could be comparable to a gene for the inheritance of acquired characteristics. On the contrary, during ageing, MSA risk is increased through antagonistic pleiotropy. Consistently, the expression levels of APs are reduced in MS, but are increased in MSA compared to controls. Furthermore, β-synuclein, the non-amyloidogenic homologue of β-synuclein, might exert a buffering effect on aEVO, and abnormal β-synuclein could also increase MS and MSA disease activity. Collectively, a better understanding of the role of aEVO in the OL diseases might lead to novel interventions for such chronic degenerative conditions.
Collapse
Affiliation(s)
- Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, China,CONTACT Jianshe Wei Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Gilbert Ho
- Pacific Center for Neurological Disease (PCND) Neuroscience Research Institute, Poway, CA, USA
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan,Makoto Hashimoto Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo156-0057
| |
Collapse
|
12
|
Tamura M, Takeda T, Kitayama Y, Suichi T, Shibuya K, Harada-Kagitani S, Kishimoto T, Kuwabara S, Hirano S. Neuropathological features of levodopa-responsive parkinsonism in multiple system atrophy: an autopsy case report and comparative neuropathological study. Front Neurol 2023; 14:1293732. [PMID: 38033780 PMCID: PMC10682068 DOI: 10.3389/fneur.2023.1293732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Background In typical patients with multiple system atrophy with predominant parkinsonism (MSA-P) levodopa is ineffective. However, there are some of these patients who respond well to levodopa treatment. Levodopa efficacy in MSA-P patients is thought to be related to the degree of putaminal damage, but the pathological causation between the putaminal involvement and levodopa efficacy has not been established in detail. Objective This study aimed to evaluate the neuropathological features of the nigrostriatal dopaminergic system in a "levodopa-responsive" MSA-P patient in comparison with "levodopa-unresponsive" conventional MSA-P patients. Materials and methods Clinicopathological findings were assessed in a 53-year-old Japanese man with MSA who presented with asymmetric parkinsonism, levodopa response, and later wearing-off phenomenon. During autopsy, the nigrostriatal pathology of presynaptic and postsynaptic dopaminergic receptor density and α-synuclein status were investigated. The other two patients with MSA-P were examined using the same pathological protocol. Results Four years after the onset, the patient died of sudden cardiopulmonary arrest. On autopsy, numerous α-synuclein-positive glial cytoplasmic inclusions in the basal ganglia, pons, and cerebellum were identified. The number of neurons in the putamen and immunoreactivity for dopamine receptors were well-preserved. In contrast, significant neuronal loss and decreased dopamine receptor immunoreactivity in the putamen were observed in the "levodopa-unresponsive" MSA-P control patients. These putaminal pathology results were consistent with the findings of premortem magnetic resonance imaging (MRI). All three patients similarly exhibited severe neuronal loss in the substantia nigra and decreased immunoreactivity for dopamine transporter. Conclusion Levodopa responsiveness in patients with MSA-P may be corroborated by the normal putamen on MRI and the preserved postsynaptic nigrostriatal dopaminergic system on pathological examination. The results presented in this study may provide a rationale for continuation of levodopa treatment in patients diagnosed with MSA-P.
Collapse
Affiliation(s)
- Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Takeda
- Department of Neurology, National Hospital Organization Chiba Higashi Hospital, Chiba, Japan
| | - Yoshihisa Kitayama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoki Suichi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Yang N, Qi X, Hu J, Teng J, Wang Y, Li C. Exploring the mechanism of astragalus membranaceus in the treatment of multiple system atrophy based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e32523. [PMID: 36749251 PMCID: PMC9901982 DOI: 10.1097/md.0000000000032523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease, it causes functional degradation of multiple organs and systems throughout the body. Astragalus membranaceus (AM), a well-known traditional Chinese medicine, has been used to improve muscle wasting-related disorders for a long history. In this study, we used network pharmacology and molecular docking to predict the mechanism underlying AM for the treatment of MSA. We screened the active compounds of AM and its related targets, as well as the target proteins of MSA. We made a Venn diagram to obtain the intersecting targets and then constructed a protein-protein interaction network to find the core targets and build an active ingredient-target network map. After subjecting the intersecting targets to gene ontology and Kyoto encyclopedia of genes and genomes analysis, the binding ability of core compounds and core target proteins were validated by molecular docking. A total of 20 eligible compounds and 274 intersecting targets were obtained. The core components of treatment are quercetin, kaempferol, and isorhamnetin, and the core targets are TP53, RELA, and TNF. The main biological processes are related to cellular responses and regulation. Molecular functions are mainly associated with apoptosis, inflammation, and tumorigenesis. Molecular docking results show good and standard binding abilities. This study illustrates that AM treats MSA through multiple targets and pathways, and provides a reference for subsequent research.
Collapse
Affiliation(s)
- Ni Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Hu
- Shandong Public Health Clinical Center, Jinan, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuangeng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunlin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Du J, Cui S, Huang P, Gao C, Zhang P, Liu J, Li H, Huang M, Shen X, Liu Z, Chen Z, Tan Y, Chen S. Predicting the Prognosis of Multiple System Atrophy Using Cluster and Principal Component Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:937-946. [PMID: 37522217 PMCID: PMC10578219 DOI: 10.3233/jpd-225127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Multiple system atrophy (MSA) is an intractable neurodegenerative disorder with poorly understanding of prognostic factors. OBJECTIVE The purpose of this retrospective longitudinal study was to explore the main predictors of survival of MSA patients with new clinical subtypes based on cluster analysis. METHODS A total of 153 Chinese MSA patients were recruited in our study. The basic demographic data and motor and nonmotor symptoms were assessed. Cluster and principal component analysis (PCA) were used to eliminate collinearity and search for new clinical subtypes. The multivariable Cox regression was used to find factors associated with survival in MSA patients. RESULTS The median survival time from symptom onset to death (estimated using data from all patients by Kaplan-Meier analysis) was 6.3 (95% CI = 6.1-6.7) years. The survival model showed that a shorter survival time was associated with motor principal component (PC)1 (HR = 1.71, 95% CI: 1.26-2.30, p < 0.001) and nonmotor PC3 (HR = 1.68, 95% CI: 1.31-2.10, p < 0.001) through PCA. Four clusters were identified: Cluster 1 (mild), Cluster 2 (mood disorder-dominant), Cluster 3 (axial symptoms and cognitive impairment-dominant), and Cluster 4 (autonomic failure-dominant). Multivariate Cox regression indicated that Cluster 3 (HR = 4.15, 95% CI: 1.73-9.90, p = 0.001) and Cluster 4 (HR = 4.18, 95% CI: 1.73-10.1, p = 0.002) were independently associated with shorter survival time. CONCLUSION More serious motor symptoms, axial symptoms such as falls and dysphagia, orthostatic hypotension, and cognitive impairment were associated with poor survival in MSA via PCA and cluster analysis.
Collapse
Affiliation(s)
- Juanjuan Du
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingchen Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixian Liu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Chen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Matsushita H, Fukunari A, Sameshima G, Okada M, Inoue F, Ueda M, Ando Y. Suppression of amyloid fibril formation by UV irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Cheng A, Wang YF, Shinoda Y, Kawahata I, Yamamoto T, Jia WB, Yamamoto H, Mizobata T, Kawata Y, Fukunaga K. Fatty acid-binding protein 7 triggers α-synuclein oligomerization in glial cells and oligodendrocytes associated with oxidative stress. Acta Pharmacol Sin 2022; 43:552-562. [PMID: 33935286 PMCID: PMC8888578 DOI: 10.1038/s41401-021-00675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
We previously show that fatty acid-binding protein 3 (FABP3) triggers α-synuclein (Syn) accumulation and induces dopamine neuronal cell death in Parkinson disease mouse model. But the role of fatty acid-binding protein 7 (FABP7) in the brain remains unclear. In this study we investigated whether FABP7 was involved in synucleinopathies. We showed that FABP7 was co-localized and formed a complex with Syn in Syn-transfected U251 human glioblastoma cells, and treatment with arachidonic acid (100 M) significantly promoted FABP7-induced Syn aggregation, which was associated with cell death. We demonstrated that synthetic FABP7 ligand 6 displayed a high affinity against FABP7 with Kd value of 209 nM assessed in 8-anilinonaphthalene-1-sulfonic acid (ANS) assay; ligand 6 improved U251 cell survival via disrupting the FABP7-Syn interaction. We showed that activation of phospholipase A2 (PLA2) by psychosine (10 M) triggered oligomerization of endogenous Syn and FABP7, and induced cell death in both KG-1C human oligodendroglia cells and oligodendrocyte precursor cells (OPCs). FABP7 ligand 6 (1 M) significantly decreased Syn oligomerization and aggregation thereby prevented KG-1C and OPC cell death. This study demonstrates that FABP7 triggers α-synuclein oligomerization through oxidative stress, while FABP7 ligand 6 can inhibit FABP7-induced Syn oligomerization and aggregation, thereby rescuing glial cells and oligodendrocytes from cell death.
Collapse
Affiliation(s)
- An Cheng
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yi-fei Wang
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsunori Yamamoto
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wen-bin Jia
- grid.69566.3a0000 0001 2248 6943Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hanae Yamamoto
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yasushi Kawata
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
17
|
Cervantes González A, Belbin O. Fluid markers of synapse degeneration in synucleinopathies. J Neural Transm (Vienna) 2022; 129:187-206. [PMID: 35147800 DOI: 10.1007/s00702-022-02467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of α-synuclein in the brain is a common feature of Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and synucleinopathies that present with overlapping but distinct clinical symptoms that include motor and cognitive deficits. Synapse degeneration is the crucial neuropathological event in these synucleinopathies and the neuropathological correlate of connectome dysfunction. The cognitive and motor deficits resulting from the connectome dysfunction are currently measured by scalar systems that are limited in their sensitivity and largely subjective. Ideally, a marker of synapse degeneration would correlate with measures of cognitive or motor impairment, and could therefore be used as a more objective, surrogate biomarker of the core clinical features of these diseases. Furthermore, an objective surrogate biomarker that can detect and monitor the progression of synapse degeneration would improve patient management and clinical trial design, and could provide a measure of therapeutic response. Here, we review the published findings relating to candidate biomarkers of synapse degeneration in PD, PDD, DLB, and MSA patient-derived biofluids and discuss the findings in the context of the mechanisms associated with α-synuclein-mediated synapse degeneration. Understanding these mechanisms is essential not only for discovery of biomarkers, but also to improve our understanding of the earliest changes in disease pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Alba Cervantes González
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
18
|
Lv Q, Pan Y, Chen X, Wei J, Wang W, Zhang H, Wan J, Li S, Zhuang Y, Yang B, Ma D, Ren D, Zhao Z. Depression in multiple system atrophy: Views on pathological, clinical and imaging aspects. Front Psychiatry 2022; 13:980371. [PMID: 36159911 PMCID: PMC9492977 DOI: 10.3389/fpsyt.2022.980371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple system atrophy (MSA) is a common atypical parkinsonism, characterized by a varying combination of autonomic, cerebellar, and pyramidal systems. It has been noticed that the patients with MSA can be accompanied by some neuropsychiatric disorders, in particular depression. However, there is limited understanding of MSA-related depression. To bridge existing gaps, we summarized research progress on this topic and provided a new perspective regarding pathological, clinical, and imaging aspects. Firstly, we synthesized corresponding studies in order to investigate the relationship between depression and MSA from a pathological perspective. And then, from a clinical perspective, we focused on the prevalence of depression in MS patients and the comparison with other populations. Furthermore, the associations between depression and some clinical characteristics, such as life quality and gender, have been reported. The available neuroimaging studies were too sparse to draw conclusions about the radiological aspect of depression in MSA patients but we still described them in the presence of paper. Finally, we discussed some limitations and shortcomings existing in the included studies, which call for more high-quality basic research and clinical research in this field.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jifeng Wan
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shiqiang Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhuang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dawei Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zijun Zhao
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Ponticorvo S, Manara R, Russillo MC, Erro R, Picillo M, Di Salle G, Di Salle F, Barone P, Esposito F, Pellecchia MT. Magnetic resonance T1w/T2w ratio and voxel-based morphometry in multiple system atrophy. Sci Rep 2021; 11:21683. [PMID: 34737396 PMCID: PMC8569168 DOI: 10.1038/s41598-021-01222-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Diagnosis of multiple system atrophy (MSA) may be improved by using multimodal imaging approaches. We investigated the use of T1-weighted/T2-weighted (T1w/T2w) images ratio combined with voxel-based morphometry to evaluate brain tissue integrity in MSA compared to Parkinson’s disease (PD) and healthy controls (HC). Twenty-six patients with MSA, 43 patients with PD and 56 HC were enrolled. Whole brain voxel-based and local regional analyses were performed to evaluate gray and white matter (GM and WM) tissue integrity and mean regional values were used for patients classification using logistic regression. Increased mean regional values of T1w/T2w in bilateral putamen were detected in MSA-P compared to PD and HC. The combined use of regional GM and T1w/T2w values in the right and left putamen showed the highest accuracy in discriminating MSA-P from PD and good accuracy in discriminating MSA from PD and HC. A good accuracy was also found in discriminating MSA from PD and HC by either combining regional GM and T1w/T2w values in the cerebellum or regional WM and T1w/T2w in the cerebellum and brainstem. The T1w/T2w image ratio alone or combined with validated MRI parameters can be further considered as a potential candidate biomarker for differential diagnosis of MSA.
Collapse
Affiliation(s)
- S Ponticorvo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - M C Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - R Erro
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - M Picillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - G Di Salle
- Classe di Scienze Sperimentali, Scuola Superiore di Studi Universitari e Perfezionamento Sant'Anna, Pisa, Italy
| | - F Di Salle
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - P Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy
| | - F Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - M T Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, 84131, Salerno, Italy.
| |
Collapse
|
20
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
21
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
22
|
Lee JE, Kim HN, Kim DY, Shin YJ, Shin JY, Lee PH. Memantine exerts neuroprotective effects by modulating α-synuclein transmission in a parkinsonian model. Exp Neurol 2021; 344:113810. [PMID: 34270920 DOI: 10.1016/j.expneurol.2021.113810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023]
Abstract
Ample evidence has demonstrated that α-Synuclein can propagate from one area of the brain to others via cell-to-cell transmission, which might be the underlying mechanism for pathological propagation and the disease progression of Parkinson's disease (PD). Recent reports have demonstrated cell surface receptor-mediated cell-to-cell transmission of α-synuclein. Memantine decreased the levels of internalized cytosolic α-synuclein and led to attenuation in α-synuclein-induced cell death. Specifically, memantine attenuated α-synuclein-induced expression of clathrin and EEA1, and increased expression of NR2A subunits. Moreover, memantine inhibited propagation of extracellular α-synuclein and thus, decreased the expression of the phosphorylated form of α-synuclein in dopaminergic neurons of the substantia nigra, which was accompanied by increased survival of dopaminergic neurons with functional improvement of motor deficits. The present study demonstrated that memantine modulates extracellular α-synuclein propagation by inhibiting interactions between α-synuclein and NR2A subunits, which leads to neuroprotective effects on nigral dopaminergic neurons against α-synuclein-enriched conditions. The repositioning use of memantine in α-synuclein propagation needs to be further evaluated in patients with α-synucleinopathies as an effective therapeutic approach.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Guo S, Zhao B, An Y, Zhang Y, Meng Z, Zhou Y, Zheng M, Yang D, Wang M, Ying B. Potential Fluid Biomarkers and a Prediction Model for Better Recognition Between Multiple System Atrophy-Cerebellar Type and Spinocerebellar Ataxia. Front Aging Neurosci 2021; 13:644699. [PMID: 33958996 PMCID: PMC8093568 DOI: 10.3389/fnagi.2021.644699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 02/05/2023] Open
Abstract
Objective This study screened potential fluid biomarkers and developed a prediction model based on the easily obtained information at initial inspection to identify ataxia patients more likely to have multiple system atrophy-cerebellar type (MSA-C). Methods We established a retrospective cohort with 125 ataxia patients from southwest China between April 2018 and June 2020. Demographic and laboratory variables obtained at the time of hospital admission were screened using Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression to construct a diagnosis score. The receiver operating characteristic (ROC) and decision curve analyses were performed to assess the accuracy and net benefit of the model. Also, independent validation using 25 additional ataxia patients was carried out to verify the model efficiency. Then the model was translated into a visual and operable web application using the R studio and Shiny package. Results From 47 indicators, five variables were selected and integrated into the prediction model, including the age of onset (AO), direct bilirubin (DBIL), aspartate aminotransferase (AST), eGFR, and synuclein-alpha. The prediction model exhibited an area under the curve (AUC) of 0.929 for the training cohort and an AUC of 0.917 for the testing cohort. The decision curve analysis (DCA) plot displayed a good net benefit for this model, and external validation confirmed its reliability. The model also was translated into a web application that is freely available to the public. Conclusion The prediction model that was developed based on laboratory and demographic variables obtained from ataxia patients at admission to the hospital might help improve the ability to differentiate MSA-C from spinocerebellar ataxia clinically.
Collapse
Affiliation(s)
- Shuo Guo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yunfei An
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Mingxue Zheng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Reyes JF, Ekmark-Léwen S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, Nilsson P, Nilsson KPR, Alafuzoff I, Ingelsson M, Hallbeck M. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun 2021; 9:46. [PMID: 33743820 PMCID: PMC7980682 DOI: 10.1186/s40478-021-01136-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-syn) aggregation is the hallmark pathological lesion in brains of patients with Parkinson's disease (PD) and related neurological disorders characterized as synucleinopathies. Accumulating evidence now indicates that α-syn deposition is also present within the gut and other peripheral organs outside the central nervous system (CNS). In the current study, we demonstrate for the first time that α-syn pathology also accumulates within the liver, the main organ responsible for substance clearance and detoxification. We further demonstrate that cultured human hepatocytes readily internalize oligomeric α-syn assemblies mediated, at least in part, by the gap junction protein connexin-32 (Cx32). Moreover, we identified a time-dependent accumulation of α-syn within the liver of three different transgenic (tg) mouse models expressing human α-syn under CNS-specific promoters, despite the lack of α-syn mRNA expression within the liver. Such a brain-to-liver transmission route could be further corroborated by detection of α-syn pathology within the liver of wild type mice one month after a single striatal α-syn injection. In contrast to the synucleinopathy models, aged mice modeling AD rarely show any amyloid-beta (Aß) deposition within the liver. In human post-mortem liver tissue, we identified cases with neuropathologically confirmed α-syn pathology containing α-syn within hepatocellular structures to a higher degree (75%) than control subjects without α-syn accumulation in the brain (57%). Our results reveal that α-syn accumulates within the liver and may be derived from the brain or other peripheral sources. Collectively, our findings indicate that the liver may play a role in the clearance and detoxification of pathological proteins in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 85, Linköping, Sweden.
- Department of Clinical Pathology, Linköping University, 581 85, Linköping, Sweden.
| | - Sara Ekmark-Léwen
- Department of Public Health and Caring Sciences, Section of Geriatrics, Uppsala University, Uppsala, Sweden
| | - Marina Perdiki
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 85, Linköping, Sweden
- Department of Clinical Pathology, Linköping University, 581 85, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emilia Wiechec
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 85, Linköping, Sweden
- Department of Otorhinolaryngology, Anesthetics, Operations and Special Surgery Center, Linköping University, 581 85, Linköping, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 171 64, Solna, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Section of Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 85, Linköping, Sweden
- Department of Clinical Pathology, Linköping University, 581 85, Linköping, Sweden
| |
Collapse
|
25
|
Yu Z, Shi M, Stewart T, Fernagut PO, Huang Y, Tian C, Dehay B, Atik A, Yang D, De Giorgi F, Ichas F, Canron MH, Ceravolo R, Frosini D, Kim HJ, Feng T, Meissner WG, Zhang J. Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain 2021; 143:1780-1797. [PMID: 32428221 DOI: 10.1093/brain/awaa110] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/24/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Transportation of key proteins via extracellular vesicles has been recently implicated in various neurodegenerative disorders, including Parkinson's disease, as a new mechanism of disease spreading and a new source of biomarkers. Extracellular vesicles likely to be derived from the brain can be isolated from peripheral blood and have been reported to contain higher levels of α-synuclein (α-syn) in Parkinson's disease patients. However, very little is known about extracellular vesicles in multiple system atrophy, a disease that, like Parkinson's disease, involves pathological α-syn aggregation, though the process is centred around oligodendrocytes in multiple system atrophy. In this study, a novel immunocapture technology was developed to isolate blood CNPase-positive, oligodendrocyte-derived enriched microvesicles (OEMVs), followed by fluorescent nanoparticle tracking analysis and assessment of α-syn levels contained within the OEMVs. The results demonstrated that the concentrations of OEMVs were significantly lower in multiple system atrophy patients, compared to Parkinson's disease patients and healthy control subjects. It is also noted that the population of OEMVs involved was mainly in the size range closer to that of exosomes, and that the average α-syn concentrations (per vesicle) contained in these OEMVs were not significantly different among the three groups. The phenomenon of reduced OEMVs was again observed in a transgenic mouse model of multiple system atrophy and in primary oligodendrocyte cultures, and the mechanism involved was likely related, at least in part, to an α-syn-mediated interference in the interaction between syntaxin 4 and VAMP2, leading to the dysfunction of the SNARE complex. These results suggest that reduced OEMVs could be an important mechanism related to pathological α-syn aggregation in oligodendrocytes, and the OEMVs found in peripheral blood could be further explored for their potential as multiple system atrophy biomarkers.
Collapse
Affiliation(s)
- Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France
| | - Yang Huang
- Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing, China
| | - Chen Tian
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA.,Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing, China
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Anzari Atik
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA
| | - Dishun Yang
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA
| | - Francesca De Giorgi
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France
| | - François Ichas
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, UMR_S 1084, F-86000 Poitiers, France
| | - Marie-Hélène Canron
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Daniela Frosini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tao Feng
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.,Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, F-33000 Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, USA.,Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing, China.,Advanced Innovation Center for Human Brain Protection, TianTan Hospital, Capital Medical University, Beijing 100050, China.,Department of Pathology, the First Affiliated Hospital and School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
26
|
Ramani S, Berard JA, Walker LAS. The relationship between neurofilament light chain and cognition in neurological disorders: A scoping review. J Neurol Sci 2020; 420:117229. [PMID: 33243431 DOI: 10.1016/j.jns.2020.117229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
Neurofilament light chain (NfL) is an emerging biomarker of neural degeneration. NfL is an integral component of axons and is released into the bloodstream and cerebrospinal fluid during neurodegeneration; hence it can be used to monitor disease progression. Given that several neurological disorders are accompanied by cognitive decline, recent literature has investigated the relationship between NfL levels and cognition. The objective of this scoping review was to determine whether a consistent relationship between NfL and cognition exists in the context of variable degrees of neurodegeneration present across several neurological disorders. Four electronic databases were searched for relevant articles and 160 articles were initially identified. After article screening, 37 studies met the final inclusion criteria. Studies were then qualitatively synthesized to determine the relationship between NfL and cognition across a variety of neurological disorders. The large majority of studies found that NfL levels are inversely correlated with cognition, such that higher NfL levels are associated with poorer cognition. This relationship was not universal, however, and this discrepancy was speculated to be due to the nature of the neurological disorder, individual differences between participants, or methodological inconsistencies. Further study is required, and associated recommendations were proposed for the design of future investigations.
Collapse
Affiliation(s)
| | | | - Lisa A S Walker
- The Ottawa Hospital Research Institute, Ottawa, Canada; The University of Ottawa Brain and Mind Research Institute, Ottawa, Canada; Carleton University, Ottawa, Canada
| |
Collapse
|
27
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
28
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease variably associated with motor, nonmotor, and autonomic symptoms, resulting from putaminal and cerebellar degeneration and associated with glial cytoplasmic inclusions enriched with α-synuclein in oligodendrocytes and neurons. Although symptomatic treatment of MSA can provide significant improvements in quality of life, the benefit is often partial, limited by adverse effects, and fails to treat the underlying cause. Consistent with the multisystem nature of the disease and evidence that motor symptoms, autonomic failure, and depression drive patient assessments of quality of life, treatment is best achieved through a coordinated multidisciplinary approach driven by the patient's priorities and goals of care. Research into disease-modifying therapies is ongoing with a particular focus on synuclein-targeted therapies among others. This review focuses on both current management and emerging therapies for this devastating disease.
Collapse
Affiliation(s)
- Matthew R. Burns
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| | - Nikolaus R. McFarland
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| |
Collapse
|
30
|
Wang H, Wang W, Yi Z, Zhao P, Zhang H, Pan P. Inflammatory cytokine levels in multiple system atrophy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21509. [PMID: 32756187 PMCID: PMC7402900 DOI: 10.1097/md.0000000000021509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disease that progresses very rapidly and has a poor prognosis. Some studies indicate that the level of inflammatory cytokines may be related to MSA. However, no consistent conclusion has been drawn yet. The purpose of our research is to perform a meta-analysis to investigate whether the level of inflammatory cytokines is altered in MSA. METHODS Case-control studies on inflammatory cytokine levels in MSA will be searched in the following 3 databases: PubMed, Embase, and Web of Science from the database start time to March 17, 2020. Two independent authors will conduct research selection, data extraction, and quality evaluation. Data synthesis, subgroup analysis, sensitivity analysis, and the meta-analysis will be performed using Stata15.0 software. RESULTS This study will provide a comprehensive review of all studies on inflammatory cytokine levels in MSA. CONCLUSION To the best of our knowledge, this study will be the first meta-analysis that provides the quantitative evidence of inflammatory cytokine levels in MSA. REGISTRATION NUMBER INPLASY202060034.
Collapse
Affiliation(s)
- HongZhou Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - WanHua Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - ZhongQuan Yi
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PanWen Zhao
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - Hui Zhang
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PingLei Pan
- Department of Neurology and Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| |
Collapse
|
31
|
Yue T, Lu H, Yao XM, Du X, Wang LL, Guo DD, Liu YM. Elevated serum growth differentiation factor 15 in multiple system atrophy patients: A case control study. World J Clin Cases 2020; 8:2473-2483. [PMID: 32607324 PMCID: PMC7322433 DOI: 10.12998/wjcc.v8.i12.2473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a serious progressive neurodegenerative disease. Early diagnosis of MSA is very difficult, and diagnostic biomarkers are limited. Growth differentiation factor 15 (GDF15) is involved in the differentiation and progression of the central nervous system, and is widely distributed in peripheral blood, which may be a novel biomarker for MSA.
AIM To determine serum GDF15 levels, related factors and their potential diagnostic value in MSA patients, compared with Parkinson’s disease (PD) patients and healthy controls.
METHODS A case-control study was conducted, including 49 MSA patients, 50 PD patients and 50 healthy controls. Serum GDF15 levels were measured by human enzyme-linked immunosorbent assay, and the differences between the MSA, PD and control groups were analyzed. Further investigations were performed in different MSA subgroups according to age of onset, sex, clinical subtypes, diagnostic criteria, and disease duration. Receiver-operating characteristic curve analysis was used to evaluate the diagnostic value of GDF15, especially for the differential diagnosis between MSA and PD.
RESULTS Serum GDF15 levels were significantly higher in MSA patients than in PD patients and healthy controls (P = 0.000). Males and those with a disease duration of more than three years showed higher serum GDF15 levels (P = 0.043 and 0.000; respectively). Serum GDF15 levels may be a potential diagnostic biomarker for MSA patients compared with healthy controls and PD patients (cutoff: 470.42 pg/mL, sensitivity: 85.7%, specificity: 88.0%; cutoff: 1075.91 pg/mL, sensitivity: 51.0%, specificity: 96.0%; respectively).
CONCLUSION Serum GDF15 levels are significantly higher in MSA patients and provide suggestions on the etiology of MSA.
Collapse
Affiliation(s)
- Tao Yue
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Department of Gerontology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hui Lu
- Department of Ophthalmology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Xiao-Mei Yao
- Department of Gerontology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong Province, China
| | - Xia Du
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Ling-Ling Wang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Dan-Dan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ming Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
32
|
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Mol Neurobiol 2020; 57:2959-2980. [PMID: 32445085 DOI: 10.1007/s12035-020-01926-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Neurology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, Khurana Laboratory, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Zhang F, Niu L, Liu X, Liu Y, Li S, Yu H, Le W. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: An Update. Aging Dis 2020; 11:315-326. [PMID: 32257544 PMCID: PMC7069464 DOI: 10.14336/ad.2019.0324] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is a sleep behavior disorder characterized by abnormal behaviors and loss of muscle atonia during rapid eye movement (REM) sleep. RBD is generally considered to be associated with synucleinopathies, such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), and usually precedes years before the first symptom of these diseases. It is believed that RBD predicts the neurodegeneration in synucleinopathy. However, increasing evidences have shown that RBD is also found in non-synucleinopathy neurodegenerative diseases, including Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), etc. Sleep disturbance such as RBD may be an early sign of neurodegeneration in these diseases, and also serve as an assessment of cognitive impairments. In this review, we updated the clinical characteristics, diagnosis, and possible mechanisms of RBD in neurogenerative diseases. A better understanding of RBD in these neurogenerative diseases will provide biomarkers and novel therapeutics for the early diagnosis and treatment of the diseases.
Collapse
Affiliation(s)
- Feng Zhang
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Long Niu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyao Liu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Liu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huan Yu
- 3Sleep and Wake Disorders Center and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weidong Le
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Fanciulli A, Stankovic I, Krismer F, Seppi K, Levin J, Wenning GK. Multiple system atrophy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:137-192. [PMID: 31779811 DOI: 10.1016/bs.irn.2019.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult-onset, relentlessly progressive neurodegenerative disorder, clinically characterized by various combinations of autonomic failure, parkinsonism and ataxia. The neuropathological hallmark of MSA are glial cytoplasmic inclusions consisting of misfolded α-synuclein. Selective atrophy and neuronal loss in striatonigral and olivopontocerebellar systems underlie the division into two main motor phenotypes of MSA-parkinsonian type and MSA-cerebellar type. Isolated autonomic failure and REM sleep behavior disorder are common premotor features of MSA. Beyond the core clinical symptoms, MSA manifests with a number of non-motor and motor features. Red flags highly specific for MSA may provide clues for a correct diagnosis, but in general the diagnostic accuracy of the second consensus criteria is suboptimal, particularly in early disease stages. In this chapter, the authors discuss the historical milestones, etiopathogenesis, neuropathological findings, clinical features, red flags, differential diagnosis, diagnostic criteria, imaging and other biomarkers, current treatment, unmet needs and future treatments for MSA.
Collapse
Affiliation(s)
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Vidal-Martinez G, Segura-Ulate I, Yang B, Diaz-Pacheco V, Barragan JA, De-Leon Esquivel J, Chaparro SA, Vargas-Medrano J, Perez RG. FTY720-Mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in Multiple System Atrophy mouse models. Exp Neurol 2019; 325:113120. [PMID: 31751571 DOI: 10.1016/j.expneurol.2019.113120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch‑iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ismael Segura-Ulate
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Barbara Yang
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Valeria Diaz-Pacheco
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jose A Barragan
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Jocelyn De-Leon Esquivel
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Stephanie A Chaparro
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Javier Vargas-Medrano
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America
| | - Ruth G Perez
- Texas Tech University Health Sciences Center El Paso, Department of Molecular and Translational Medicine, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L Foster School of Medicine, 5001 El Paso Dr, El Paso, TX 79905, United States of America.
| |
Collapse
|
36
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
37
|
Uemura N, Uemura MT, Lo A, Bassil F, Zhang B, Luk KC, Lee VMY, Takahashi R, Trojanowski JQ. Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. J Neuropathol Exp Neurol 2019; 78:877-890. [PMID: 31504665 PMCID: PMC6934438 DOI: 10.1093/jnen/nlz070] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are composed of Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Alpha-synuclein (α-Syn) forms aggregates mainly in neurons in PD and DLB, while oligodendroglial α-Syn aggregates are characteristic of MSA. Recent studies have demonstrated that injections of synthetic α-Syn preformed fibrils (PFFs) into the brains of wild-type (WT) animals induce intraneuronal α-Syn aggregates and the subsequent interneuronal transmission of α-Syn aggregates. However, injections of α-Syn PFFs or even brain lysates of patients with MSA have not been reported to induce oligodendroglial α-Syn aggregates, raising questions about the pathogenesis of oligodendroglial α-Syn aggregates in MSA. Here, we report that WT mice injected with mouse α-Syn (m-α-Syn) PFFs develop neuronal α-Syn pathology after short postinjection (PI) intervals on the scale of weeks, while oligodendroglial α-Syn pathology emerges after longer PI intervals of several months. Abundant oligodendroglial α-Syn pathology in white matter at later time points is reminiscent of MSA. Furthermore, comparison between young and aged mice injected with m-α-Syn PFFs revealed that PI intervals rather than aging correlate with oligodendroglial α-Syn aggregation. These results provide novel insights into the pathological mechanisms of oligodendroglial α-Syn aggregation in MSA.
Collapse
Affiliation(s)
- Norihito Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Maiko T Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Angela Lo
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fares Bassil
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bin Zhang
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelvin C Luk
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Virginia M -Y Lee
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - John Q Trojanowski
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Monzio Compagnoni G, Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 2019; 7:113. [PMID: 31300049 PMCID: PMC6624923 DOI: 10.1186/s40478-019-0730-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, dysautonomia and other motor and non-motor symptoms. Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA pathogenesis remains widely unknown. The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field. In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation and alpha-synuclein spread mechanisms. Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass. Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy. Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and new research perspectives are suggested. Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA pathogenesis.
Collapse
|
39
|
Vargas-Medrano J, Segura-Ulate I, Yang B, Chinnasamy R, Arterburn JB, Perez RG. FTY720-Mitoxy reduces toxicity associated with MSA-like α-synuclein and oxidative stress by increasing trophic factor expression and myelin protein in OLN-93 oligodendroglia cell cultures. Neuropharmacology 2019; 158:107701. [PMID: 31291595 DOI: 10.1016/j.neuropharm.2019.107701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a fatal demyelinating disorder lacking any disease-modifying therapies. MSA pathology stems from aggregated α-synuclein (aSyn) accumulation in glial cytosolic inclusions of oligodendroglial cell (OLGs), the myelinating cells of brain. In MSA brains and in MSA animal models with aSyn accumulation in OLGs, aberrant expression of brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic factor (GDNF) occur. Nerve growth factor (NGF) expression can also be altered in neurodegenerative diseases. It is unclear if oxidative stress impacts the viability of aSyn-accumulating OLG cells. Here, we show that OLN-93 cells stably expressing human wild type aSyn or the MSA-associated-aSyn-mutants G51D or A53E, are more vulnerable to oxidative stress. In dose response studies we found that OLN-93 cells treated 48 h with 160 nM FTY720 or our new non-immunosuppressive FTY720-C2 or FTY720-Mitoxy derivatives sustained normal viability. Also, FTY720, FTY720-C2, and FTY720-Mitoxy all stimulated NGF expression at 24 h. However only FTY720-Mitoxy also increased BDNF and GDNF mRNA at 24 h, an effect paralleled by increases in histone 3 acetylation and ERK1/2 phosphorylation. Myelin associated glycoprotein (MAG) levels were also increased in OLN-93 cells after 48 h treatment with FTY720-Mitoxy. FTY720, FTY720-C2, and FTY720-Mitoxy all prevented oxidative-stress-associated-cell-death of OLN-93 cells that lack any aSyn expression. However, only FTY720-Mitoxy protected MSA-like aSyn-expressing-OLN-93-cells against oxidative-cell-death. These data identify potent protective effects for FTY720-Mitoxy with regard to trophic factors as well as MAG expression by OLG cells. Testing of FTY720-Mitoxy in mice is thus a judicious next step for neuropharmacological preclinical development.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ismael Segura-Ulate
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Barbara Yang
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ramesh Chinnasamy
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jeffrey B Arterburn
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruth G Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA.
| |
Collapse
|
40
|
Reyes JF, Sackmann C, Hoffmann A, Svenningsson P, Winkler J, Ingelsson M, Hallbeck M. Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol 2019; 138:23-47. [PMID: 30976973 PMCID: PMC6570706 DOI: 10.1007/s00401-019-02007-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of alpha-synuclein (α-syn) has been implicated in the progression of Parkinson's disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of α-syn oligomeric assemblies (oα-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and oα-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked oα-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with α-syn accumulation. Notably, we could also demonstrate a direct interaction between α-syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Christopher Sackmann
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Ingelsson
- Section of Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
41
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
42
|
Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. NEUROIMAGE-CLINICAL 2019; 23:101891. [PMID: 31226621 PMCID: PMC6587071 DOI: 10.1016/j.nicl.2019.101891] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Objective Neuroanatomical differences in the cerebellum are among the most consistent findings in multiple system atrophy (MSA) patients. This study performed a detailed cerebellar morphology in MSA patients and its two subtypes: MSA-P (parkinson's symptoms predominate) and MSA-C (cerebellar symptoms predominant), and their relations to profiles of motor and cognitive deficits. Materials and methods Structure MRI data were acquired from 63 healthy controls and 61 MSA patients; voxel-based morphometry and the Spatially Unbiased Infratentorial Toolbox cerebellar atlas were performed to identify the cerebellar gray volume changes in MSA and its subtypes. Further, the gray matter changes were correlated with the clinical motor/cognitive scores. Results Patients with MSA exhibited widespread loss of cerebellar volume bilaterally, relative to healthy controls. In those with MSA-C, gray matter loss was detected from anterior (bilateral lobule IV-V) to posterior (bilateral crus I/II, bilateral lobule IX, left lobule VIII) cerebellar lobes. Lower anterior cerebellar volume negatively correlated with disease duration and motor performance, whereas posterior lobe integrity positively correlated with cognitive assessment. In patients with MSA-P, atrophy of anterior lobe (bilateral lobules IV-V) and posterior lobe in part (left lobule VI, bilateral IX) was evident; and in left cerebellar lobule IX, gray matter loss negatively correlated with motor scores. Direct comparison of MSA-P and MSA-C group outcomes showed divergence in right cerebellar crus II only. Conclusions Our data suggest that volumetric abnormalities of cerebellum contribute substantially to motor and cognitive performance in patients with MSA. In patients with MSA-P and MSA-C, affected regions of cerebellum differed. Cerebellum atrophy contributed substantially to motor and cognitive behavior in MSA. Lower cerebellum IV-V volume was correlated with MSA-C disease duration and severity Cerebellum atrophy in one side may imply symptoms onset on contralateral
Collapse
|
43
|
Ndayisaba A, Jellinger K, Berger T, Wenning GK. TNFα inhibitors as targets for protective therapies in MSA: a viewpoint. J Neuroinflammation 2019; 16:80. [PMID: 30975183 PMCID: PMC6458780 DOI: 10.1186/s12974-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a unique and fatal α-synucleinopathy associated with oligodendroglial inclusions and secondary neurodegeneration affecting striatum, substantia nigra, pons, and cerebellum. The pathogenesis remains elusive; however, there is emerging evidence suggesting a prominent role of neuroinflammation. Here, we critically review the relationship between αS and microglial activation depending on its aggregation state and its role in neuroinflammation to explore the potential of TNFα inhibitors as a treatment strategy for MSA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gregor K. Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
44
|
Kübler D, Wächter T, Cabanel N, Su Z, Turkheimer FE, Dodel R, Brooks DJ, Oertel WH, Gerhard A. Widespread microglial activation in multiple system atrophy. Mov Disord 2019; 34:564-568. [PMID: 30726574 PMCID: PMC6659386 DOI: 10.1002/mds.27620] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022] Open
Abstract
Background The pattern and role of microglial activation in multiple system atrophy is largely unclear. The objective of this study was to use [11C](R)‐PK11195 PET to determine the extent and correlation of activated microglia with clinical parameters in MSA patients. Methods Fourteen patients with the parkinsonian phenotype of MSA (MSA‐P) with a mean disease duration of 2.9 years (range 2‐5 years) were examined with [11C](R)‐PK11195 PET and compared with 10 healthy controls. Results Patients with the parkinsonian phenotype of MSA showed a significant (P ≤ 0.01) mean increase in binding potentials compared with healthy controls in the caudate nucleus, putamen, pallidum, precentral gyrus, orbitofrontal cortex, presubgenual anterior cingulate cortex, and the superior parietal gyrus. No correlations between binding potentials and clinical parameters were found. Conclusions In early clinical stages of the parkinsonian phenotype of MSA, there is widespread microglial activation as a marker of neuroinflammatory changes without correlation to clinical parameters in our patient population. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dorothee Kübler
- Movement Disorders Section, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Tobias Wächter
- Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology, Rehabilitation Centre Bad Gögging, Passauer Wolf, Bad Gögging, Germany
| | - Nicole Cabanel
- Vitos Clinical Centre for Psychiatry and Psychotherapy, Giessen-Marburg, Germany
| | - Zhangjie Su
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Dodel
- Chair of Geriatrics, University Hospital Essen, Center for Geriatric Medicine Haus Berge, Essen, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, München, Germany
| | - Alexander Gerhard
- Departments of Nulcear Medicine and Geriatric Medicine, University Hospital Essen, Germany.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Hoffmann A, Ettle B, Battis K, Reiprich S, Schlachetzki JCM, Masliah E, Wegner M, Kuhlmann T, Riemenschneider MJ, Winkler J. Oligodendroglial α-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol 2019; 29:380-396. [PMID: 30444295 PMCID: PMC6850330 DOI: 10.1111/bpa.12678] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation and oligodendroglial cytoplasmic α‐synuclein (α‐syn) inclusions (GCIs) are important neuropathological characteristics of multiple system atrophy (MSA). GCIs are known to interfere with oligodendroglial maturation and consequently result in myelin loss. The neuroinflammatory phenotype in the context of MSA, however, remains poorly understood. Here, we demonstrate MSA‐associated neuroinflammation being restricted to myeloid cells and tightly linked to oligodendroglial α‐syncleinopathy. In human putaminal post‐mortem tissue of MSA patients, neuroinflammation was observed in white matter regions only. This locally restricted neuroinflammation coincided with elevated numbers of α‐syn inclusions, while gray matter with less α‐synucleinopathy remained unaffected. In order to analyze the temporal pattern of neuroinflammation, a transgenic mouse model overexpressing human α‐syn under the control of an oligodendrocyte‐specific myelin basic protein (MBP) promoter (MBP29‐hα‐syn mice) was assessed in a pre‐symptomatic and symptomatic disease stage. Strikingly, we detected an increased neuroinflammation in regions with a high α‐syn load, the corpus callosum and the striatum, of MBP29‐hα‐syn mice, already at a pre‐symptomatic stage. Furthermore, this inflammatory response was restricted to myeloid cells being highly proliferative and showing an activated, phagocytic phenotype. In contrast, severe astrogliosis was observed only in gray matter regions of MSA patients as well as MBP29‐hα‐syn mice. To further characterize the influence of oligodendrocytes on initiation of the myeloid immune response, we performed RNA sequencing analysis of α‐syn overexpressing primary oligodendrocytes. A distinct gene expression profile including upregulation of cytokines important for myeloid cell attraction and proliferation was detected in α‐syn overexpressing oligodendrocytes. Additionally, microdissected tissue of MBP29‐hα‐syn mice exhibited a similar cellular gene expression profile in white matter regions even pre‐symptomatically. Collectively, these results imply an early crosstalk between neuroinflammation and oligodendrocytes containing α‐syn inclusions leading to an immune response locally restricted to white matter regions in MSA.
Collapse
Affiliation(s)
- Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Ettle
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Battis
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy. Int J Mol Sci 2018; 19:ijms19124129. [PMID: 30572656 PMCID: PMC6320782 DOI: 10.3390/ijms19124129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendrocytes in affected brain regions and there is evidence that α-synuclein released by neurons is taken up preferentially by oligodendrocytes. However, extracellular α-synuclein has also been shown to interact with other neural cell types, including astrocytes and microglia, as well as extracellular factors, mediating neuroinflammation, cell-to-cell spread and other aspects of pathogenesis. Here, we review the current evidence for how α-synuclein present in the extracellular milieu may act at the cell surface to drive components of disease progression. A more detailed understanding of the important extracellular interactions of α-synuclein with neuronal and non-neuronal cell types both in the brain and periphery may provide new therapeutic targets to modulate the disease process.
Collapse
|
47
|
Du JJ, Wang T, Huang P, Cui S, Gao C, Lin Y, Fu R, Zhou H, Chen S. Clinical characteristics and quality of life in Chinese patients with multiple system atrophy. Brain Behav 2018; 8:e01135. [PMID: 30378279 PMCID: PMC6305933 DOI: 10.1002/brb3.1135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Multiple system atrophy (MSA) is a progressive neurodegenerative disorder that causes early sustained disability and poor health-related quality of life (HrQoL). The clinical features and their effects on the HrQoL of patients in China have received little attention in the research literature. We evaluated the clinical characteristics and HrQoL of Chinese patients with MSA. MATERIALS AND METHODS A total of 143 patients with MSA from the Department of Neurology, Shanghai Ruijin Hospital, were enrolled in the study from March 2014 to May 2017. Basic demographic data, motor symptoms, non-motor symptoms, and HrQoL were assessed and compared with data from 198 patients with idiopathic Parkinson's disease (PD) who were matched by age, gender, and disease duration. Factors influencing the HrQoL of MSA patients were also analyzed. RESULTS The ratio of patients with predominant parkinsonism (MSA-P) and prominent cerebellar ataxia (MSA-C) was 95:48 among the 143 MSA patients. MSA-P patients had a longer disease duration (p = 0.002), higher levodopa equivalent daily dose (p < 0.001), higher scores on the Unified Multiple System Atrophy Rating Scale (UMSARS) I (p = 0.026), UMSARS II (p < 0.001), UMSARS IV (p = 0.019), the Hamilton Rating Scale for Depression (p = 0.001), the Hamilton Anxiety Scale (p = 0.013), and lower scores on measures of olfaction (p = 0.021) and cognitive function (p = 0.044) than the MSA-C patients. Stepwise regression analysis showed that depression, anxiety, degree of disability, and disease severity were independent predictors of decreased HrQoL. CONCLUSIONS The results indicate that MSA-P patients have more severe motor impairment, hyposmia, depression, anxiety, cognitive impairment, and lower HrQoL than MSA-C patients. Depression, anxiety, degree of disability, and disease severity are predictors of poor HrQoL among Chinese patients with MSA.
Collapse
Affiliation(s)
- Juan-Juan Du
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Wang
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Cui
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gao
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Lin
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zhou
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology & The Collaborative Innovation Center for Brain Science, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
48
|
Koh YH, Tan LY, Ng SY. Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Front Cell Neurosci 2018; 12:413. [PMID: 30483063 PMCID: PMC6240766 DOI: 10.3389/fncel.2018.00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is an age-associated, progressive neurodegenerative disorder characterized by motor impairment and in some cases cognitive decline. Central to the disease pathogenesis of PD is a small, presynaptic neuronal protein known as alpha synuclein (a-syn), which tends to accumulate and aggregate in PD brains as Lewy bodies or Lewy neurites. Numerous in vitro and in vivo studies confirm that a-syn aggregates can be propagated from diseased to healthy cells, and it has been suggested that preventing the spread of pathogenic a-syn species can slow PD progression. In this review, we summarize the works of recent literature elucidating mechanisms of a-syn propagation, and discussed the advantages in using patient-derived induced pluripotent stem cells (iPSCs) and/or induced neurons to study a-syn transmission.
Collapse
Affiliation(s)
- Yong Hui Koh
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yi Tan
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
50
|
Abnormalities of white and grey matter in early multiple system atrophy: comparison of parkinsonian and cerebellar variants. Eur Radiol 2018; 29:716-724. [DOI: 10.1007/s00330-018-5594-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 11/26/2022]
|