1
|
Kronman FN, Liwang JK, Betty R, Vanselow DJ, Wu YT, Tustison NJ, Bhandiwad A, Manjila SB, Minteer JA, Shin D, Lee CH, Patil R, Duda JT, Xue J, Lin Y, Cheng KC, Puelles L, Gee JC, Zhang J, Ng L, Kim Y. Developmental mouse brain common coordinate framework. Nat Commun 2024; 15:9072. [PMID: 39433760 PMCID: PMC11494176 DOI: 10.1038/s41467-024-53254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
3D brain atlases are key resources to understand the brain's spatial organization and promote interoperability across different studies. However, unlike the adult mouse brain, the lack of developing mouse brain 3D reference atlases hinders advancements in understanding brain development. Here, we present a 3D developmental common coordinate framework (DevCCF) spanning embryonic day (E)11.5, E13.5, E15.5, E18.5, and postnatal day (P)4, P14, and P56, featuring undistorted morphologically averaged atlas templates created from magnetic resonance imaging and co-registered high-resolution light sheet fluorescence microscopy templates. The DevCCF with 3D anatomical segmentations can be downloaded or explored via an interactive 3D web-visualizer. As a use case, we utilize the DevCCF to unveil GABAergic neuron emergence in embryonic brains. Moreover, we map the Allen CCFv3 and spatial transcriptome cell-type data to our stereotaxic P56 atlas. In summary, the DevCCF is an openly accessible resource for multi-study data integration to advance our understanding of brain development.
Collapse
Affiliation(s)
- Fae N Kronman
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Josephine K Liwang
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Rebecca Betty
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Daniel J Vanselow
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | | | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jennifer A Minteer
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Choong Heon Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Rohan Patil
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jeffrey T Duda
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Keith C Cheng
- Department of Pathology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Universidad de Murcia, and Murcia Arrixaca Institute for Biomedical Research (IMIB), Murcia, Spain
| | - James C Gee
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
2
|
Tucker DM, Luu P. Feasibility of a Personal Neuromorphic Emulation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:759. [PMID: 39330092 PMCID: PMC11431400 DOI: 10.3390/e26090759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
The representation of intelligence is achieved by patterns of connections among neurons in brains and machines. Brains grow continuously, such that their patterns of connections develop through activity-dependent specification, with the continuing ontogenesis of individual experience. The theory of active inference proposes that the developmental organization of sentient systems reflects general processes of informatic self-evidencing, through the minimization of free energy. We interpret this theory to imply that the mind may be described in information terms that are not dependent on a specific physical substrate. At a certain level of complexity, self-evidencing of living (self-organizing) information systems becomes hierarchical and reentrant, such that effective consciousness emerges as the consequence of a good regulator. We propose that these principles imply that an adequate reconstruction of the computational dynamics of an individual human brain/mind is possible with sufficient neuromorphic computational emulation.
Collapse
Affiliation(s)
- Don M Tucker
- The Brain Electrophysiological Laboratory Company, Eugene, OR 97403, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Phan Luu
- The Brain Electrophysiological Laboratory Company, Eugene, OR 97403, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Munoz-Gualan AP, Güngör A, Cezayirli PC, Rahmanov S, Gurses ME, Puelles L, Türe U. Human Adapted Prosomeric Model: A Future for Brainstem Tumor Classification. Brain Res 2024; 1837:148961. [PMID: 38679312 DOI: 10.1016/j.brainres.2024.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
This study reevaluates the conventional understanding of midbrain anatomy and neuroanatomical nomenclature in the context of recent genetic and anatomical discoveries. The authors assert that the midbrain should be viewed as an integral part of the forebrain due to shared genetic determinants and evolutionary lineage. The isthmo-mesencephalic boundary is recognized as a significant organizer for both the caudal midbrain and the isthmo-cerebellar area. The article adopts the prosomeric model, redefining the whole brain as neuromeres, offering a more precise depiction of brain development, including processes like proliferation, neurogenesis, cell migration, and differentiation. This shift in understanding challenges traditional definitions of the midbrain based on external brain morphology. The study also delves into the historical context of neuroanatomical models, including the columnar model proposed by Herrick in 1910, which has influenced our understanding of brain structure. Furthermore, the study has clinical implications, affecting neuroanatomy, neurodevelopmental studies, and the diagnosis and treatment of brain disorders. It emphasizes the need to integrate molecular research into human neuroanatomical studies and advocates for updating neuroanatomical terminology to reflect modern genetic and molecular insights. The authors propose two key revisions. First, we suggest reclassifying the isthmo-cerebellar prepontine region as part of the hindbrain, due to its role in cerebellar development and distinct location caudal to the genetically-defined midbrain. Second, we recommend redefining the anterior boundary of the genetically-defined midbrain to align with genetic markers. In conclusion, the authors highlight the importance of harmonizing neuroanatomical nomenclature with current scientific knowledge, promoting a more precise and informed understanding of brain structure, which is crucial for both research and clinical applications related to the human brain.
Collapse
Affiliation(s)
| | - Abuzer Güngör
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Istinye University, Istanbul, Turkey
| | - Phillip Cem Cezayirli
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Haynes Neurosurgical Group, Birmingham, AL, United States
| | - Serdar Rahmanov
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia -IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Ferran JL, Puelles L. Atypical Course of the Habenulo-Interpeduncular Tract in Chick Embryos. J Comp Neurol 2024; 532:e25646. [PMID: 38961604 DOI: 10.1002/cne.25646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Classical studies of the avian diencephalon hardly mention the habenulo-interpeduncular tract (a.k.a. retroflex tract), although both the habenula (HB) (its origin) and the interpeduncular nuclear complex (its target) are present. Retroflex tract fibers were described at early embryonic stages but seem absent in the adult in routine stains. However, this tract is a salient diencephalic landmark in all other vertebrate lineages. It typically emerges out of the caudal HB, courses dorsoventrally across thalamic alar and basal plates just in front of the thalamo-pretectal boundary, and then sharply bends 90° caudalwards at paramedian basal plate levels (this is the "retroflexion"), to approach longitudinally via paramedian pretectum and midbrain the rostralmost hindbrain, specifically the prepontine median interpeduncular complex across isthmus and rhombomere 1. We systematize this habenulo-interpeduncular course into four parts named subhabenular, retrothalamic, tegmental, and interpeduncular. We reexamined the chicken habenulo-interpeduncular fibers at stages HH30 and HH35 (6.5- and 9-day incubation) by mapping them specifically with immunoreaction for BEN protein, a well-known marker. We found that only a small fraction of the stained retroflex tract fibers approaches the basal plate by coursing along the standard dorsoventral pathway in front of the thalamo-pretectal boundary. Many other habenular fibers instead diverge into atypical dispersed courses across the thalamic cell mass (implying alteration of the first subhabenular part of the standard course) before reaching the basal plate; this dispersion explains their invisibility. A significant number of such transthalamic habenular fibers cross orthogonally the zona limitans (ZLI) (the rostral thalamic boundary) and invade the caudal alar prethalamus. Here, they immediately descend dorsoventrally, just rostrally to the ZLI, until reaching the prethalamic basal plate, where they bend (retroflex) caudalwards, entering the thalamic basal paramedian area. These atypical fibers gradually fasciculate with the other groups of habenular efferent fibers in their final longitudinal approach to the hindbrain interpeduncular complex. We conclude that the poor visibility of this tract in birds is due to its dispersion into a diversity of atypical alternative routes, though all components eventually reach the interpeduncular complex. This case merits further analysis of the diverse permissive versus nonpermissive guidance mechanisms called into action, which partially correlate distinctly with successive diencephalic, mesencephalic, and hindbrain neuromeric fields and their boundaries.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Pascual Parrilla Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Pascual Parrilla Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain
| |
Collapse
|
5
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Pavone C, Bonacini L, Di Cecco G, D’Aniello S, Stoenoiu MS, Persu A, Valzania F, Pascarella R. RNF213 Polymorphisms in Intracranial Artery Dissection. Genes (Basel) 2024; 15:725. [PMID: 38927660 PMCID: PMC11203323 DOI: 10.3390/genes15060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more prevalent in the Asian population. We performed a systematic review of the literature, aiming to assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213 variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only patients of Asian descent and the small but non-negligible coexistence with moyamoya disease familiarity might be limiting factors, requiring further studies to confirm these preliminary findings and the embryological interpretation.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Maria Simona Stoenoiu
- Department of Internal Medicine, Rheumatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
6
|
Huggenberger S, Walkowiak W. Evolution of air-borne vocalization: Insights from neural studies in the archeobatrachian species Bombina orientalis. J Comp Neurol 2024; 532:e25601. [PMID: 38450738 DOI: 10.1002/cne.25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Vocalization of tetrapods evolved as an air-driven mechanism. Thus, it is conceivable that the underlaying neural network might have evolved from more ancient respiratory circuits and be made up of homologous components that generate breathing rhythms across vertebrates. In this context, the extant species of stem anurans provide an opportunity to analyze the connection of the neural circuits of lung ventilation and vocalization. Here, we analyzed the fictive lung ventilation and vocalization behavior of isolated brains of the Chinese fire-bellied toad Bombina orientalis during their mating season by nerve root recordings. We discovered significant differences in durations of activation of male brains after stimulation of the statoacoustic nerve or vocalization-relevant forebrain structures in comparison to female brains. The increased durations of motor nerve activities in male brains can be interpreted as fictive calling, as male's advertisement calls in vivo had the same general pattern compared to lung ventilation, but longer duration periods. Female brains react to the corresponding stimulations with the same shorter activity pattern that occurred spontaneously in both female and male brains and thus can be interpreted as fictive lung ventilations. These results support the hypothesis that vocal circuits evolved from ancient respiration networks in the anuran caudal hindbrain. Moreover, we could show that the terrestrial stem archeobatrachian Bombina spec. is an appropriate model to study the function and evolution of the shared network of lung ventilation and vocal generation.
Collapse
Affiliation(s)
- Stefan Huggenberger
- Institute of Anatomy and Clinical Morphology, Witten/Herdecke University, Witten, Germany
- Institute for Zoology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
7
|
Wéber I, Dakos A, Mészár Z, Matesz C, Birinyi A. Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain. Front Neuroanat 2024; 18:1369103. [PMID: 38496826 PMCID: PMC10940344 DOI: 10.3389/fnana.2024.1369103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.
Collapse
Affiliation(s)
- Ildikó Wéber
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adél Dakos
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clara Matesz
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - András Birinyi
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
9
|
Luu P, Tucker DM. Continuity and change in neural plasticity through embryonic morphogenesis, fetal activity-dependent synaptogenesis, and infant memory consolidation. Dev Psychobiol 2023; 65:e22439. [PMID: 38010309 DOI: 10.1002/dev.22439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
There is an apparent continuity in human neural development that can be traced to venerable themes of vertebrate morphogenesis that have shaped the evolution of the reptilian telencephalon (including both primitive three-layered cortex and basal ganglia) and then the subsequent evolution of the mammalian six-layered neocortex. In this theoretical analysis, we propose that an evolutionary-developmental analysis of these general morphogenetic themes can help to explain the embryonic development of the dual divisions of the limbic system that control the dorsal and ventral networks of the human neocortex. These include the archicortical (dorsal limbic) Papez circuits regulated by the hippocampus that organize spatial, contextual memory, as well as the paleocortical (ventral limbic) circuits that organize object memory. We review evidence that these dorsal and ventral limbic divisions are controlled by the differential actions of brainstem lemnothalamic and midbrain collothalamic arousal control systems, respectively, thereby traversing the vertebrate subcortical neuraxis. These dual control systems are first seen shaping the phyletic morphogenesis of the archicortical and paleocortical foundations of the forebrain in embryogenesis. They then provide dual modes of activity-dependent synaptic organization in the active (lemnothalamic) and quiet (collothalamic) stages of fetal sleep. Finally, these regulatory systems mature to form the major systems of memory consolidation of postnatal development, including the rapid eye movement (lemnothalamic) consolidation of implicit memory and social attachment in the first year, and then-in a subsequent stage-the non-REM (collothalamic) consolidation of explicit memory that is integral to the autonomy and individuation of the second year of life.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
10
|
Puelles L, Stühmer T, Rubenstein JLR, Diaz C. Critical test of the assumption that the hypothalamic entopeduncular nucleus of rodents is homologous with the primate internal pallidum. J Comp Neurol 2023; 531:1715-1750. [PMID: 37695031 PMCID: PMC11418882 DOI: 10.1002/cne.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
The globus pallidus (GP) of primates is divided conventionally into distinct internal and external parts. The literature repeats since 1930 the opinion that the homolog of the primate internal pallidum in rodents is the hypothalamic entopeduncular nucleus (embedded within fiber tracts of the cerebral peduncle). To test this idea, we explored its historic fundaments, checked the development and genoarchitecture of mouse entopeduncular and pallidal neurons, and examined relevant comparative connectivity data. We found that the extratelencephalic mouse entopeduncular structure consists of four different components arrayed along a dorsoventral sequence in the alar hypothalamus. The ventral entopeduncular nucleus (EPV), with GABAergic neurons expressing Dlx5&6 and Nkx2-1, lies within the hypothalamic peduncular subparaventricular area. Three other formations-the dorsal entopeduncular nucleus (EPD), the prereticular entopeduncular nucleus (EPPRt ), and the preeminential entopeduncular nucleus (EPPEm )-lie within the overlying paraventricular area, under the subpallium. EPD contains glutamatergic neurons expressing Tbr1, Otp, and Pax6. The EPPRt has GABAergic cells expressing Isl1 and Meis2, whereas the EPPEm population expresses Foxg1 and may be glutamatergic. Genoarchitectonic observations on relevant areas of the mouse pallidal/diagonal subpallium suggest that the GP of rodents is constituted as in primates by two adjacent but molecularly and hodologically differentiable telencephalic portions (both expressing Foxg1). These and other reported data oppose the notion that the rodent extratelencephalic entopeduncular nucleus is homologous to the primate internal pallidum. We suggest instead that all mammals, including rodents, have dual subpallial GP components, whereas primates probably also have a comparable set of hypothalamic entopeduncular nuclei. Remarkably, there is close similarity in some gene expression properties of the telencephalic internal GP and the hypothalamic EPV. This apparently underlies their notable functional analogy, sharing GABAergic neurons and thalamopetal connectivity.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, El Palmar (Murcia), 30120, Spain
| | - Thorsten Stühmer
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California
| | - Carmen Diaz
- School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, 02006, Spain
| |
Collapse
|
11
|
Kronman FA, Liwang JK, Betty R, Vanselow DJ, Wu YT, Tustison NJ, Bhandiwad A, Manjila SB, Minteer JA, Shin D, Lee CH, Patil R, Duda JT, Puelles L, Gee JC, Zhang J, Ng L, Kim Y. Developmental Mouse Brain Common Coordinate Framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557789. [PMID: 37745386 PMCID: PMC10515964 DOI: 10.1101/2023.09.14.557789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
3D standard reference brains serve as key resources to understand the spatial organization of the brain and promote interoperability across different studies. However, unlike the adult mouse brain, the lack of standard 3D reference atlases for developing mouse brains has hindered advancement of our understanding of brain development. Here, we present a multimodal 3D developmental common coordinate framework (DevCCF) spanning mouse embryonic day (E) 11.5, E13.5, E15.5, E18.5, and postnatal day (P) 4, P14, and P56 with anatomical segmentations defined by a developmental ontology. At each age, the DevCCF features undistorted morphologically averaged atlas templates created from Magnetic Resonance Imaging and co-registered high-resolution templates from light sheet fluorescence microscopy. Expert-curated 3D anatomical segmentations at each age adhere to an updated prosomeric model and can be explored via an interactive 3D web-visualizer. As a use case, we employed the DevCCF to unveil the emergence of GABAergic neurons in embryonic brains. Moreover, we integrated the Allen CCFv3 into the P56 template with stereotaxic coordinates and mapped spatial transcriptome cell-type data with the developmental ontology. In summary, the DevCCF is an openly accessible resource that can be used for large-scale data integration to gain a comprehensive understanding of brain development.
Collapse
Affiliation(s)
- Fae A Kronman
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Josephine K Liwang
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Rebecca Betty
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA
| | | | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Jennifer A Minteer
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Choong Heon Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NY, USA
| | - Rohan Patil
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| | - Jeffrey T Duda
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Universidad de Murcia, and Murcia Arrixaca Institute for Biomedical Research (IMIB) Murcia, Spain
| | - James C Gee
- Department of Radiology, Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, NY, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA
| |
Collapse
|
12
|
Dell'Anno MT, Conti L, Onorati M. Editorial: Molecular and cellular logic of cerebral cortex development, evolution, and disease. Front Neuroanat 2023; 17:1242684. [PMID: 37485468 PMCID: PMC10362336 DOI: 10.3389/fnana.2023.1242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
| | - Luciano Conti
- Department of Cellular, Computational and Integrated Biology, University of Trento, Trento, Italy
| | - Marco Onorati
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Zabriskie MS, Cooke DL, Wang C, Alexander MD. Spatially resolved transcriptomics for evaluation of intracranial vessels in a rabbit model: Proof of concept. Interv Neuroradiol 2023; 29:307-314. [PMID: 35306920 PMCID: PMC10369109 DOI: 10.1177/15910199221088691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Better understanding of vessel biology and vascular pathophysiology is needed to improve understanding of cerebrovascular disorders. Tissue from diseased vessels can offer the best data. Rabbit models can be effective for studying intracranial vessels, filling gaps resulting from difficulties acquiring human tissue. Spatially-resolved transcriptomics (SRT) in particular hold promise for studying such models as they build on RNA sequencing methods, augmenting such data with histopathology. METHODS Rabbit brains with intact arteries were flash frozen, cryosectioned, and stained with H&E to confirm adequate inclusion of intracranial vessels before proceeding with tissue optimization and gene expression analysis using the Visium SRT platform. SRT results were analyzed with k-means clustering analysis, and differential gene expression was examined, comparing arteries to veins. RESULTS Cryosections were successfully mounted on Visium proprietary slides. Quality control thresholds were met. Optimum permeabilization was determined to be 24 min for the tissue optimization step. In analysis of SRT data, k-means clustering distinguished vascular tissue from parenchyma. When comparing gene expression traits, the most differentially expressed genes were those found in smooth muscle cells. These genes were more commonly expressed in arteries compared to veins. CONCLUSIONS Intracranial vessels from model rabbits can be processed and analyzed with the Visium SRT platform. Face validity is found in the ability of SRT data to distinguish vessels from parenchymal tissue and differential expression analysis accurately distinguishing arteries from veins. SRT should be considered for future animal model investigations into cerebrovascular diseases.
Collapse
Affiliation(s)
- Matthew S. Zabriskie
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Daniel L. Cooke
- Department of Neurology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Matthew D. Alexander
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
15
|
García-Guillén IM, Aroca P, Marín F. Molecular identity of the lateral lemniscus nuclei in the adult mouse brain. Front Neuroanat 2023; 17:1098352. [PMID: 36999169 PMCID: PMC10044012 DOI: 10.3389/fnana.2023.1098352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe dorsal (DLL), intermediate (ILL), and ventral (VLL) lateral lemniscus nuclei are relay centers in the central auditory pathway of the brainstem, commonly referred to as the lateral lemniscus nuclei (LLN). The LLN are situated in the prepontine and pontine hindbrain, from rhombomeres 1 to 4, extending from the more rostral DLL to the caudal VLL, with the ILL lying in between. These nuclei can be distinguished morphologically and by topological and connectivity criteria, and here, we set out to further characterize the molecular nature of each LLN.MethodsWe searched in situ hybridization studies in the Allen Mouse Brain Atlas for genes differentially expressed along the rostrocaudal axis of the brainstem, identifying 36 genes from diverse functional families expressed in the LLN.ResultsAvailable information in the databases indicated that 7 of these 36 genes are either associated with or potentially related to hearing disorders.DiscussionIn conclusion, the LLN are characterized by specific molecular profiles that reflect their rostrocaudal organization into the three constituent nuclei. This molecular regionalization may be involved in the etiology of some hearing disorders, in accordance with previous functional studies of these genes.
Collapse
|
16
|
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T. TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages. Neuron 2023; 111:345-361.e10. [PMID: 36417906 DOI: 10.1016/j.neuron.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.
Collapse
Affiliation(s)
| | - Daniel Feliciano
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carla Belmonte-Mateos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Rosa Linda Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jorge Garcia-Marques
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | - Benjamin Foster
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
17
|
A Unique "Reversed" Migration of Neurons in the Developing Claustrum. J Neurosci 2023; 43:693-708. [PMID: 36631266 PMCID: PMC9899091 DOI: 10.1523/jneurosci.0704-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/24/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023] Open
Abstract
The claustrum (CLA) is a cluster of neurons located between the insular cortex and striatum. Many studies have shown that the CLA plays an important role in higher brain function. Additionally, growing evidence suggests that CLA dysfunction is associated with neuropsychological symptoms. However, how the CLA is formed during development is not fully understood. In the present study, we analyzed the development of the CLA, especially focusing on the migration profiles of CLA neurons in mice of both sexes. First, we showed that CLA neurons were generated between embryonic day (E) 10.5 and E12.5, but mostly at E11.5. Next, we labeled CLA neurons born at E11.5 using the FlashTag technology and revealed that most neurons reached the brain surface by E13.5 but were distributed deep in the CLA 1 d later at E14.5. Time-lapse imaging of GFP-labeled cells revealed that some CLA neurons first migrated radially outward and then changed their direction inward after reaching the surface. Moreover, we demonstrated that Reelin signal is necessary for the appropriate distribution of CLA neurons. The switch from outward to "reversed" migration of developing CLA neurons is distinct from other migration modes, in which neurons typically migrate in a certain direction, which is simply outward or inward. Future elucidation of the characteristics and precise molecular mechanisms of CLA development may provide insights into the unique cognitive functions of the CLA.SIGNIFICANCE STATEMENT The claustrum (CLA) plays an important role in higher brain function, and its dysfunction is associated with neuropsychological symptoms. Although psychiatric disorders are increasingly being understood as disorders of neurodevelopment, little is known about CLA development, including its neuronal migration profiles and underlying molecular mechanisms. Here, we investigated the migration profiles of CLA neurons during development and found that they migrated radially outward and then inward after reaching the surface. This switch in the migratory direction from outward to inward may be one of the brain's fundamental mechanisms of nuclear formation. Our findings enable us to investigate the relationship between CLA maldevelopment and dysfunction, which may facilitate understanding of the pathogenesis of some psychiatric disorders.
Collapse
|
18
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
19
|
Del Rey NLG, García-Cabezas MÁ. Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiol Dis 2023; 176:105945. [PMID: 36481436 DOI: 10.1016/j.nbd.2022.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Degeneration of neurons and circuits across the striatum shows stereotyped time-course and spatial topography patterns that are distinct for Huntington's disease, Parkinson's disease, or the Tauopathies. These patterns of neurodegeneration in humans have not yet been systematically related to developmental, connectional, cellular, and chemical factors studied in human and non-human primates, that may underlie potential differences in selective vulnerability across striatal sectors. Relating primate anatomy to human pathology could provide new venues for identifying molecular, cellular, and connectional factors linked to the degeneration of striatal neurons and circuits. This review describes and summarizes several developmental, cellular, structural, and connectional features of the primate striatum in relation to patterns of neurodegeneration in the striatum of humans and of non-human primate models. We review (1) the types of neurons in the primate striatum, (2) the cyto-, myelo-, and chemoarchitecture of the primate striatum, (3) the developmental origin of the striatum in light of modern patterning studies, (4) the organization of corticostriatal projections in relation to cortical types, and (5) the topography and time-course of neuron loss, glial reaction, and protein aggregation induced by neurodegenerative diseases in humans and in non-human primate models across striatal sectors and their corresponding cortical areas. We summarize current knowledge about key aspects of primate striatal anatomy and human pathology and indicate knowledge gaps that should be addressed in future studies. We aim to identify factors for selective vulnerability to neurodegeneration of striatal neurons and circuits and obtain hints that could help elucidate striatal pathology in humans.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur. HM Hospitales. Madrid, Spain
| | - Miguel Ángel García-Cabezas
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid, Spain.
| |
Collapse
|
20
|
Angulo Salavarria MM, Dell’Amico C, D’Agostino A, Conti L, Onorati M. Cortico-thalamic development and disease: From cells, to circuits, to schizophrenia. Front Neuroanat 2023; 17:1130797. [PMID: 36935652 PMCID: PMC10019505 DOI: 10.3389/fnana.2023.1130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The human brain is the most complex structure generated during development. Unveiling the ontogenesis and the intrinsic organization of specific neural networks may represent a key to understanding the physio-pathological aspects of different brain areas. The cortico-thalamic and thalamo-cortical (CT-TC) circuits process and modulate essential tasks such as wakefulness, sleep and memory, and their alterations may result in neurodevelopmental and psychiatric disorders. These pathologies are reported to affect specific neural populations but may also broadly alter physiological connections and thus dysregulate brain network generation, communication, and function. More specifically, the CT-TC system is reported to be severely affected in disorders impacting superior brain functions, such as schizophrenia (SCZ), bipolar disorder, autism spectrum disorders or epilepsy. In this review, the focus will be on CT development, and the models exploited to uncover and comprehend its molecular and cellular mechanisms. In parallel to animal models, still fundamental to unveil human neural network establishment, advanced in vitro platforms, such as brain organoids derived from human pluripotent stem cells, will be discussed. Indeed, organoids and assembloids represent unique tools to study and accelerate fundamental research in CT development and its dysfunctions. We will then discuss recent cutting-edge contributions, including in silico approaches, concerning ontogenesis, specification, and function of the CT-TC circuitry that generates connectivity maps in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Claudia Dell’Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Armando D’Agostino
- Department of Health Sciences, University of Milan, Milan, Italy
- Department of Mental Health and Addictions, ASST Santi Paolo e Carlo, Milan, Italy
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Trento, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
- *Correspondence: Marco Onorati,
| |
Collapse
|
21
|
Kernbach JM, Delev D, Neuloh G, Clusmann H, Bzdok D, Eickhoff SB, Staartjes VE, Vasella F, Weller M, Regli L, Serra C, Krayenbühl N, Akeret K. Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival. Brain Commun 2022; 5:fcac336. [PMID: 36632188 PMCID: PMC9830987 DOI: 10.1093/braincomms/fcac336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology's unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical-clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.
Collapse
Affiliation(s)
| | | | - Georg Neuloh
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany,Center for Integrated Oncology, Düsseldorf (CIO ABCD), Universities Aachen, Bonn, Cologne, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany,Center for Integrated Oncology, Düsseldorf (CIO ABCD), Universities Aachen, Bonn, Cologne, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada,Mila—Quebec Artificial Intelligence Institute, 6666 Rue Saint-Urbain, Montreal, Quebec H2S 3H1, Canada
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Wilhelm Johnen Strasse, 52428 Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Victor E Staartjes
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland,Division of Pediatric Neurosurgery, University Children's Hospital, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Kevin Akeret
- Correspondence to: Kevin Akeret, MD PhD Department of Neurosurgery, Clinical Neuroscience Center University Hospital Zurich and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland E-mail:
| |
Collapse
|
22
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
23
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
25
|
Hain D, Gallego-Flores T, Klinkmann M, Macias A, Ciirdaeva E, Arends A, Thum C, Tushev G, Kretschmer F, Tosches MA, Laurent G. Molecular diversity and evolution of neuron types in the amniote brain. Science 2022; 377:eabp8202. [PMID: 36048944 DOI: 10.1126/science.abp8202] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The existence of evolutionarily conserved regions in the vertebrate brain is well established. The rules and constraints underlying the evolution of neuron types, however, remain poorly understood. To compare neuron types across brain regions and species, we generated a cell type atlas of the brain of a bearded dragon and compared it with mouse datasets. Conserved classes of neurons could be identified from the expression of hundreds of genes, including homeodomain-type transcription factors and genes involved in connectivity. Within these classes, however, there are both conserved and divergent neuron types, precluding a simple categorization of the brain into ancestral and novel areas. In the thalamus, neuronal diversification correlates with the evolution of the cortex, suggesting that developmental origin and circuit allocation are drivers of neuronal identity and evolution.
Collapse
Affiliation(s)
- David Hain
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| | - Tatiana Gallego-Flores
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| | | | - Angeles Macias
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Elena Ciirdaeva
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Anja Arends
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Christina Thum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Ferran JL, Hidalgo-Sánchez M, Puelles E. Editorial: In the footsteps of the prosomeric model. Front Neuroanat 2022; 16:1010058. [PMID: 36081852 PMCID: PMC9446880 DOI: 10.3389/fnana.2022.1010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- José L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, El Palmar, Spain
- *Correspondence: José L. Ferran
| | - Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- Matías Hidalgo-Sánchez
| | - Eduardo Puelles
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
- Eduardo Puelles
| |
Collapse
|
27
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
28
|
Mueller T. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:321-335. [PMID: 35760049 DOI: 10.1159/000525669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The amygdala, a complex array of nuclei in the forebrain, controls emotions and emotion-related behaviors in vertebrates. Current research aims to understand the amygdala's evolution in ray-finned fish such as zebrafish because of the region's relevance for social behavior and human psychiatric disorders. Clear-cut molecular definitions of the amygdala and its evolutionary-developmental relationship to the one of mammals are critical for zebrafish models of affective disorders and autism. In this review, I argue that the prosomeric model and a focus on the olfactory system's organization provide ideal tools for discovering deep ancestral relationships between the emotional systems of zebrafish and mammals. The review's focus is on the "extended amygdala," which refers to subpallial amygdaloid territories including the central (autonomic) and the medial (olfactory) amygdala required for reproductive and social behaviors. Amphibians, sauropsids, and lungfish share many characteristics with the basic amygdala ground plan of mammals, as molecular and hodological studies have shown. Further exploration of the evolution of the amygdala in basally derived fish vertebrates requires researchers to test these "tetrapod-based" concepts. Historically, this has been a daunting task because the forebrains of basally derived fish vertebrates look very different from those of more familiar tetrapod ones. An extreme case are ray-finned fish (Actinopterygii) like zebrafish because their telencephalon develops through a distinct outward-growing process called eversion. To this day, scientists have struggled to determine how the everted telencephalon compares to non-actinopterygian vertebrates. Using the teleost zebrafish as a genetic model, comparative neurologists began to establish quantifiable molecular definitions that allow direct comparisons between ray-finned fish and tetrapods. In this review, I discuss how the most recent discovery of the zebrafish amygdala ground plan offers an opportunity to identify the developmental constraints of amygdala evolution and function. In addition, I explain how the zebrafish prethalamic eminence (PThE) topologically relates to the medial amygdala proper and the nucleus of the lateral olfactory tract (nLOT). In fact, I consider these previously misinterpreted olfactory structures the most critical missing evolutionary links between actinopterygian and tetrapod amygdalae. In this context, I will also explain why recognizing both the PThE and the nLOT is crucial to understanding the telencephalon eversion. Recognizing these anatomical hallmarks allows direct comparisons of the amygdalae of zebrafish and mammals. Ultimately, the new concepts of the zebrafish amygdala will overcome current dogmas and reach a holistic understanding of amygdala circuits of cognition and emotion in actinopterygians.
Collapse
Affiliation(s)
- Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Bilbao MG, Garrigos D, Martinez-Morga M, Toval A, Kutsenko Y, Bautista R, Barreda A, Ribeiro Do-Couto B, Puelles L, Ferran JL. Prosomeric Hypothalamic Distribution of Tyrosine Hydroxylase Positive Cells in Adolescent Rats. Front Neuroanat 2022; 16:868345. [PMID: 35601999 PMCID: PMC9121318 DOI: 10.3389/fnana.2022.868345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions. In contrast, the modern prosomeric model uses different axial assumptions based on the parallel courses of the brain floor, alar-basal boundary, and brain roof (all causally explained). This model also postulates that the hypothalamus and telencephalon jointly form the secondary prosencephalon, separately from and rostral to the diencephalon proper. The hypothalamus is divided into two neuromeric (transverse) parts called peduncular and terminal hypothalamus (PHy and THy). The classic anteroposterior (AP) divisions of the columnar hypothalamus are rather seen as dorsoventral subdivisions of the hypothalamic alar and basal plates. In this study, we offered a prosomeric immunohistochemical mapping in the rat of hypothalamic cells expressing tyrosine hydroxylase (TH), which is the enzyme that catalyzes the conversion of L-tyrosine to levodopa (L-DOPA) and a precursor of dopamine. This mapping was also combined with markers for diverse hypothalamic nuclei [agouti-related peptide (Agrp), arginine vasopressin (Avp), cocaine and amphetamine-regulated transcript (Cart), corticotropin releasing Hormone (Crh), melanin concentrating hormone (Mch), neuropeptide Y (Npy), oxytocin/neurophysin I (Oxt), proopiomelanocortin (Pomc), somatostatin (Sst), tyrosine hidroxilase (Th), and thyrotropin releasing hormone (Trh)]. TH-positive cells are particularly abundant within the periventricular stratum of the paraventricular and subparaventricular alar domains. In the tuberal region, most labeled cells are found in the acroterminal arcuate nucleus and in the terminal periventricular stratum. The dorsal retrotuberal region (PHy) contains the A13 cell group of TH-positive cells. In addition, some TH cells appear in the perimamillary and retromamillary regions. The prosomeric model proved useful for determining the precise location of TH-positive cells relative to possible origins of morphogenetic signals, thus aiding potential causal explanation of position-related specification of this hypothalamic cell type.
Collapse
Affiliation(s)
- María G. Bilbao
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, Argentina
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Marta Martinez-Morga
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Rosario Bautista
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia – IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| |
Collapse
|
30
|
Hidalgo-Sánchez M, Andreu-Cervera A, Villa-Carballar S, Echevarria D. An Update on the Molecular Mechanism of the Vertebrate Isthmic Organizer Development in the Context of the Neuromeric Model. Front Neuroanat 2022; 16:826976. [PMID: 35401126 PMCID: PMC8987131 DOI: 10.3389/fnana.2022.826976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
A crucial event during the development of the central nervous system (CNS) is the early subdivision of the neural tube along its anterior-to-posterior axis to form neuromeres, morphogenetic units separated by transversal constrictions and programed for particular genetic cascades. The narrower portions observed in the developing neural tube are responsible for relevant cellular and molecular processes, such as clonal restrictions, expression of specific regulatory genes, and differential fate specification, as well as inductive activities. In this developmental context, the gradual formation of the midbrain-hindbrain (MH) constriction has been an excellent model to study the specification of two major subdivisions of the CNS containing the mesencephalic and isthmo-cerebellar primordia. This MH boundary is coincident with the common Otx2-(midbrain)/Gbx2-(hindbrain) expressing border. The early interactions between these two pre-specified areas confer positional identities and induce the generation of specific diffusible morphogenes at this interface, in particular FGF8 and WNT1. These signaling pathways are responsible for the gradual histogenetic specifications and cellular identity acquisitions with in the MH domain. This review is focused on the cellular and molecular mechanisms involved in the specification of the midbrain/hindbrain territory and the formation of the isthmic organizer. Emphasis will be placed on the chick/quail chimeric experiments leading to the acquisition of the first fate mapping and experimental data to, in this way, better understand pioneering morphological studies and innovative gain/loss-of-function analysis.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Sergio Villa-Carballar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diego Echevarria
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
- *Correspondence: Matías Hidalgo-Sánchez Diego Echevarria
| |
Collapse
|
31
|
Amat JA, Martínez-de-la-Torre M, Trujillo CM, Fernández B, Puelles L. Neurogenetic Heterochrony in Chick, Lizard, and Rat Mapped with Wholemount Acetylcholinesterase and the Prosomeric Model. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:48-82. [PMID: 35320797 DOI: 10.1159/000524216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
In the developing brain, the phenomenon of neurogenesis is manifested heterotopically, that is, much the same neurogenetic steps occur at different places with a different timetable. This is due apparently to early molecular regionalization of the neural tube wall in the anteroposterior and dorsoventral dimensions, in a checkerboard pattern of more or less deformed quadrangular histogenetic areas. Their respective fate is apparently specified by a locally specific combination of active/repressed genes known as "molecular profile." This leads to position-dependent differential control of proliferation, neurogenesis, differentiation, and other aspects, eventually in a heterochronic manner across adjacent areal units with sufficiently different molecular profiles. It is not known how fixed these heterochronic patterns are. We reexamined here comparatively early patterns of forebrain and hindbrain neurogenesis in a lizard (Lacerta gallotia galloti), a bird (the chick), and a mammal (the rat), as demonstrated by activation of acetylcholinesterase (AChE). This is an early marker of postmitotic neurons, which leaves unlabeled the neuroepithelial ventricular cells, so that we can examine cleared wholemounts of the reacted brains to have a birds-eye view of the emergent neuronal pattern at each stage. There is overall heterochrony between the basal and alar plates of the brain, a known fact, but, remarkably, heterochrony occurs even within the precocious basal plate among its final anteroposterior neuromeric subdivisions and their internal microzonal subdivisions. Some neuromeric units or microzones are precocious, while others follow suit without any specific spatial order or gradient; other similar neuromeric units remain retarded in the midst of quite advanced neighbors, though they do produce similar neurogenetic patterns at later stages. It was found that some details of such neuromeric heterochrony are species-specific, possibly related to differential morphogenetic properties. Given the molecular causal underpinning of the updated prosomeric model used here for interpretation, we comment on the close correlation between some genetic patterns and the observed AChE differentiation patterns.
Collapse
Affiliation(s)
- José A Amat
- Columbia University, Irving Medical Center, Dept. Psychiatry (Child and Adolescent Psychiatry), New York, New York, USA
| | | | - Carmen María Trujillo
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Faculty of Sciences, School of Biology, University of La Laguna, La Laguna, Spain
| | - Bárbara Fernández
- University of Murcia, Dept. Human Anatomy, IMIB-Arrixaca Institute for Biomedical Research, El Palmar, Spain
| | - Luis Puelles
- University of Murcia, Dept. Human Anatomy, IMIB-Arrixaca Institute for Biomedical Research, El Palmar, Spain
| |
Collapse
|
32
|
Barbier M, Croizier S, Alvarez-Bolado G, Risold PY. The distribution of Dlx1-2 and glutamic acid decarboxylase in the embryonic and adult hypothalamus reveals three differentiated LHA subdivisions in rodents. J Chem Neuroanat 2022; 121:102089. [DOI: 10.1016/j.jchemneu.2022.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
|
33
|
A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022; 119:2111869119. [PMID: 35165149 PMCID: PMC8851557 DOI: 10.1073/pnas.2111869119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
We established an ultra high-resolution diffusion MRI atlas of the embryonic mouse brains from E10.5 to E15.5, which characterizes the continuous changes of brain morphology and microstructures at mesoscopic scale. By integrating gene-expression data into the spatiotemporal continuum, we can navigate the evolving landscape of gene expression and neuroanatomy across both spatial and temporal dimensions to visualize their interactions in normal and abnormal embryonic brain development. We also identified regional clusters with distinct developmental trajectories and identified gene-expression profiles that matched to these regional domains. The diffusion MRI–based continuum of the embryonic brain and the computational techniques presented in this study offer a valuable tool for systematic study of the genetic control of brain development. The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene–neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene–neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.
Collapse
|
34
|
Leopold DA, Averbeck BB. Self-tuition as an essential design feature of the brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200530. [PMID: 34957855 PMCID: PMC8710880 DOI: 10.1098/rstb.2020.0530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We are curious by nature, particularly when young. Evolution has endowed our brain with an inbuilt obligation to educate itself. In this perspectives article, we posit that self-tuition is an evolved principle of vertebrate brain design that is reflected in its basic architecture and critical for its normal development. Self-tuition involves coordination between functionally distinct components of the brain, with one set of areas motivating exploration that leads to the experiences that train another set. We review key hypothalamic and telencephalic structures involved in this interplay, including their anatomical connections and placement within the segmental architecture of conserved forebrain circuits. We discuss the nature of educative behaviours motivated by the hypothalamus, innate stimulus biases, the relationship to survival in early life, and mechanisms by which telencephalic areas gradually accumulate knowledge. We argue that this aspect of brain function is of paramount importance for systems neuroscience, as it confers neural specialization and allows animals to attain far more sophisticated behaviours than would be possible through genetic mechanisms alone. Self-tuition is of particular importance in humans and other primates, whose large brains and complex social cognition rely critically on experience-based learning during a protracted childhood period. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Averbeck
- Section on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
MacIver MA, Finlay BL. The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200523. [PMID: 34957852 PMCID: PMC8710882 DOI: 10.1098/rstb.2020.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal's body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Malcolm A. MacIver
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208, USA
| | - Barbara L. Finlay
- Department of Psychology, Behavioral and Evolutionary Neuroscience Group, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
36
|
Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200534. [PMID: 34957851 PMCID: PMC8710886 DOI: 10.1098/rstb.2020.0534] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mental terms-such as perception, cognition, action, emotion, as well as attention, memory, decision-making-are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of 'computational flexibility' that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
37
|
Diaz C, Glover JC. The Vestibular Column in the Mouse: A Rhombomeric Perspective. Front Neuroanat 2022; 15:806815. [PMID: 35173589 PMCID: PMC8842660 DOI: 10.3389/fnana.2021.806815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
The vestibular column is located in the hindbrain between the sensory auditory (dorsal) and trigeminal (ventral) columns, spanning rhombomeres r1 (or r2) to r9. It contains the vestibular nuclear complex that receives sensory innervation from the labyrinthine end organs in the inner ear. Gene expression studies and experimental manipulations of developmental genes, particularly Hox genes and other developmental patterning genes, are providing insight into the morphological and functional organization of the vestibular nuclear complex, particularly from a segmental standpoint. Here, we will review studies of the classical vestibular nuclei and of vestibular projection neurons that innervate distinct targets in relation to individual rhombomeres and the expression of specific genes. Studies in different species have demonstrated that the vestibular complex is organized into a hodological mosaic that relates axon trajectory and target to specific hindbrain rhombomeres and intrarhombomeric domains, with a molecular underpinning in the form of transcription factor signatures, which has been highly conserved during the evolution of the vertebrate lineage.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
- *Correspondence: Carmen Diaz,
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Joel C. Glover,
| |
Collapse
|
38
|
Newmaster KT, Kronman FA, Wu YT, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat 2022; 15:787601. [PMID: 35095432 PMCID: PMC8794814 DOI: 10.3389/fnana.2021.787601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Fae A Kronman
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
39
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
40
|
Siskos N, Ververidis C, Skavdis G, Grigoriou ME. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Front Neuroanat 2022; 15:785541. [PMID: 34975420 PMCID: PMC8716433 DOI: 10.3389/fnana.2021.785541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The telencephalon develops from the alar plate of the secondary prosencephalon and is subdivided into two distinct divisions, the pallium, which derives solely from prosomere hp1, and the subpallium which derives from both hp1 and hp2 prosomeres. In this first systematic analysis of the feline telencephalon genoarchitecture, we apply the prosomeric model to compare the expression of a battery of genes, including Tbr1, Tbr2, Pax6, Mash1, Dlx2, Nkx2-1, Lhx6, Lhx7, Lhx2, and Emx1, the orthologs of which alone or in combination, demarcate molecularly distinct territories in other species. We characterize, within the pallium and the subpallium, domains and subdomains topologically equivalent to those previously described in other vertebrate species and we show that the overall genoarchitectural map of the E26/27 feline brain is highly similar to that of the E13.5/E14 mouse. In addition, using the same approach at the earlier (E22/23 and E24/25) or later (E28/29 and E34/35) stages we further analyze neurogenesis, define the timing and duration of several developmental events, and compare our data with those from similar mouse studies; our results point to a complex pattern of heterochronies and show that, compared with the mouse, developmental events in the feline telencephalon span over extended periods suggesting that cats may provide a useful animal model to study brain patterning in ontogenesis and evolution.
Collapse
Affiliation(s)
- Nikistratos Siskos
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Ververidis
- Obstetrics and Surgery Unit, Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
41
|
Abstract
Breathing (or respiration) is a complex motor behavior that originates in the brainstem. In minimalistic terms, breathing can be divided into two phases: inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). The neurons that discharge in synchrony with these phases are arranged in three major groups along the brainstem: (i) pontine, (ii) dorsal medullary, and (iii) ventral medullary. These groups are formed by diverse neuron types that coalesce into heterogeneous nuclei or complexes, among which the preBötzinger complex in the ventral medullary group contains cells that generate the respiratory rhythm (Chapter 1). The respiratory rhythm is not rigid, but instead highly adaptable to the physic demands of the organism. In order to generate the appropriate respiratory rhythm, the preBötzinger complex receives direct and indirect chemosensory information from other brainstem respiratory nuclei (Chapter 2) and peripheral organs (Chapter 3). Even though breathing is a hard-wired unconscious behavior, it can be temporarily altered at will by other higher-order brain structures (Chapter 6), and by emotional states (Chapter 7). In this chapter, we focus on the development of brainstem respiratory groups and highlight the cell lineages that contribute to central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Eser Göksu Isik
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
42
|
García-Guillén IM, Martínez-de-la-Torre M, Puelles L, Aroca P, Marín F. Molecular Segmentation of the Spinal Trigeminal Nucleus in the Adult Mouse Brain. Front Neuroanat 2021; 15:785840. [PMID: 34955765 PMCID: PMC8702626 DOI: 10.3389/fnana.2021.785840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The trigeminal column is a hindbrain structure formed by second order sensory neurons that receive afferences from trigeminal primary (ganglionic) nerve fibers. Classical studies subdivide it into the principal sensory trigeminal nucleus located next to the pontine nerve root, and the spinal trigeminal nucleus which in turn consists of oral, interpolar and caudal subnuclei. On the other hand, according to the prosomeric model, this column would be subdivided into segmental units derived from respective rhombomeres. Experimental studies have mapped the principal sensory trigeminal nucleus to pontine rhombomeres (r) r2-r3 in the mouse. The spinal trigeminal nucleus emerges as a plurisegmental formation covering several rhombomeres (r4 to r11 in mice) across pontine, retropontine and medullary hindbrain regions. In the present work we reexamined the issue of rhombomeric vs. classical subdivisions of this column. To this end, we analyzed its subdivisions in an AZIN2-lacZ transgenic mouse, known as a reference model for hindbrain topography, together with transgenic reporter lines for trigeminal fibers. We screened as well for genes differentially expressed along the axial dimension of this structure in the adult and juvenile mouse brain. This analysis yielded genes from multiple functional families that display transverse domains fitting the mentioned rhombomeric map. The spinal trigeminal nucleus thus represents a plurisegmental structure with a series of distinct neuromeric units having unique combinatorial molecular profiles.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
43
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Puelles L. Recollections on the Origins and Development of the Prosomeric Model. Front Neuroanat 2021; 15:787913. [PMID: 35002639 PMCID: PMC8740198 DOI: 10.3389/fnana.2021.787913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
The prosomeric model was postulated jointly by L. Puelles and J. L. R. Rubenstein in 1993 and has been developed since by means of minor changes and a major update in 2012. This article explains the progressive academic and scientific antecedents leading LP to this collaboration and its subsequent developments. Other antecedents due to earlier neuroembryologists that also proposed neuromeric brain models since the late 19th century, as well as those who defended the alternative columnar model, are presented and explained. The circumstances that apparently caused the differential success of the neuromeric models in the recent neurobiological field are also explored.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
45
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
46
|
Williams VM, Bhagwandin A, Swiegers J, Bertelsen MF, Hård T, Sherwood CC, Manger PR. Distribution of cholinergic neurons in the brains of a lar gibbon and a chimpanzee. Anat Rec (Hoboken) 2021; 305:1516-1535. [PMID: 34837339 DOI: 10.1002/ar.24844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
Using choline acetyltransferase immunohistochemistry, we describe the nuclear parcellation of the cholinergic system in the brains of two apes, a lar gibbon (Hylobates lar) and a chimpanzee (Pan troglodytes). The cholinergic nuclei observed in both apes studied are virtually identical to that observed in humans and show very strong similarity to the cholinergic nuclei observed in other primates and mammals more generally. One specific difference between humans and the two apes studied is that, with the specific choline acetyltransferase antibody used, the cholinergic pyramidal neurons observed in human cerebral cortex were not labeled. When comparing the two apes studied and humans to other primates, the presence of a greatly expanded cholinergic medullary tegmental field, and the presence of cholinergic neurons in the intermediate and dorsal horns of the cervical spinal cord are notable variations of the distribution of cholinergic neurons in apes compared to other primates. These neurons may play an important role in the modulation of ascending and descending neural transmissions through the spinal cord and caudal medulla, potentially related to the differing modes of locomotion in apes compared to other primates. Our observations also indicate that the average soma volume of the neurons forming the laterodorsal tegmental nucleus (LDT) is larger than those of the pedunculopontine nucleus (PPT) in both the lar gibbon and chimpanzee. This variability in soma volume appears to be related to the size of the adult derivatives of the alar and basal plate across mammalian species.
Collapse
Affiliation(s)
- Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Puelles L. Current status of the hypothesis of a claustro-insular homolog in sauropsids. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:212-241. [PMID: 34753135 DOI: 10.1159/000520742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022]
Abstract
The author worked before on the wide problem of the evolution of the vertebrate pallium. He proposed various Bauplan models based in the definition of a set of pallial sectors with characteristic (topologically invariant) mutual relationships and distinct molecular profiles. Out of one of these models, known as the 'updated tetrapartite pallium model', a modified definition of the earlier lateral pallium sector (LPall) emerged, which characterized it in mammals as consisting of an unitary claustro-insular transitional (mesocortical) complex intercalated between neocortex or dorsal pallium (DPall) above and olfactory cortex or ventral pallium (VPall) underneath. A distinctive molecular marker of the early-born deep claustral component of the LPall was found to be the transcription factor Nr4a2, which is not expressed significantly in the overlying insular cortex or in adjoining cortical territories (Puelles 2014). Given that earlier comparative studies had identified molecularly and topologically comparable VPall, LPall and DPall sectors in the avian pallium, an avian Nr4a2 probe was applied aiming to identify the reportedly absent avian claustro-insular complex. An early-born superficial subpopulation of the avian LPall that expresses selectively this marker through development was indeed found. This was proposed to be a claustrum homolog, whereas the remaining Nr4a2-negative avian LPall cells were assumed to represent a possible insular homolog (Puelles et al. 2016a). This last notion was supported by comparable selective expression of the mouse insular marker Cyp26b, also found restricted to the avian LPall (Puelles 2017). Some published data suggested that similar molecular properties and structure apply at the reptilian LPall. This analysis was reviewed in Puelles et al. (2017). The present commentary discusses 3-4 years later some international publications accrued in the interval that touch on the claustro-insular homology hypothesis. Some of them are opposed to the hypothesis whereas others corroborate or support it. This raises a number of secondary issues of general interest.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, University of Murcia, Institute of Biomedical Research (IMIB-Arrixaca), El Palmar, Spain
| |
Collapse
|
48
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
49
|
Tucker DM, Luu P. Motive control of unconscious inference: The limbic base of adaptive Bayes. Neurosci Biobehav Rev 2021; 128:328-345. [PMID: 34129851 DOI: 10.1016/j.neubiorev.2021.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/01/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Current computational models of neocortical processing, described as predictive coding theory, are providing new ways of understanding Helmholtz's classical insight that perception cannot proceed in a data-driven fashion, but instead requires unconscious inference based on prior experience. Predictive coding is a Bayesian process, in which the operations at each lower level of the cortical hierarchy are predicted by prior projections of expectancies from a higher level, and are then updated by error-correction with lower level evidence. To generalize the predictive coding model to the human neocortex as a whole requires aligning the Bayesian negotiation of prior expectancies with sensory and motor evidence not only within the connectional architecture of the neocortex (primary sensory/motor, unimodal association areas, and heteromodal association areas) but also with the limbic cortex that forms the base for the adaptive control of the heteromodal areas and thereby the cerebral hemisphere as a whole. By reviewing the current evidence on the anatomy of the human corticolimbic connectivity (now formalized as the Structural Model) we address the problem of how limbic cortex resonates to the homeostatic, personal significance of events to provide Bayesian priors to organize the operations of predictive coding across the multiple levels of the neocortex. By reviewing both classical evidence and current models of control exerted between limbic and neocortical networks, we suggest a neuropsychological theory of human cognition, the adaptive Bayes process model, in which prior expectancies are not simply rationalized propositions, but rather affectively-charged expectancies that bias the interpretation of sensory data and action affordances to support allostasis, the motive control of expectancies for future events.
Collapse
Affiliation(s)
- Don M Tucker
- Brain Electrophysiology Laboratory Company, University of Oregon, United States.
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, University of Oregon, United States
| |
Collapse
|
50
|
López-González L, Alonso A, García-Calero E, de Puelles E, Puelles L. Tangential Intrahypothalamic Migration of the Mouse Ventral Premamillary Nucleus and Fgf8 Signaling. Front Cell Dev Biol 2021; 9:676121. [PMID: 34095148 PMCID: PMC8170039 DOI: 10.3389/fcell.2021.676121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The tuberal hypothalamic ventral premamillary nucleus (VPM) described in mammals links olfactory and metabolic cues with mating behavior and is involved in the onset of puberty. We offer here descriptive and experimental evidence on a migratory phase in the development of this structure in mice at E12.5–E13.5. Its cells originate at the retromamillary area (RM) and then migrate tangentially rostralward, eschewing the mamillary body, and crossing the molecularly distinct perimamillary band, until they reach a definitive relatively superficial ventral tuberal location. Corroborating recent transcriptomic studies reporting a variety of adult glutamatergic cell types in the VPM, and different projections in the adult, we found that part of this population heterogeneity emerges already early in development, during tangential migration, in the form of differential gene expression properties of at least 2–3 mixed populations possibly derived from subtly different parts of the RM. These partly distribute differentially in the core and shell parts of the final VPM. Since there is a neighboring acroterminal source of Fgf8, and Fgfr2 is expressed at the early RM, we evaluated a possible influence of Fgf8 signal on VPM development using hypomorphic Fgf8neo/null embryos. These results suggested a trophic role of Fgf8 on RM and all cells migrating tangentially out of this area (VPM and the subthalamic nucleus), leading in hypomorphs to reduced cellularity after E15.5 without alteration of the migrations proper.
Collapse
Affiliation(s)
- Lara López-González
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Elena García-Calero
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Eduardo de Puelles
- Instituto de Neurociencias de Alicante, CSIC, Universidad Miguel Hernández, Alicante, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|