1
|
Xun QQ, Zhang J, Li YP, Li Y, Ma YY, Chen ZB, Ding LP, Shi XL. Synthesis and biological evaluation of novel pyrrolo[2,3-b]pyridine derivatives as potent GSK-3β inhibitors for treating Alzheimer's disease. Eur J Med Chem 2025; 285:117236. [PMID: 39798400 DOI: 10.1016/j.ejmech.2025.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC50) of 0.22, 0.26 and 0.24 nM, respectively, and each of them generally possessed GSK-3β selectivity over 24 structurally similar kinases. In addition, further targeting studies at the cellular level revealed that compound 41 increased GSK-3β phosphorylation at Ser9 site dose-dependently for inhibiting GSK-3β activity, therefore inhibiting the hyperphosphorylation of tau protein by decreasing the p-tau-Ser396 abundance. Moreover, 41 up-regulated β-catenin and neurogenesis-related markers (GAP43 and MAP-2), thereby promoting neurite outgrowth of neurons in SH-SY5Y cells. According to the in vitro cells assay, 41 showed the lower cytotoxicity to SH-SY5Y cells with a survival rate of over 70 % at the concentration of 100 μM. In vivo efficacy and acute toxicity experiments showed that, 41 effectively ameliorated the dyskinesia in AlCl3-induced zebrafish AD models and exhibited its low-toxicity nature in C57BL/6 mice. Overall, the pyrrolo[2,3-b]pyridine derivative 41 could serve as a promising GSK-3β inhibitor for treating AD.
Collapse
Affiliation(s)
- Qing-Qing Xun
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China; School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jing Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yan-Peng Li
- Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Ying Li
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yu-Ying Ma
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhao-Bin Chen
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Le-Ping Ding
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xiao-Long Shi
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
2
|
Abdel-Naby DH, El-Sheikh MM, Abd El-Rahman SS, El-Hamoly T. GSK-3β/Notch-1 Activation Promotes Radiation-Induced Renal Damage: The Role of Gallic Acid in Mitigation of Nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4871-4883. [PMID: 38894622 DOI: 10.1002/tox.24361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Despite the therapeutic advances in treating malignancies, the efficient radiotherapeutic approaches with deprived adverse reactions still represent a potential clinical inquiry. The current study aims to elucidate the role of gallic acid (GA) in modifying the hazardous renal cytotoxicity induced by acute exposure to radiation. The MTT test was used to evaluate the viability of Vero cells exposed to 2 Gy gamma radiation with or without incubation of GA. In an in vivo model, male Wistar rats were divided into four experimental groups (n = 6): Control, Irradiated (IRR, 5 Gy), GA (100 mg/kg, i.p.) + IRR, and Glycogen synthase kinase inhibitor (GSKI, 3 mg/kg, i.p.) + IRR. Based on the MTT toxicity assay, from 0 and up to 5 μM dosages of GA did not demonstrate any cytotoxicity to Vero cells. The optimal GA dose that could protect the cells from radiation was 5 μM. Furthermore, GA exerted a protective effect from gamma radiation on renal tissue as indicated by corrected renal functions, decreased LDH level in serum, and balanced oxidative status, which is indicated by decreased tissue contents of NOx and TBARS with a significant increase of reduced GSH. These outcomes were inferred by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. The overall molecular impact of radiation in damaging the renal tissue may be explained by modifying the upstream AKT activity and its downstream targets GSK-3β/Notch-1. Here, we concluded that the anticipated adverse reaction in the course of radiation exposure could be protected by daily administration of GA.
Collapse
Affiliation(s)
- Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Tarek El-Hamoly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Nascimento da Silva J, Conceição CC, Ramos de Brito GC, Renato de Oliveira Daumas Filho C, Walter Nuno AB, Talyuli OAC, Arcanjo A, de Oliveira PL, Moreira LA, Vaz IDS, Logullo C. Immunometabolic crosstalk in Aedes fluviatilis and Wolbachia pipientis symbiosis. J Biol Chem 2024; 300:107272. [PMID: 38588812 PMCID: PMC11154636 DOI: 10.1016/j.jbc.2024.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Wolbachia pipientis is a maternally transmitted symbiotic bacterium that mainly colonizes arthropods, potentially affecting different aspects of the host's physiology, e.g., reproduction, immunity, and metabolism. It has been shown that Wolbachia modulates glycogen metabolism in mosquito Aedes fluviatilis (Ae. fluviatilis). Glycogen synthesis is controlled by the enzyme GSK3, which is also involved in immune responses in both vertebrate and invertebrate organisms. Here we investigated the mechanisms behind immune changes mediated by glycogen synthase kinase β (GSK3β) in the symbiosis between Ae. fluviatilis and W. pipientis using a GSK3β inhibitor or RNAi-mediated gene silencing. GSK3β inhibition or knockdown increased glycogen content and Wolbachia population, together with a reduction in Relish2 and gambicin transcripts. Furthermore, knockdown of Relish2 or Caspar revealed that the immunodeficiency pathway acts to control Wolbachia numbers in the host. In conclusion, we describe for the first time the involvement of GSK3β in Ae. fluviatilis immune response, acting to control the Wolbachia endosymbiotic population.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christiano Calixto Conceição
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisely Cristina Ramos de Brito
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Renato de Oliveira Daumas Filho
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Walter Nuno
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Octavio A C Talyuli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Angélica Arcanjo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Luciano Andrade Moreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil; Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
6
|
Cai YT, Li Z, Wang YY, Li C, Ma QY. A novel GSK3β inhibitor 5n attenuates acute kidney injury. Heliyon 2024; 10:e29159. [PMID: 38644860 PMCID: PMC11031767 DOI: 10.1016/j.heliyon.2024.e29159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality caused by various factor. The specific strategies for AKI are still lacking. GSK3β is widely expressed in the kidneys. In acute models of injury, GSK3β promotes the systemic inflammatory response, increases the proinflammatory release of cytokines, induces apoptosis, and alters cell proliferation. We screened a series of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives which are recognized as new GSK3β inhibitors, and found that 5n had the least toxicity and the best cell protection. We then tested the anti-inflammatory and reno-protective effect of 5n in cisplatin-treated tubular epithelial cells. 5n had anti-inflammation effect indicated by phosphor-NF-κB detection. Finally, we found that 5n ameliorated renal injury and inflammation in cisplatin-induced AKI mouse model. Silencing GSK3β inhibited cell injury and inflammation induced by cisplatin. We found that GSK3β interacted with PP2Ac to modulate the activity of NF-κB. In conclusion, 5n, the novel GSK3β inhibitor, protects against AKI via PP2Ac-dependent mechanisms which may provide a potential strategy for the treatment of AKI in clinic.
Collapse
Affiliation(s)
- Yu-ting Cai
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yue-yue Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Chao Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qiu-ying Ma
- Department of pharmacy, 1. The First Affiliated Hospital of Anhui Medical University, 2. Anhui Public Health Clinical Center, No. 100 Huaihai Road, Hefei, Anhui, 230012, China
| |
Collapse
|
7
|
Jiang XM, Xin QL, Liu K, Peng XF, Han S, Zhang LY, Liu W, Xiao GF, Li H, Zhang LK. Regulation of the WNT-CTNNB1 signaling pathway by severe fever with thrombocytopenia syndrome virus in a cap-snatching manner. mBio 2023; 14:e0168823. [PMID: 37882780 PMCID: PMC10746258 DOI: 10.1128/mbio.01688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE One of the conserved mechanisms at the stage of genome transcription of segmented negative-strand RNA viruses (sNSVs) is the cap-snatching process, which is vital for sNSVs transcription and provides drugable targets for the development of antivirals. However, the specificity of RNAs snatched by sNSV is still unclear. By transcriptomics analysis of whole blood samples from SFTS patients, we found WNT-CTNNB1 signaling pathway was regulated according to the course of the disease. We then demonstrated that L protein of severe fever with thrombocytopenia syndrome virus (SFTSV) could interact with mRNAs of WNT-CTNNB1 signaling pathway-related gene, thus affecting WNT-CTNNB1 signaling pathway through its cap-snatching activity. Activation of WNT-CTNNB1 signaling pathway enhanced SFTSV replication, while inhibition of this pathway decreased SFTSV replication in vitro and in vivo. These findings suggest that WNT-associated genes may be the substrate for SFTSV "cap-snatching", and indicate a conserved sNSVs replication mechanism involving WNT-CTNNB1 signaling.
Collapse
Affiliation(s)
- Xia-Ming Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Lin Xin
- University of Lyon, INRAE, EPHE, IVPC, Lyon, France
| | - Kai Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shuo Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Geng-Fu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
8
|
Abdalla H, Storino R, Bandeira A, Teixeira L, Millás A, Lisboa-Filho P, Kantovitz K, Nociti Junior F. Glycogen synthase kinase 3 inhibition enhances mineral nodule formation by cementoblasts in vitro. Braz Oral Res 2023; 37:e112. [PMID: 37970932 DOI: 10.1590/1807-3107bor-2023.vol37.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to investigate whether GSK-3 inhibition (CHIR99021) effectively promoted mineralization by cementoblasts (OCCM-30). OCCM-30 cells were used and treated with different concentrations of CHIR99021 (2.5, 5, and 10 mM). Experiments included proliferation and viability, cellular metabolic activity, gene expression, and mineral nodule formation by Xylene Orange at the experimental time points. In general, CHIR99021 did not significantly affect OCCM-30 viability and cell metabolism (MTT assay) (p > 0.05), but increased OCCM-30 proliferation at 2.5 mM on days 2 and 4 (p < 0.05). Data analysis further showed that inhibition of GSK-3 resulted in increased transcript levels of Axin2 in OCCM-30 cells starting as early as 4 h, and regulated the expression of key bone markers including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx-2), osteocalcin (Ocn), and osterix (Osx). In addition, CHIR99021 led to an enhanced mineral nodule formation in vitro under both osteogenic and non-osteogenic conditions as early as 5 days after treatment. Altogether, the results of the current study suggest that inhibition of GSK-3 has the potential to promote cementoblast differentiation leading to increased mineral deposition in vitro.
Collapse
Affiliation(s)
- Henrique Abdalla
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Rafael Storino
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Amanda Bandeira
- Universidade José do Rosário Vellano University, School of Dentistry, Department of Periodontics, Varginha, MG, Brazil
| | - Lucas Teixeira
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Ana Millás
- Empresa de Biotecnologia e Soluções 3D, 3D Biotechnology Solutions, Department of Innovation, Campinas, SP, Brazil
| | - Paulo Lisboa-Filho
- Universidade Estadual Paulista, School of Sciences, Department of Physics and Meteorology, Bauru, SP, Brazil
| | - Kamila Kantovitz
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| | - Francisco Nociti Junior
- Faculdade São Leopoldo Mandic, School of Dentistry, Department of Research, Campinas SP, Brazil
| |
Collapse
|
9
|
Yan N, Xie F, Tang LQ, Wang DF, Li X, Liu C, Liu ZP. Synthesis and biological evaluation of thieno[3,2-c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer's disease. Bioorg Chem 2023; 138:106663. [PMID: 37329814 DOI: 10.1016/j.bioorg.2023.106663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a potential target for anti-Alzheimer's disease (AD) drug development. In this study, a series of novel thieno[3,2-c]pyrazol-3-amine derivatives was synthesized and evaluated as potential GSK-3β inhibitors by structure-based drug design. The thieno[3,2-c]pyrazol-3-amine derivative 54 with a 4-methylpyrazole moiety which interacted with Arg141 by π-cation interaction was identified as a potent GSK-3β inhibitor with an IC50 of 3.4 nM and an acceptable kinase selectivity profile. In the rat primary cortical neurons, compound 54 showed neuroprotective effects on Aβ-induced neurotoxicity. Western blot analysis indicated that 54 inhibited GSK-3β by up-regulating the expression of phosphorylated GSK-3β at Ser9 and down-regulating the expression of phosphorylated GSK-3β at Tyr216. Meanwhile, 54 decreased tau phosphorylation at Ser396 in a dose-dependent way. In astrocytes and microglia cells, 54 inhibited the expression of inducible nitric oxide synthase (iNOS), indicating that 54 showed an anti-neuroinflammatory effect. In the AlCl3-induced zebrafish AD model, 54 significantly ameliorated the AlCl3-induced dyskinesia, demonstrating its anti-AD activity in vivo.
Collapse
Affiliation(s)
- Ning Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Long-Qian Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - De-Feng Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
10
|
Danazumi AU, Ishmam IT, Idris S, Izert MA, Balogun EO, Górna MW. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis. Eur J Pharm Sci 2023; 186:106451. [PMID: 37088149 PMCID: PMC11032742 DOI: 10.1016/j.ejps.2023.106451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
African trypanosomiasis (AT) is a hemoparasitic disease caused by infection with African trypanosomes and it is prevalent in many sub-Saharan African countries, affecting both humans and domestic animals. The disease is transmitted mostly by haematophagous insects of the genus Glossina while taking blood meal, in the process spreading the parasites from an infected animal to an uninfected animal. The disease is fatal if untreated, and the available drugs are generally ineffective and resulting in toxicities. Therefore, it is still pertinent to explore novel methods and targets for drug discovery. Proteolysis-targeting chimeras (PROTACs) present a new strategy for development of therapeutic molecules that mimic cellular proteasomal-mediated protein degradation to target proteins involved in different disease types. PROTACs have been used to degrade proteins involved in various cancers, neurodegenerative diseases, and immune disorders with remarkable success. Here, we highlight the problems associated with the current treatments for AT, discuss the concept of PROTACs and associated targeted protein degradation (TPD) approaches, and provide some insights on the future potential for the use of these emerging technologies (PROTACs and TPD) for the development of new generation of anti-Trypanosoma drugs and the first "TrypPROTACs".
Collapse
Affiliation(s)
- Ammar Usman Danazumi
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Salisu Idris
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Matylda Anna Izert
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Hartz RA, Ahuja VT, Luo G, Chen L, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Xu S, Tokarski JS, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J Med Chem 2023. [PMID: 37235865 DOI: 10.1021/acs.jmedchem.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
12
|
Samim Khan S, Janrao S, Srivastava S, Bala Singh S, Vora L, Kumar Khatri D. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 2023; 210:115496. [PMID: 36907495 DOI: 10.1016/j.bcp.2023.115496] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3β, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3β in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3β mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sushmita Janrao
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
13
|
Hartz RA, Ahuja VT, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Design, Structure-Activity Relationships, and In Vivo Evaluation of Potent and Brain-Penetrant Imidazo[1,2- b]pyridazines as Glycogen Synthase Kinase-3β (GSK-3β) Inhibitors. J Med Chem 2023; 66:4231-4252. [PMID: 36950863 DOI: 10.1021/acs.jmedchem.3c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates numerous cellular processes, including metabolism, proliferation, and cell survival. Due to its multifaceted role, GSK-3 has been implicated in a variety of diseases, including Alzheimer's disease, type 2 diabetes, cancer, and mood disorders. GSK-3β has been linked to the formation of the neurofibrillary tangles associated with Alzheimer's disease that arise from the hyperphosphorylation of tau protein. The design and synthesis of a series of imidazo[1,2-b]pyridazine derivatives that were evaluated as GSK-3β inhibitors are described herein. Structure-activity relationship studies led to the identification of potent GSK-3β inhibitors. In vivo studies with 47 in a triple-transgenic mouse Alzheimer's disease model showed that this compound is a brain-penetrant, orally bioavailable GSK-3β inhibitor that significantly lowered levels of phosphorylated tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
14
|
Amaral B, Capacci A, Anderson T, Tezer C, Bajrami B, Lulla M, Lucas B, Chodaparambil JV, Marcotte D, Kumar PR, Murugan P, Spilker K, Cullivan M, Wang T, Peterson AC, Enyedy I, Ma B, Chen T, Yousaf Z, Calhoun M, Golonzhka O, Dillon GM, Koirala S. Elucidation of the GSK3α Structure Informs the Design of Novel, Paralog-Selective Inhibitors. ACS Chem Neurosci 2023; 14:1080-1094. [PMID: 36812145 PMCID: PMC10020971 DOI: 10.1021/acschemneuro.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3β with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3β and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.
Collapse
Affiliation(s)
- Brenda Amaral
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew Capacci
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Trip Anderson
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ceren Tezer
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Departments of Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mukesh Lulla
- Departments of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian Lucas
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mike Cullivan
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ti Wang
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anton C Peterson
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zain Yousaf
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Calhoun
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Olga Golonzhka
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gregory M Dillon
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Samir Koirala
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
15
|
Cabezas D, Mellado G, Espinoza N, Gárate JA, Morales C, Castro-Alvarez A, Matos MJ, Mellado M, Mella J. In silico approaches to develop new phenyl-pyrimidines as glycogen synthase kinase 3 (GSK-3) inhibitors with halogen-bonding capabilities: 3D-QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2023; 41:13250-13259. [PMID: 36718094 DOI: 10.1080/07391102.2023.2172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is involved in different diseases, such as manic-depressive illness, Alzheimer's disease and cancer. Studies have shown that insulin inhibits GSK-3 to keep glycogen synthase active. Inhibiting GSK-3 may have an indirect pro-insulin effect by favouring glycogen synthesis. Therefore, the development of GSK-3 inhibitors can be a useful alternative for the treatment of type II diabetes. Aminopyrimidine derivatives already proved to be interesting GSK-3 inhibitors. In the current study, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) have been performed on a series of 122 aminopyrimidine derivatives in order to generate a robust model for the rational design of new compounds with promising antidiabetic activity. The q2 values obtained for the best CoMFA and CoMSIA models have been 0.563 and 0.598, respectively. In addition, the r2 values have been 0.823 and 0.925 for CoMFA and CoMSIA, respectively. The models were statistically validated, and from the contour maps analysis, a proposal of 10 new compounds has been generated, with predicted pIC50 higher than 9. The final contribution of our work is that: (a) we provide an extensive structure-activity relationship for GSK-3 inhibitory pyrimidines; and (b) these models may speed up the discovery of GSK-3 inhibitors based on the aminopyrimidine scaffold. Finally, we carried out docking and molecular dynamics studies of the two best candidates, which were shown to establish halogen-bond interactions with the enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guido Mellado
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicolás Espinoza
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José Antonio Gárate
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad San Sebastián, Santiago, Chile
| | - César Morales
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Laiman J, Hsu YJ, Loh J, Tang WC, Chuang MC, Liu HK, Yang WS, Chen BC, Chuang LM, Chang YC, Liu YW. GSK3α phosphorylates dynamin-2 to promote GLUT4 endocytosis in muscle cells. J Cell Biol 2022; 222:213725. [PMID: 36445308 PMCID: PMC9712776 DOI: 10.1083/jcb.202102119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2) in catalyzing GLUT4 endocytosis is negatively regulated by insulin signaling in muscle cells. Mechanistically, the fission activity of Dyn2 is inhibited by binding with the SH3 domain of Bin1. In the absence of insulin, GSK3α phosphorylates Dyn2 to relieve the inhibition of Bin1 and promotes endocytosis. Conversely, insulin signaling inactivates GSK3α and leads to attenuated GLUT4 internalization. Furthermore, the isoform-specific pharmacological inhibition of GSK3α significantly improves insulin sensitivity and glucose tolerance in diet-induced insulin-resistant mice. Together, we identify a new role of GSK3α in insulin-stimulated glucose disposal by regulating Dyn2-mediated GLUT4 endocytosis in muscle cells. These results highlight the isoform-specific function of GSK3α on membrane trafficking and its potential as a therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Jessica Laiman
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Jung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Julie Loh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun Tang
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan,Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Bi-Chang Chen
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Lee-Ming Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,Yi-Cheng Chang:
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,Correspondence to Ya-Wen Liu:
| |
Collapse
|
17
|
Cho JH, Kim K, Cho HC, Lee J, Kim EK. Silencing of hypothalamic FGF11 prevents diet-induced obesity. Mol Brain 2022; 15:75. [PMID: 36064426 PMCID: PMC9447329 DOI: 10.1186/s13041-022-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 11 (FGF11) is a member of the intracellular fibroblast growth factor family. Here, we report the central role of FGF11 in the regulation of metabolism. Lentiviral injection of Fgf11 shRNA into the arcuate nucleus of the mouse hypothalamus decreased weight gain and fat mass, increased brown adipose tissue thermogenesis, and improved glucose and insulin intolerances under high-fat diet conditions. Fgf11 was expressed in the NPY–expressing neurons, and Fgf11 knockdown considerably decreased Npy expression and projection, leading to increased expression of tyrosine hydroxylase in the paraventricular nucleus. Mechanistically, FGF11 regulated Npy gene expression through the glycogen synthase kinase 3–cAMP response element-binding protein pathway. Our study defines the physiological significance of hypothalamic FGF11 in the regulation of metabolism in response to overnutrition such as high-fat diet.
Collapse
Affiliation(s)
- Jae Hyun Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Kyungchan Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Han Chae Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Jaemeun Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea. .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea.
| |
Collapse
|
18
|
Sunkari YK, Meijer L, Flajolet M. The protein kinase CK1: Inhibition, activation, and possible allosteric modulation. Front Mol Biosci 2022; 9:916232. [PMID: 36090057 PMCID: PMC9449355 DOI: 10.3389/fmolb.2022.916232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Protein kinases play a vital role in biology and deregulation of kinases is implicated in numerous diseases ranging from cancer to neurodegenerative diseases, making them a major target class for the pharmaceutical industry. However, the high degree of conservation that exists between ATP-binding sites among kinases makes it difficult for current inhibitors to be highly specific. In the context of neurodegeneration, several groups including ours, have linked different kinases such as CK1 and Alzheimer’s disease for example. Strictly CK1-isoform specific regulators do not exist and known CK1 inhibitors are inhibiting the enzymatic activity, targeting the ATP-binding site. Here we review compounds known to target CK1, as well as other inhibitory types that could benefit CK1. We introduce the DNA-encoded library (DEL) technology that might represent an interesting approach to uncover allosteric modulators instead of ATP competitors. Such a strategy, taking into account known allosteric inhibitors and mechanisms, might help designing modulators that are more specific towards a specific kinase, and in the case of CK1, toward specific isoforms.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, France
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- *Correspondence: Marc Flajolet, ,
| |
Collapse
|
19
|
Sanad SMH, Mekky AEM. [3 + 2] Cycloaddition synthesis of new (nicotinonitrile-chromene) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Atukuri D. Pyrazolopyridine: An efficient pharmacophore in recent drug design and development. Chem Biol Drug Des 2022; 100:376-388. [PMID: 35661410 DOI: 10.1111/cbdd.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
Among the various heterocyclic molecules employed for drug design and discovery, pyrazolopyridine is one of the promising pharmacophores. Pyrazolopyridine is a result of fusion of pyrazole and pyridine rings. The potent pharmacology of pyrazolopyridine may be the synergistic effect of pyrazole and pyridine moieties in a single framework. It has been used in drug design of a wide range of diseases such as anticancer, antimicrobial, anti-inflammatory, and neuroprotection. Cancer has become a common disease among elderly people now a days that might be because of genetic inheritance to some extent, carcinogens, pollution, and some infectious diseases. Whatever may be the reason, cancer is one of the major causes of deaths worldwide. In addition, over-usage and improper usage of antibiotics have led to drug resistance of microbes. Further, inflammation is a cause of various diseases such as arthritis, and other diseases. Thus, proinflammatory kinases are considered as primary target for inhibition of inflammation. In view of this, a work that compiles potent pharmacology of recently reported pyrazolopyridine analogs has been planned. The review is aimed to discuss pharmacology in brief along with structure-activity relationship (SAR). The review would emphasize importance of pyrazolopyridines in future drug design and discovery and may help in design of potent pharmacological agents.
Collapse
|
21
|
Zhao T, McMahon M, Reynolds K, Saha SK, Stokes A, Zhou CJ. The role of Lrp6-mediated Wnt/β-catenin signaling in the development and intervention of spinal neural tube defects in mice. Dis Model Mech 2022; 15:275313. [PMID: 35514236 PMCID: PMC9194482 DOI: 10.1242/dmm.049517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Neural tube defects (NTDs) are among the common and severe birth defects with poorly understood etiology. Mutations in the Wnt co-receptor LRP6 are associated with NTDs in humans. Either gain-of-function (GOF) or loss-of-function (LOF) mutations of Lrp6 can cause NTDs in mice. NTDs in Lrp6-GOF mutants may be attributed to altered β-catenin-independent noncanonical Wnt signaling. However, the mechanisms underlying NTDs in Lrp6-LOF mutants and the role of Lrp6-mediated canonical Wnt/β-catenin signaling in neural tube closure remain unresolved. We previously demonstrated that β-catenin signaling is required for posterior neuropore (PNP) closure. In the current study, conditional ablation of Lrp6 in dorsal PNP caused spinal NTDs with diminished activities of Wnt/β-catenin signaling and its downstream target gene Pax3, which is required for PNP closure. β-catenin-GOF rescued NTDs in Lrp6-LOF mutants. Moreover, maternal supplementation of a Wnt/β-catenin signaling agonist reduced the frequency and severity of spinal NTDs in Lrp6-LOF mutants by restoring Pax3 expression. Together, these results demonstrate the essential role of Lrp6-mediated Wnt/β-catenin signaling in PNP closure, which could also provide a therapeutic target for NTD intervention through manipulation of canonical Wnt/β-catenin signaling activities. Summary: Conditional ablation of Lrp6 in dorsal neural folds causes spinal neural tube defects that can be rescued by genetic activation of β-catenin or maternal supplementation of Wnt signaling agonists.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kurt Reynolds
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Subbroto Kumar Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Arjun Stokes
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
22
|
Rahman M, Islam R, Rabbi F, Islam MT, Sultana S, Ahmed M, Sehgal A, Singh S, Sharma N, Behl T. Bioactive Compounds and Diabetes Mellitus: Prospects and Future Challenges. Curr Pharm Des 2022; 28:1304-1320. [PMID: 35418280 DOI: 10.2174/1381612828666220412090808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic condition that influences the endocrine framework. Hyperglycemia and hyperlipidemia are two of the most widely recognized metabolic irregularities in diabetes, just as two of the most well-known reasons for diabetic intricacies. Diabetes mellitus is a persistent illness brought about by metabolic irregularities in hyperglycemic pancreatic cells. Hyperglycemia can be brought about by an absence of insulin-producing beta cells in the pancreas (Type 1 diabetes mellitus) or inadequate insulin creation that does not work effectively (Type 2 diabetes mellitus). Present diabetes medication is directed toward directing blood glucose levels in the systemic circulation to the typical levels. Numerous advanced prescription medicines have many negative results that can bring about unexpected severe issues during treatment of the bioactive compound from a different source that is beneficially affected by controlling, adjusting metabolic pathways or cycles. Moreover, a few new bioactive medications disengaged from plants have shown antidiabetic action with more noteworthy adequacy than the oral hypoglycemic agent that specialists have utilized in clinical treatment lately. Since bioactive mixtures are collected from familiar sources, they have a great activity in controlling diabetes mellitus. This study discusses bioactive compounds and their activity to manage diabetes mellitus and their prospects. Though bioactive compound has many health beneficial properties, adequate clinical studies still need to gain large acknowledge that they are effective in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fazle Rabbi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
23
|
Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur J Med Chem 2022; 236:114301. [PMID: 35390715 DOI: 10.1016/j.ejmech.2022.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3β inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3β, as well as the selectivity profile and therapeutic potential of different categories of GSK-3β inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3β inhibitors.
Collapse
|
24
|
Gao X, Deng B, Ran S, Li S. The effect of GSK-3β in arsenic-induced apoptosis of malignant tumor cells: a systematic review and meta-analysis. Toxicol Mech Methods 2022; 32:477-487. [PMID: 35272572 DOI: 10.1080/15376516.2022.2051654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Arsenic has been reported to induce apoptosis in malignant tumor cells. Therefore, it may be regarded as a treatment for cancers. The mitochondrial apoptosis pathway, mediated by GSK-3β, plays an important role in tumor cell apoptosis. Nonetheless, the regulation of GSK-3β by arsenic remains controversial. MATERIALS AND METHODS We included 19 articles, which conducts the role of GSK-3β in the process of arsenic-induced tumor cell apoptosis by the meta-analysis. RESULTS Compared with that of control group, the expression of GSK-3β (SMD= -0.92, 95% CI (-1.78, -0.06)), p-Akt (SMD= -5.46,95% CI (-8.67, -2.24)) were increased in the arsenic intervention group. Meanwhile, the combined treatment of arsenic and Akt agonists can inhibit p-GSK-3β. Using the dose and time subgroup analysis, it was shown that the low-dose (<5 μmol/L) and sub-chronic (>24 h) arsenic exposure could inhibit the expression of p-Akt (P < 0.05). In the subgroup analysis of GSK-3β sites, arsenic could inhibit p-Akt and GSK-3β (Ser9) (SMD = -0.95, 95% CI (-1.56, -0.33)). There was a positive dose-response relationship between arsenic and p-GSK-3β when the dose of arsenic was less than 8 μmol/L. The expression of Mcl-1 and pro-caspase-3 were decreased, while the loss of mitochondrial membrane potential and cleaved-caspase-3 increased significantly when arsenic stimulated GSK-3β (Ser9) (P < 0.05). CONCLUSION The study revealed that arsenic could induce tumor cell apoptosis, by inhibiting p-Akt/GSK-3β, and triggering the Mcl-1-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xin Gao
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Bin Deng
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Shanshan Ran
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Xinjiang, China.,School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Dorababu A. Promising heterocycle-based scaffolds in recent (2019-2021) anti-Alzheimer's drug design and discovery. Eur J Pharmacol 2022; 920:174847. [PMID: 35218718 DOI: 10.1016/j.ejphar.2022.174847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases that led to morbidity and mortality world-wide. It is a complex disease whose etiology is not completely known that leads to difficulty in prevent or cure of the AD. Also, there are only few approved drugs for AD treatment. Apart from deaths due to AD, expenditure of treatment and care of AD patients is higher than that of treatment of HIV and cancer diseases combined. Hence, it leads to an economic burden also. Although research is being carried out on designing drugs for AD, most of them have ended up in poor inhibitors with high toxicity. Hence, researchers should shoulder a great responsibility of discovery of efficient drugs for AD treatment. In the field of drug discovery, heterocycles played an important role. Also, most of the heterocyclic scaffolds have been used in design of potent anti-AD agents. In view of this, heterocyclic molecules reported recently are compiled and evaluated comprehensively. Especially, the molecules which exhibited pronounced activity are emphasized and described with respect to structure-activity relationship (SAR) in brief.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, 583219, India.
| |
Collapse
|
26
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
27
|
Kim YS, Lee YG, Kim MT, Lee HJ. Treatment With Glycogen Synthase Kinase 3β Inhibitor Decreases Apoptotic and Autophagic Reactions in Rat Rotator Cuff Tears. Orthop J Sports Med 2021; 9:23259671211060771. [PMID: 34901295 PMCID: PMC8652192 DOI: 10.1177/23259671211060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Apoptosis and autophagy are known to be correlated with the extent of damage in torn rotator cuffs, and there is no biological evidence for self-recovery or healing of the rotator cuff tear. Purpose: To establish in a rat model of partial- and full-thickness rotator cuff tears how a glycogen synthase kinase 3β (GSK-3β) inhibitor affects the expression of apoptotic and autophagic markers. Study Design: Controlled laboratory study. Methods: Twelve-week-old Sprague Dawley rats were divided into 3 groups (n = 16 per group). Group 1 acted as the control, with no treatment; group 2 received partial-thickness (right side) and full-thickness (left side) rotator cuff tears only; and group 3 received the same rotator cuff injuries, with GSK-3β inhibitor injected afterward. The tendons from each group were harvested 42 days after surgery. Evaluation of gene expression, immunohistochemistry, and TUNEL staining (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) were performed for the following markers: caspases 3, 8, and 9 as well as Bcl-2 (B-cell lymphoma 2); BAX (Bcl-2-associated X protein); beclin 1; p53; and GSK-3β; which represented apoptotic and autophagic reactions. Statistical analysis was performed using 1-way analysis of variance. Results: In the group 2 rats with partial- and full-thickness tears, there were significant increases in the mRNA levels (fold changes) of all 8 markers as compared with group 1 (control). All these increased markers showed significant downregulation by the GSK-3β inhibitor in partial-thickness tears. However, the response to the GSK-3β inhibitor in full-thickness tears was not as prominent as in partial-thickness tears. The number of TUNEL-positive cells in group 2 (partial, 35.08% ± 1.625% [mean ± SE]; full, 46.92% ± 1.319%) was significantly higher than in group 1 (18.02% ± 1.036%; P < .01) and group 3 (partial, 28.04% ± 2.607% [P < .01]; full, 38.97% ± 2.772% [P < .01]), and immunohistochemistry revealed increased expression of all the markers in group 2 as compared with control. Conclusion: The apoptotic and autophagic activity induced in a rat model of an acute rotator cuff tear was downregulated after treatment with a GSK-3β inhibitor, particularly with partial-thickness rotator cuff tears. Clinical Relevance: A GSK-3β inhibitor may be able to modulate deterioration in a torn rotator cuff.
Collapse
Affiliation(s)
- Yang-Soo Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun-Gyoung Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Tae Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
28
|
Khan I, Tantray MA, Hamid H, Sarwar Alam M, Sharma K, Kesharwani P. Design, synthesis, in vitro antiproliferative evaluation and GSK-3β kinase inhibition of a new series of pyrimidin-4-one based amide conjugates. Bioorg Chem 2021; 119:105512. [PMID: 34861627 DOI: 10.1016/j.bioorg.2021.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022]
Abstract
A new series of novel amide conjugates of pyrimidin-4-one and aromatic/heteroaromatic /secondary cyclic amines has been synthesized and their in vitro antiproliferative activities against a panel of 60 human cancer cell lines of nine different cancer types were tested at NCI. Among the synthesized compounds, compound (4i) showed significant anti-proliferative activity. Compound (4i) displayed most potent activity against the breast tumor cell line T-47D and CNS tumor cell line SNB-75 exhibiting a growth of 1.93 % and 14.63 %, respectively. ADMET studies of the synthesized compounds were also performed and they were found to exhibit good drug like properties. Compound (4i) was found to exhibit potential inhibitory effect over GSK-3β with IC50 value of 71 nM. The molecular docking studies revealed that (4i) showed good binding affinity to GSK-3β and revealed multiple H-bonding and p-cation interactions with important amino acid residues on the receptor site. Compound (4i) may thus serve as a potential candidate for further development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Imran Khan
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India
| | - Mushtaq A Tantray
- Chemistry Research Lab, Department of Chemistry, Govt. Degree College Baramulla, J&K 193103, India
| | - Hinna Hamid
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India.
| | - Mohammad Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi 110 062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110 062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110 062, India
| |
Collapse
|
29
|
Kumar Jain A, Gupta A, Karthikeyan C, Trivedi P, Dutt Konar A. Unravelling the Selectivity of 6,7-Dimethyl Quinoxaline Analogs for Kinase Inhibition: An Insight towards the Development of Alzheimer's Therapeutics. Chem Biodivers 2021; 18:e2100364. [PMID: 34486216 DOI: 10.1002/cbdv.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Untangling the most selective kinase inhibitors via pharmacological intervention remains one of the challenging affairs to date. In accordance to this drift, herein we describe the design and synthesis of a set of new heterocyclic analogs consisting of 6,7-dimethyl Quinoxaline, appended to a connector, employing Schiff base strategy (Compounds I-IX). The compounds were characterized by various spectroscopic techniques and the kinase inhibition assay were performed on few prime members of the CMGC family namely the GSK3β, DYRK1A and CLK1 receptors, respectively, that have been known to be directly involved in hyperphosphorylation of Tau. Interestingly the biological evaluation results revealed that Compounds IV and V, with bromo/chloro functionalities in the aromatic core were advantaged of being highly selective towards the target GSK3β over others. To strengthen our analysis, we adopted molecular modelling studies, where compounds IV/V were redocked in the same grid 4AFJ, as that of the reference ligand, 5-aryl-4-carboxamide-1,3-oxazole. Surprisingly, our investigation underpinned that for both the compounds IV/V, a primary H-bonding existed between the designed molecules (IV/V) and Val 135 residue in the receptor GSK3β, in line with the reference ligand. We attribute this interaction to instigate potency in the compounds. Indeed the other non-covalent interaction, between the derivative's aromatic nucleus and Arg 141/Thr 138 in the receptor GSK3β, might have been responsible for enhancing the selectivity in the targets. Overall, we feel that the present work depicts a logical demonstration towards fine tuning the efficacy of the inhibitors through systematic adjustment of electron density at appropriate positions in the aromatic ring be it the main quinoxaline or the other aromatic nucleus. Thus this pathway offers a convenient strategy for the development of efficient therapeutics for diversified neurodegenerative diseases like that of Alzheimer's.
Collapse
Affiliation(s)
- Arvind Kumar Jain
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Arindam Gupta
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - C Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (MP), 484887, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
- Center of Innovation and Translational Research, BharatiVidyapeeth, Pune, 411038, Maharashtra, India
| | - Anita Dutt Konar
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
- Dept. of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Bhopal, 462033, Madhya Pradesh, India
- University Grants Commission, New Delhi -, 110002, New Delhi, India
| |
Collapse
|
30
|
Hong S, Ju S, Yoo JW, Ha NC, Jung Y. Design and evaluation of IKK-activated GSK3β inhibitory peptide as an inflammation-responsive anti-colitic therapeutic. Biomater Sci 2021; 9:6584-6596. [PMID: 34582526 DOI: 10.1039/d1bm00533b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycogen synthase kinase-3β (GSK3β), a multi-functional kinase, is a promising therapeutic target for the treatment of inflammation. Inhibitory κB kinase (IKK)-activated GSK3β inhibitory peptide (IAGIP) was designed as an inflammation-responsive anti-colitic therapeutic. To optimize therapeutic efficiency, IAGIP was tested using two different drug delivery techniques: colon-targeted delivery and cell-permeable peptide modification. In cell-based experiments, in response to tumor necrosis factor (TNF)- and lipopolysaccharide (LPS)-mediated activation of IKK, cell-permeable IAGIP (CTP-IAGIP) inhibited GSK3β, leading to increased production of anti-inflammatory cytokine interleukin-10 (IL-10) and suppression of TNF- and LPS-induced NFκB activity. Oral gavage of CTP-IAGIP loaded in the colon-targeted capsule attenuated 2,4,6-trinitrobenzene sulfonic acid-induced rat colitis and lowered the expression levels of NFκB-regulated proteins in the inflamed colons. CTP-IAGIP further induced IL-10 production in the inflamed colonic tissues; however, the levels of IL-10 were not affected in the normal colonic tissue or colonic tissue in which inflammation had subsided. Collectively, our data suggest that IAGIP administered using the aforementioned drug delivery techniques is an orally active anti-colitic drug selectively responding to inflammation.
Collapse
Affiliation(s)
- Sungchae Hong
- College of Pharmacy, Pusan National University, Busan, 46241 Republic of Korea.
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, 46241 Republic of Korea.
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, 46241 Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea.
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 46241 Republic of Korea.
| |
Collapse
|
31
|
Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nat Commun 2021; 12:5305. [PMID: 34489447 PMCID: PMC8421361 DOI: 10.1038/s41467-021-25651-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial dysfunction is a common hallmark of neurological disorders, and reducing mitochondrial damage is considered a promising neuroprotective therapeutic strategy. Here, we used high-throughput small molecule screening to identify CHIR99021 as a potent enhancer of mitochondrial function. CHIR99021 improved mitochondrial phenotypes and enhanced cell viability in several models of Huntington’s disease (HD), a fatal inherited neurodegenerative disorder. Notably, CHIR99201 treatment reduced HD-associated neuropathology and behavioral defects in HD mice and improved mitochondrial function and cell survival in HD patient-derived neurons. Independent of its known inhibitory activity against glycogen synthase kinase 3 (GSK3), CHIR99021 treatment in HD models suppressed the proteasomal degradation of calpastatin (CAST), and subsequently inhibited calpain activation, a well-established effector of neural death, and Drp1, a driver of mitochondrial fragmentation. Our results established CAST-Drp1 as a druggable signaling axis in HD pathogenesis and highlighted CHIR99021 as a mitochondrial function enhancer and a potential lead for developing HD therapies. Mitochondrial dysfunction is a common hallmark of neurological disorders. Here, the authors identify CHIR99021 as a potent enhancer of mitochondrial function, which improved mitochondrial phenotypes in Huntington’s disease models. CHIR99021 was shown to stabilize calpastatin, which suppressed calpain activation and Drp1-induced mitochondrial fragmentation.
Collapse
|
32
|
A modified glass ionomer cement to mediate dentine repair. Dent Mater 2021; 37:1307-1315. [PMID: 34175133 DOI: 10.1016/j.dental.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Glass ionomer cements (GIC) can be used to protect dentine following caries removal. However, GIC have little biological activity on biological repair processes, which means that neo-dentine formation remains reliant on limited endogenous regenerative processes. Wnt/β-catenin signalling is known to play a central role in stimulating tertiary dentine formation following tooth damage and can be stimulated by a range of glycogen synthase kinase (GSK3) antagonists, including lithium ions. METHODS Here, we created lithium-containing bioactive glass (BG) by substituting lithium for sodium ions in 45S5 BG. We then replaced between 10 and 40% of the powder phase of a commercial GIC with the lithium-substituted BG to create a range of formulations of 'LithGlassGIC'. In vitro physical properties of the resulting glasses were characterised and their ability to stimulate reactionary dentine formation in mouse molars in vivo was tested. RESULTS Lithium release from LithGlassGIC increased with increasing lithium content in the cement. In common with unmodified commercial GIC, all formations of LithGlassGIC showed in vitro toxicity when measured using an indirect cell culture assay based on ISO10993:5, precluding direct pulp contact. However, in a murine non-exposed pulp model of tooth damage, LithGlassGIC quickly released lithium ions, which could be transiently detected in the saliva and blood. LithGlassGIC also enhanced the formation of tertiary dentine, resulting in a thickening of the dentine at the damage site that restored lost dentine volume. Dentine regeneration was likely mediated by upregulation of Wnt/β-catenin activity, as LithGlassGIC placed in TCF/Lef:H2B-GFP reporter mice showed enhanced GFP activity. SIGNIFICANCE We conclude that LithGlassGIC acts as a biological restorative material that promotes tertiary dentine formation and restores tooth structure.
Collapse
|
33
|
Alaohali A, Salzlechner C, Zaugg LK, Suzano F, Martinez A, Gentleman E, Sharpe PT. GSK3 Inhibitor-Induced Dentinogenesis Using a Hydrogel. J Dent Res 2021; 101:46-53. [PMID: 34152872 PMCID: PMC8721547 DOI: 10.1177/00220345211020652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small-molecule drugs targeting glycogen synthase kinase 3 (GSK3) as inhibitors of the protein kinase activity are able to stimulate reparative dentine formation. To develop this approach into a viable clinical treatment for exposed pulp lesions, we synthesized a novel, small-molecule noncompetitive adenosine triphosphate (ATP) drug that can be incorporated into a biodegradable hydrogel for placement by syringe into the tooth. This new drug, named NP928, belongs to the thiadiazolidinone (TDZD) family and has equivalent activity to similar drugs of this family such as tideglusib. However, NP928 is more water soluble than other TDZD drugs, making it more suitable for direct delivery into pulp lesions. We have previously reported that biodegradable marine collagen sponges can successfully deliver TDZD drugs to pulp lesions, but this involves in-theater preparation of the material, which is not ideal in a clinical context. To improve surgical handling and delivery, here we incorporated NP928 into a specifically tailored hydrogel that can be placed by syringe into a damaged tooth. This hydrogel is based on biodegradable hyaluronic acid and can be gelled in situ upon dental blue light exposure, similarly to other common dental materials. NP928 released from hyaluronic acid-based hydrogels upregulated Wnt/β-catenin activity in pulp stem cells and fostered reparative dentine formation compared to marine collagen sponges delivering equivalent concentrations of NP928. This drug-hydrogel combination has the potential to be rapidly developed into a therapeutic procedure that is amenable to general dental practice.
Collapse
Affiliation(s)
- A Alaohali
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Dental and Oral Health, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - C Salzlechner
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - L K Zaugg
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - F Suzano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A Martinez
- Centro de Investigaciones Biologicas-CSIC, Madrid, Spain
| | - E Gentleman
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - P T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
34
|
Abd El-Fadeal NM, Nafie MS, K. El-kherbetawy M, El-mistekawy A, Mohammad HMF, Elbahaie AM, Hashish AA, Alomar SY, Aloyouni SY, El-dosoky M, Morsy KM, Zaitone SA. Antitumor Activity of Nitazoxanide against Colon Cancers: Molecular Docking and Experimental Studies Based on Wnt/β-Catenin Signaling Inhibition. Int J Mol Sci 2021; 22:5213. [PMID: 34069111 PMCID: PMC8156814 DOI: 10.3390/ijms22105213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
In colon cancer, wingless (Wnt)/β-catenin signaling is frequently upregulated; however, the creation of a molecular therapeutic agent targeting this pathway is still under investigation. This research aimed to study how nitazoxanide can affect Wnt/β-catenin signaling in colon cancer cells (HCT-116) and a mouse colon cancer model. Our study included 2 experiments; the first was to test the cytotoxic activity of nitazoxanide in an in vitro study on a colon cancer cell line (HCT-116) versus normal colon cells (FHC) and to highlight the proapoptotic effect by MTT assay, flow cytometry and real-time polymerase chain reaction (RT-PCR). The second experiment tested the in vivo cytotoxic effect of nitazoxanide against 1,2-dimethylhydrazine (DMH) prompted cancer in mice. Mice were grouped as saline, DMH control and DMH + nitazoxanide [100 or 200 mg per kg]. Colon levels of Wnt and β-catenin proteins were assessed by Western blotting while proliferation was measured via immunostaining for proliferating cell nuclear antigen (PCNA). Treating HCT-116 cells with nitazoxanide (inhibitory concentration 50 (IC50) = 11.07 µM) revealed that it has a more cytotoxic effect when compared to 5-flurouracil (IC50 = 11.36 µM). Moreover, it showed relatively high IC50 value (non-cytotoxic) against the normal colon cells. Nitazoxanide induced apoptosis by 15.86-fold compared to control and arrested the cell cycle. Furthermore, nitazoxanide upregulated proapoptotic proteins (P53 and BAX) and caspases but downregulated BCL-2. Nitazoxanide downregulated Wnt/β-catenin/glycogen synthase kinase-3β (GSK-3β) signaling and PCNA staining in the current mouse model. Hence, our findings highlighted the cytotoxic effect of nitazoxanide and pointed out the effect on Wnt/β-catenin/GSK-3β signaling.
Collapse
Affiliation(s)
- Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | | | - Amr El-mistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-azhar University, Cairo 11651, Egypt;
| | - Hala M. F. Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Central Laboratory, Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Alaaeldeen M. Elbahaie
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdullah A. Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 36285, Saudi Arabia;
| | - Mohamed El-dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Khaled M. Morsy
- Department of Anesthesia Technology, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 714, Saudi Arabia
| |
Collapse
|
35
|
Vandernoot I, Haerlingen B, Gillotay P, Trubiroha A, Janssens V, Opitz R, Costagliola S. Enhanced Canonical Wnt Signaling During Early Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and Pharyngeal Endoderm and Causes Thyroid Specification Defects. Thyroid 2021; 31:420-438. [PMID: 32777984 DOI: 10.1089/thy.2019.0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Congenital hypothyroidism due to thyroid dysgenesis is a frequent congenital endocrine disorder for which the molecular mechanisms remain unresolved in the majority of cases. This situation reflects, in part, our still limited knowledge about the mechanisms involved in the early steps of thyroid specification from the endoderm, in particular the extrinsic signaling cues that regulate foregut endoderm patterning. In this study, we used small molecules and genetic zebrafish models to characterize the role of various signaling pathways in thyroid specification. Methods: We treated zebrafish embryos during different developmental periods with small-molecule compounds known to manipulate the activity of Wnt signaling pathway and observed effects in thyroid, endoderm, and cardiovascular development using whole-mount in situ hybridization and transgenic fluorescent reporter models. We used the antisense morpholino (MO) technique to create a zebrafish acardiac model. For thyroid rescue experiments, bone morphogenetic protein (BMP) pathway induction in zebrafish embryos was obtained by manipulation of heat-shock inducible transgenic lines. Results: Combined analyses of thyroid and cardiovascular development revealed that overactivation of Wnt signaling during early development leads to impaired thyroid specification concurrent with severe defects in the cardiac specification. When using a model of MO-induced blockage of cardiomyocyte differentiation, a similar correlation was observed, suggesting that defective signaling between cardiac mesoderm and endodermal thyroid precursors contributes to thyroid specification impairment. Rescue experiments through transient overactivation of BMP signaling could partially restore thyroid specification in models with defective cardiac development. Conclusion: Collectively, our results indicate that BMP signaling is critically required for thyroid cell specification and identify cardiac mesoderm as a likely source of BMP signals.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Congenital Hypothyroidism/genetics
- Congenital Hypothyroidism/metabolism
- Congenital Hypothyroidism/pathology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryonic Development
- Endoderm/abnormalities
- Endoderm/metabolism
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Mesoderm/abnormalities
- Mesoderm/metabolism
- Morpholinos/genetics
- Morpholinos/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Thyroid Dysgenesis/genetics
- Thyroid Dysgenesis/metabolism
- Thyroid Dysgenesis/pathology
- Thyroid Gland/abnormalities
- Thyroid Gland/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Isabelle Vandernoot
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Haerlingen
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Gillotay
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Achim Trubiroha
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Department Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Véronique Janssens
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
36
|
Varlow C, Mossine AV, Bernard-Gauthier V, Scott PJH, Vasdev N. Radiofluorination of oxazole-carboxamides for preclinical PET neuroimaging of GSK-3. J Fluor Chem 2021; 245. [PMID: 33840834 DOI: 10.1016/j.jfluchem.2021.109760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.
Collapse
Affiliation(s)
- Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
37
|
Velásquez CA, Torres AE, Gómez-Pech C, Ávila-Zárraga JG, Colmenares F. Role of the base Cs 2CO 3 on the palladium-catalyzed intramolecular cyclization of two bromoindole derivatives to yield paullone-type products. J Mol Model 2021; 27:9. [PMID: 33392849 DOI: 10.1007/s00894-020-04638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Reactions for the palladium-catalyzed intramolecular cyclization of the o-bromoindole and the o-bromo-N-methyl-indole derivatives in the presence and absence of base (Cs2CO3) were explored through DFT calculations. For the base-free reactions, the palladium atom firstly interacts with the aromatic rings of the indole molecule to yield a stable adduct. Once this adduct has been formed, reaction proceeds readily to the oxidative addition intermediate that arises from the insertion of the metal atom into the C-Br bond of the organic fragment. Further steps leading to the paullone (or dimethyl paullone) product, mainly those involving the metalation and deprotonation of the inserted intermediate, are not energetically viable for these reactions. When the effect of the base on the metalation-deprotonation steps is modeled by replacing the bromide ion with CO32- in the metal-inserted structure, a feasible pathway connecting the oxidative addition intermediate with the paullone-type product was located for each of the investigated reactions. The results emerging from this study suggest that palladium can insert into the C-Br bond of the indole derivatives to yield the oxidative addition intermediate (without participation of the base). However, the metalation and deprotonation steps that evolve to the paullone-type product take place via a concerted action involving both the metal and the base. Metalation and deprotonation steps that evolve to the paullone-type product take place via a concerted action involving both the metal and the base.
Collapse
Affiliation(s)
- Carlos A Velásquez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico City, Mexico
| | - Ana E Torres
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico City, Mexico
| | - Cecilia Gómez-Pech
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico City, Mexico
| | - José Gustavo Ávila-Zárraga
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico City, Mexico.
| | - Fernando Colmenares
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico City, Mexico.
| |
Collapse
|
38
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
39
|
Avenanthramide C Prevents Neuronal Apoptosis via PI3K/Akt/GSK3β Signaling Pathway Following Middle Cerebral Artery Occlusion. Brain Sci 2020; 10:brainsci10110878. [PMID: 33233587 PMCID: PMC7699697 DOI: 10.3390/brainsci10110878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022] Open
Abstract
Avenanthramides are a group of phenolic alkaloids that have been shown to have anti-inflammatory, anti-oxidant, anti-atherogenic, and vasodilation effects. The aim of the present study was to investigate the neuroprotective effect of avenanthramide-c (Avn-c) in focal brain ischemia and reperfusion injury using middle cerebral artery occlusion (MCAo) model with mice. Male C57BL/6 mice were divided into 4 groups: sham, control (MCAo), Avn-c, and Avn-c + LY294002 (phosphoinositide 3-kinase inhibitor) group. They were subjected to 60 min MCAo followed by reperfusion. Brain infarct volume and neurological deficit scores were measured after 24 h of reperfusion. We evaluated the blood brain barrier (BBB) integrity (ZO-1, VE-cadherin and occludin) and apoptosis (Bax, Bcl2, caspase3, Cytochrome C, and poly ADP ribose polymerase(PARP)-1). We also measured GSK3β for evaluation of the downstream mechanism of Akt. We examined the effect of the Avn-c in the phosphoinositide 3-kinase pathway. Avn-c reduced neurological score and infarction size. Avn-c inhibited the MCAo-induced disruption of tight junction proteins. Avn-c decreased apoptotic protein expression (Bax, Cytochrome C, and cleaved PARP-1) and increased anti-apoptotic protein expression (Bcl2) after MCAo. Akt and GSK3β were decreased in MCAo group and were restored in Avn-c group. This effect of Avn-c was abolished by PI3K inhibitor. In summary, Avn-c showed neuroprotective effects through PI3K-Akt-GSK3β signaling pathway.
Collapse
|
40
|
|
41
|
Sampath C, Srinivasan S, Freeman ML, Gangula PR. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice. Am J Physiol Gastrointest Liver Physiol 2020; 319:G481-G493. [PMID: 32812777 PMCID: PMC7654647 DOI: 10.1152/ajpgi.00227.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetic gastroparesis (DG) is a clinical syndrome characterized by delayed gastric emptying (DGE). Loss of nuclear factor erythroid 2-related factor 2 (Nrf2) is associated with reduced neuronal nitric oxide synthase-α (nNOSα)-mediated gastric motility and DGE. Previous studies have shown that nuclear exclusion and inactivation of Nrf2 is partly regulated by glycogen synthase kinase 3β (GSK-3β). In the current study, the molecular signaling of GSK-3β-mediated Nrf2 activation and its mechanistic role on DG were investigated in high-fat diet (HFD)-induced obese/Type 2 diabetes (T2D) female mice. Adult female C57BL/6J mice were fed with HFD or normal diet (ND) with or without GSK-3β inhibitor (SB 216763, 10 mg/kg body wt ip) start from the 14th wk and continued feeding mice for an additional 3-wk time period. Our results show that treatment with GSK-3β inhibitor SB attenuated DGE in obese/T2D mice. Treatment with SB restored impaired gastric 1) Nrf2 and phase II antioxidant enzymes through PI3K/ERK/AKT-mediated pathway, 2) tetrahydrobiopterin (BH4, cofactor of nNOS) biosynthesis enzyme dihydrofolate reductase, and 3) nNOSα dimerization in obese/T2 diabetic female mice. SB treatment normalized caspase 3 activity and downstream GSK-3β signaling in the gastric tissues of the obese/T2 diabetic female mice. In addition, GSK-3β inhibitor restored impaired nitrergic relaxation in hyperglycemic conditions. Finally, SB treatment reduced GSK3 marker, pTau in adult primary enteric neuronal cells. These findings emphasize the importance of GSK-3β on regulating gastric Nrf2 and nitrergic mediated gastric emptying in obese/diabetic rodents.NEW & NOTEWORTHY Inhibition of glycogen synthase kinase 3β (GSK-3β) with SB 216763 attenuates delayed gastric emptying through gastric nuclear factor erythroid 2-related factor 2 (Nrf2)-phase II enzymes in high-fat diet-fed female mice. SB 216763 restored impaired gastric PI3K/AKT/ β-catenin/caspase 3 expression. Inhibition of GSK-3β normalized gastric dihydrofolate reductase, neuronal nitric oxide synthase-α expression, dimerization and nitrergic relaxation. SB 216763 normalized both serum estrogen and nitrate levels in female obese/Type 2 diabetes mice. SB 216763 reduced downstream signaling of GSK-3β in enteric neuronal cells in vitro.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia and Atlanta Veterans Affairs Health Care System, Decatur, Atlanta, Georgia
| | - Michael L. Freeman
- 3Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pandu R. Gangula
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
42
|
Roca C, Campillo NE. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2016–2019). Expert Opin Ther Pat 2020; 30:863-872. [DOI: 10.1080/13543776.2020.1815706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carlos Roca
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Nuria E. Campillo
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
43
|
Circ-GLI1 promotes metastasis in melanoma through interacting with p70S6K2 to activate Hedgehog/GLI1 and Wnt/β-catenin pathways and upregulate Cyr61. Cell Death Dis 2020; 11:596. [PMID: 32732916 PMCID: PMC7393080 DOI: 10.1038/s41419-020-02799-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are emerging regulators in the development of human cancers. However, the role of circRNAs in melanoma is poorly understood. Microarray analysis and qRT-PCR was applied to screen out circRNAs that were differentially expressed in melanoma cells compared to normal cells. Currently, we first proved that inhibition of CYR61, an angiogenesis factor with controversial functions in melanoma, restrained cell migration, invasion and angiogenesis in melanoma. Thereafter, a novel circRNA hsa_circ_0027247 derived from GLI1 (circ-GLI1) was identified to positively modulate CYR61 expression in melanoma cell lines. Besides, silencing circ-GLI1 hindered melanoma cell metastasis as well. Interestingly, we unveiled that circ-GLI1 enhanced CYR61 transcription by an indirect manner. Meanwhile, circ-GLI1 activated Hedgehog/GLI1 and Wnt/β-catenin pathways by affecting the degradation of GLI1 and β-catenin. Moreover, we found that circ-GLI1 interacted with p70S6K2 to induce GSK3β phosphorylation at Ser9, and therefore blocked the binding of GSK3β with GLI1 and β-catenin so as to elevate their protein expression. Of note, CYR61 was transcriptionally activated by MYC, a well-recognized downstream target of both GLI1 and β-catenin. In conclusion, circ-GLI1 exacerbates the metastasis and angiogenesis of melanoma by upregulating Cyr61 via p70S6K2-dependent activation of Hedgehog/GLI1 and Wnt/β-catenin pathways.
Collapse
|
44
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
45
|
ONCU B, YİLMAZ A, KARADEMİR B, ALTUNOK EÇ, KURU L, AĞRALI ÖB. Cytotoxicity and Collagen Expression Effects of Tideglusib Administration on Human Periodontal Cells: An In-Vitro Study. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.709924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Kitanaka N, Hall FS, Uhl GR, Kitanaka J. Lithium Pharmacology and a Potential Role of Lithium on Methamphetamine Abuse and Dependence. Curr Drug Res Rev 2020; 11:85-91. [PMID: 31875781 DOI: 10.2174/2589977511666190620141824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The effectiveness of lithium salts in neuropsychiatric disorders such as bipolar disorder, Alzheimer's disease, and treatment-resistant depression has been documented in an extensive scientific literature. Lithium inhibits inositol monophosphatase, inositol polyphosphate 1- phosphatase, and glycogen synthase kinase-3 and decreases expression level of tryptophan hydroxylase 2, conceivably underlying the mood stabilizing effects of lithium, as well as procognitive and neuroprotective effects. However, the exact molecular mechanisms of action of lithium on mood stabilizing and pro-cognitive effects in humans are still largely unknown. OBJECTIVE On the basis of the known aspects of lithium pharmacology, this review will discuss the possible mechanisms underlying the therapeutic effects of lithium on positive symptoms of methamphetamine abuse and dependence. CONCLUSION It is possible that lithium treatment reduces the amount of newly synthesized phosphatidylinositol, potentially preventing or reversing neuroadaptations contributing to behavioral sensitization induced by methamphetamine. In addition, it is suggested that exposure to repeated doses of methamphetamine induces hyperactivation of glycogen synthase kinase-3β in the nucleus accumbens and in dorsal hippocampus, resulting in a long-term alterations in synaptic plasticity underlying behavioral sensitization as well as other behavioral deficits in memory-related behavior. Therefore it is clear that glycogen synthase kinase-3β inhibitors can be considered as a potential candidate for the treatment of methamphetamine abuse and dependence.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Frank Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, United States
| | - George Richard Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, United States.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
47
|
Prati F, Buonfiglio R, Furlotti G, Cavarischia C, Mangano G, Picollo R, Oggianu L, di Matteo A, Olivieri S, Bovi G, Porceddu PF, Reggiani A, Garrone B, Di Giorgio FP, Ombrato R. Optimization of Indazole-Based GSK-3 Inhibitors with Mitigated hERG Issue and In Vivo Activity in a Mood Disorder Model. ACS Med Chem Lett 2020; 11:825-831. [PMID: 32435391 DOI: 10.1021/acsmedchemlett.9b00633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good in vivo efficacy and safety profile associated with high brain exposure is required. Accordingly, we have previously reported the selective indazole-based GSK-3 inhibitor 1, which showed excellent efficacy in a mouse model of mania. Despite the favorable preclinical profile, analog 1 suffered from activity at the hERG ion channel, which prevented its further progression. Herein, we describe our strategy to improve this off-target liability through modulation of physicochemical properties, such as lipophilicity and basicity. These efforts led to the potent inhibitor 14, which possessed reduced hERG affinity, promising in vitro ADME properties, and was very effective in a mood stabilizer in vivo model.
Collapse
Affiliation(s)
- Federica Prati
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Guido Furlotti
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | | | | | - Laura Oggianu
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Anna di Matteo
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | | | - Graziella Bovi
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181 Rome, Italy
| | - Pier Francesca Porceddu
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Angelo Reggiani
- D3Validation Research Line, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | | | | |
Collapse
|
48
|
Park J, Cheon W, Kim K. Effects of Long-Term Endurance Exercise and Lithium Treatment on Neuroprotective Factors in Hippocampus of Obese Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093317. [PMID: 32397675 PMCID: PMC7246857 DOI: 10.3390/ijerph17093317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023]
Abstract
To investigate the effects of long-term lithium treatment and low intensity endurance exercise on brain-derived neurotrophic factor (BDNF) expression and glycogen synthase kinase 3 beta (GSK3β) activity in the hippocampus of obese rats. Fifty 10-week-old male Sprague-Dawley rats were selected. There was a control group of 10 rats (chow control group) while the other forty rats were fed on a high-fat diet for eight weeks to induce obesity. Rats were then assigned into four random groups. The rats were given 10 mg/kg lithium chloride (LiCl) dissolved in 1 mL sterile distilled water once a day, 5 times a week. The rats did 20 min of treadmill walking with an exercise intensity of 40% maximal oxygen uptake (VO2 max) (12 m/min, slope 0%). This was performed for 20 min a day, 3 days a week. Twelve weeks of lithium treatment or endurance exercise significantly reduced body weight and body fat mass in obese rats, without showing additive effects when the treatments were given in parallel or significant toxic responses in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in blood and kidney and liver tissues. BDNF expression in the hippocampus was significantly increased both in exercise and lithium groups with synergistic effects found in the group where both exercise and lithium treatments were given in parallel. On the other hand, the decrease in GSK3β activity was shown only in the lithium treatment group, without showing additive effects when the treatments were given in parallel. Lithium and low-intensity endurance exercise for 12 weeks increased the expression of BDNF, a neuroprotective factor in the hippocampus of obese mice. Lithium treatment alone inhibited the activity of GSK3β. This can be interpreted as a positive indication of applicability of the two factors in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jusik Park
- Department of Taekwondo, College of Physical Education, Keimyung University, Daegu 42601, Korea;
| | - Wookwang Cheon
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea;
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-580-5256
| |
Collapse
|
49
|
Loidreau Y, Dubouilh-Benard C, Nourrisson MR, Loaëc N, Meijer L, Besson T, Marchand P. Exploring Kinase Inhibition Properties of 9 H-pyrimido[5,4- b]- and [4,5- b]indol-4-amine Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13050089. [PMID: 32397570 PMCID: PMC7281298 DOI: 10.3390/ph13050089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Carole Dubouilh-Benard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
| | - Nadège Loaëc
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
| | - Laurent Meijer
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| |
Collapse
|
50
|
Discovery of Novel Imidazopyridine GSK-3β Inhibitors Supported by Computational Approaches. Molecules 2020; 25:molecules25092163. [PMID: 32380735 PMCID: PMC7248956 DOI: 10.3390/molecules25092163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The interest of research groups and pharmaceutical companies to discover novel GSK-3β inhibitors has increased over the years considering the involvement of this enzyme in many pathophysiological processes and diseases. Along this line, we recently reported on 1H-indazole-3-carboxamide (INDZ) derivatives 1-6, showing good GSK-3β inhibition activity. However, they suffered from generally poor central nervous system (CNS) permeability. Here, we describe the design, synthesis, and in vitro characterization of novel imidazo[1,5-a]pyridine-1-carboxamide (IMID 1) and imidazo[1,5-a]pyridine-3-carboxamide (IMID 2) compounds (7-18) to overcome such liability. In detail, structure-based approaches and fine-tuning of physicochemical properties guided the design of derivatives 7-18 resulting in ameliorated absorption, distribution, metabolism, and excretion (ADME) properties. A crystal structure of 16 in complex with GSK-3β enzyme (PDB entry 6Y9S) confirmed the in silico models. Despite the nanomolar inhibition activity, the new core compounds showed a reduction in potency with respect to INDZ derivatives 1-6. In this context, Molecular Dynamics (MD) and Quantum Mechanics (QM) based approaches along with NMR investigation helped to rationalize the observed structure activity relationship (SAR). With these findings, the key role of the acidic hydrogen of the central core for a tight interaction within the ATP pocket of the enzyme reflecting in good GSK-3β affinity was demonstrated.
Collapse
|