1
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
2
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
3
|
Klein MT, Krause BM, Neudörfl JM, Kühne R, Schmalz HG. Design and synthesis of a tetracyclic tripeptide mimetic frozen in a polyproline type II (PP2) helix conformation. Org Biomol Chem 2022; 20:9368-9377. [PMID: 36385673 DOI: 10.1039/d2ob01857h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A synthesis of the new tetracyclic scaffold ProM-19, which represents a XPP tripeptide unit frozen in a PPII helix conformation, was developed. As a key building block, N-Boc-protected ethyl (1S,3S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate was prepared through a diastereoselective aza-Diels-Alder reaction and subsequent hydrogenolytic removal of the chiral N-1-phenylethyl substituent under temporary protection of the double bond through dihydroxylation and reconstitution by Corey-Winter olefination. The target compound Boc-[ProM-19]-OMe was then prepared via subsequent peptide coupling and Ru-catalyzed ring-closing metathesis steps employing (S)-N-Boc-allylgylcine and cis-5-vinyl-proline methyl ester as additional building blocks. In addition, Ac-[2-Cl-Phe]-[Pro]-[ProM-19]-OMe was prepared by solution phase peptide synthesis as a potential ligand for the ena-VASP EVH1 domain.
Collapse
Affiliation(s)
- Marco T Klein
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Bernhard M Krause
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Jörg-Martin Neudörfl
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| | - Ronald Kühne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans-Günther Schmalz
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Köln, Germany.
| |
Collapse
|
4
|
Protein-membrane interactions in small GTPase signalling and pharmacology: perspectives from Arf GTPases studies. Biochem Soc Trans 2020; 48:2721-2728. [PMID: 33336699 DOI: 10.1042/bst20200482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Small GTPases, in association with their GEFs, GAPs and effectors, control major intracellular processes such as signal transduction, cytoskeletal dynamics and membrane trafficking. Accordingly, dysfunctions in their biochemical properties are associated with many diseases, including cancers, diabetes, infections, mental disorders and cardiac diseases, which makes them attractive targets for therapies. However, small GTPases signalling modules are not well-suited for classical inhibition strategies due to their mode of action that combines protein-protein and protein-membrane interactions. As a consequence, there is still no validated drug available on the market that target small GTPases, whether directly or through their regulators. Alternative inhibitory strategies are thus highly needed. Here we review recent studies that highlight the unique modalities of the interaction of small GTPases and their GEFs at the periphery of membranes, and discuss how they can be harnessed in drug discovery.
Collapse
|
5
|
Ayyildiz M, Celiker S, Ozhelvaci F, Akten ED. Identification of Alternative Allosteric Sites in Glycolytic Enzymes for Potential Use as Species-Specific Drug Targets. Front Mol Biosci 2020; 7:88. [PMID: 32478093 PMCID: PMC7240002 DOI: 10.3389/fmolb.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Three allosteric glycolytic enzymes, phosphofructokinase, glyceraldehyde-3 phosphate dehydrogenase and pyruvate kinase, associated with bacterial, parasitic and human species, were explored to identify potential allosteric sites that would be used as prime targets for species-specific drug design purposes using a newly developed approach which incorporates solvent mapping, elastic network modeling, sequence and structural alignments. The majority of binding sites detected by solvent mapping overlapped with the interface regions connecting the subunits, thus appeared as promising target sites for allosteric regulation. Each binding site was then evaluated by its ability to alter the global dynamics of the receptor defined by the percentage change in the frequencies of the lowest-frequency modes most significantly and as anticipated, the most effective ones were detected in the vicinity of the well-reported catalytic and allosteric sites. Furthermore, some of our proposed regions intersected with experimentally resolved sites which are known to be critical for activity regulation, which further validated our approach. Despite the high degree of structural conservation encountered between bacterial/parasitic and human glycolytic enzymes, the majority of the newly presented allosteric sites exhibited a low degree of sequence conservation which further increased their likelihood to be used as species-specific target regions for drug design studies.
Collapse
Affiliation(s)
- Merve Ayyildiz
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Serkan Celiker
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Fatih Ozhelvaci
- Graduate Program of Computational Science and Engineering, Graduate School of Science and Engineering, Bogazici University, Istanbul, Turkey
| | - E. Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
6
|
Joshi G, Kalra S, Yadav UP, Sharma P, Singh PK, Amrutkar S, Ansari AJ, Kumar S, Sharon A, Sharma S, Sawant DM, Banerjee UC, Singh S, Kumar R. E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase. Bioorg Chem 2020; 94:103409. [DOI: 10.1016/j.bioorg.2019.103409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
|
7
|
Nawrotek A, Benabdi S, Niyomchon S, Kryszke MH, Ginestier C, Cañeque T, Tepshi L, Mariani A, St Onge RP, Giaever G, Nislow C, Charafe-Jauffret E, Rodriguez R, Zeghouf M, Cherfils J. PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling. Nat Chem Biol 2019; 15:358-366. [PMID: 30742123 DOI: 10.1038/s41589-019-0228-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022]
Abstract
Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.
Collapse
Affiliation(s)
- Agata Nawrotek
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France.,CNRS, Cachan, France
| | - Sarah Benabdi
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France.,CNRS, Cachan, France
| | - Supaporn Niyomchon
- Institut Curie, PSL Research University, Chemical Cell Biology Group, Paris, France.,CNRS, Paris, France.,INSERM, Paris, France
| | - Marie-Hélène Kryszke
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France.,CNRS, Cachan, France
| | - Christophe Ginestier
- Université Aix-Marseille, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Tatiana Cañeque
- Institut Curie, PSL Research University, Chemical Cell Biology Group, Paris, France.,CNRS, Paris, France.,INSERM, Paris, France
| | - Livia Tepshi
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France.,CNRS, Cachan, France
| | - Angelica Mariani
- Institut Curie, PSL Research University, Chemical Cell Biology Group, Paris, France.,CNRS, Paris, France.,INSERM, Paris, France
| | - Robert P St Onge
- Genome Technology Center, Stanford School of Medicine, Stanford, CA, USA
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Emmanuelle Charafe-Jauffret
- Université Aix-Marseille, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, Chemical Cell Biology Group, Paris, France.,CNRS, Paris, France.,INSERM, Paris, France
| | - Mahel Zeghouf
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France. .,CNRS, Cachan, France.
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole normale supérieure Paris-Saclay, Cachan, France. .,CNRS, Cachan, France.
| |
Collapse
|
8
|
Dee RA, Mangum KD, Bai X, Mack CP, Taylor JM. Druggable targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther 2019; 193:121-134. [PMID: 30189292 PMCID: PMC7235948 DOI: 10.1016/j.pharmthera.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of high blood pressure (also known as hypertension) has steadily increased over the last few decades. Known as a silent killer, hypertension increases the risk for cardiovascular disease and can lead to stroke, heart attack, kidney failure and associated sequela. While numerous hypertensive therapies are currently available, it is estimated that only half of medicated patients exhibit blood pressure control. This signifies the need for a better understanding of the underlying cause of disease and for more effective therapies. While blood pressure homeostasis is very complex and involves the integrated control of multiple body systems, smooth muscle contractility and arterial resistance are important contributors. Strong evidence from pre-clinical animal models and genome-wide association studies indicate that smooth muscle contraction and BP homeostasis are governed by the small GTPase RhoA and its downstream target, Rho kinase. In this review, we summarize the signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity in smooth muscle cells and discuss current therapeutic strategies to target these RhoA pathway components. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations.
Collapse
Affiliation(s)
- Rachel A Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin D Mangum
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Datta A, Brosh RM. New Insights Into DNA Helicases as Druggable Targets for Cancer Therapy. Front Mol Biosci 2018; 5:59. [PMID: 29998112 PMCID: PMC6028597 DOI: 10.3389/fmolb.2018.00059] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Small molecules that deter the functions of DNA damage response machinery are postulated to be useful for enhancing the DNA damaging effects of chemotherapy or ionizing radiation treatments to combat cancer by impairing the proliferative capacity of rapidly dividing cells that accumulate replicative lesions. Chemically induced or genetic synthetic lethality is a promising area in personalized medicine, but it remains to be optimized. A new target in cancer therapy is DNA unwinding enzymes known as helicases. Helicases play critical roles in all aspects of nucleic acid metabolism. We and others have investigated small molecule targeted inhibition of helicase function by compound screens using biochemical and cell-based approaches. Small molecule-induced trapping of DNA helicases may represent a generalized mechanism exemplified by certain topoisomerase and PARP inhibitors that exert poisonous consequences, especially in rapidly dividing cancer cells. Taking the lead from the broader field of DNA repair inhibitors and new information gleaned from structural and biochemical studies of DNA helicases, we predict that an emerging strategy to identify useful helicase-interacting compounds will be structure-based molecular docking interfaced with a computational approach. Potency, specificity, drug resistance, and bioavailability of helicase inhibitor drugs and targeting such compounds to subcellular compartments where the respective helicases operate must be addressed. Beyond cancer therapy, continued and new developments in this area may lead to the discovery of helicase-interacting compounds that chemically rescue clinically relevant helicase missense mutant proteins or activate the catalytic function of wild-type DNA helicases, which may have novel therapeutic application.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD, United States
| |
Collapse
|
11
|
Mori T, Ito T, Liu S, Ando H, Sakamoto S, Yamaguchi Y, Tokunaga E, Shibata N, Handa H, Hakoshima T. Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep 2018; 8:1294. [PMID: 29358579 PMCID: PMC5778007 DOI: 10.1038/s41598-018-19202-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
Thalidomide possesses two optical isomers which have been reported to exhibit different pharmacological and toxicological activities. However, the precise mechanism by which the two isomers exert their different activities remains poorly understood. Here, we present structural and biochemical studies of (S)- and (R)-enantiomers bound to the primary target of thalidomide, cereblon (CRBN). Our biochemical studies employed deuterium-substituted thalidomides to suppress optical isomer conversion, and established that the (S)-enantiomer exhibited ~10-fold stronger binding to CRBN and inhibition of self-ubiquitylation compared to the (R)-enantiomer. The crystal structures of the thalidomide-binding domain of CRBN bound to each enantiomer show that both enantiomers bind the tri-Trp pocket, although the bound form of the (S)-enantiomer exhibited a more relaxed glutarimide ring conformation. The (S)-enantiomer induced greater teratogenic effects on fins of zebrafish compared to the (R)-enantiomer. This study has established a mechanism by which thalidomide exerts its effects in a stereospecific manner at the atomic level.
Collapse
Affiliation(s)
- Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takumi Ito
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan.,PRESTO, JST, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shujie Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hideki Ando
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
12
|
Rahimova R, Fontanel S, Lionne C, Jordheim LP, Peyrottes S, Chaloin L. Identification of allosteric inhibitors of the ecto-5'-nucleotidase (CD73) targeting the dimer interface. PLoS Comput Biol 2018; 14:e1005943. [PMID: 29377887 PMCID: PMC5805337 DOI: 10.1371/journal.pcbi.1005943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/08/2018] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
The ecto-5'-nucleotidase CD73 plays an important role in the production of immune-suppressive adenosine in tumor micro-environment, and has become a validated drug target in oncology. Indeed, the anticancer immune response involves extracellular ATP to block cell proliferation through T-cell activation. However, in the tumor micro-environment, two extracellular membrane-bound enzymes (CD39 and CD73) are overexpressed and hydrolyze efficiently ATP into AMP then further into immune-suppressive adenosine. To circumvent the impact of CD73-generated adenosine, we applied an original bioinformatics approach to identify new allosteric inhibitors targeting the dimerization interface of CD73, which should impair the large dynamic motions required for its enzymatic function. Several hit compounds issued from virtual screening campaigns showed a potent inhibition of recombinant CD73 with inhibition constants in the low micromolar range and exhibited a non-competitive inhibition mode. The structure-activity relationships studies indicated that several amino acid residues (D366, H456, K471, Y484 and E543 for polar interactions and G453-454, I455, H456, L475, V542 and G544 for hydrophobic contacts) located at the dimerization interface are involved in the tight binding of hit compounds and likely contributed for their inhibitory activity. Overall, the gathered information will guide the upcoming lead optimization phase that may lead to potent and selective CD73 inhibitors, able to restore the anticancer immune response.
Collapse
Affiliation(s)
- Rahila Rahimova
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, Montpellier, France; Institut de Biologie Computationnelle (IBC), Montpellier, France
| | - Simon Fontanel
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, Montpellier, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Lars Peter Jordheim
- Centre Léon Bérard (CLB), Centre de Recherche en Cancérologie de Lyon (CRCL), Univ. de Lyon, INSERM, CNRS, Lyon, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max-Mousseron (IBMM), CNRS, Univ. Montpellier, ENSCM, Montpellier, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, Montpellier, France; Institut de Biologie Computationnelle (IBC), Montpellier, France
| |
Collapse
|
13
|
Chiha S, Soicke A, Barone M, Müller M, Bruns J, Opitz R, Neudörfl JM, Kühne R, Schmalz HG. Design and Synthesis of Building Blocks for PPII-Helix Secondary-Structure Mimetics: A Stereoselective Entry to 4-Substituted 5-Vinylprolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Slim Chiha
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Arne Soicke
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Matthias Barone
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Matthias Müller
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Judith Bruns
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Robert Opitz
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| | - Ronald Kühne
- Campus BerlinBuch; Leibniz-Institut für Molekulare Pharmakologie (FMP); 13125 Berlin Germany
| | - Hans-Günther Schmalz
- Department of Chemistry; University of Cologne; Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
14
|
Allosteric inhibition of the guanine nucleotide exchange factor DOCK5 by a small molecule. Sci Rep 2017; 7:14409. [PMID: 29089502 PMCID: PMC5663973 DOI: 10.1038/s41598-017-13619-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 11/11/2022] Open
Abstract
Rac small GTPases and their GEFs of the DOCK family are pivotal checkpoints in development, autoimmunity and bone homeostasis, and their abnormal regulation is associated to diverse pathologies. Small molecules that inhibit their activities are therefore needed to investigate their functions. Here, we characterized the mechanism of inhibition of human DOCK5 by C21, a small molecule that inhibits mouse Dock5 in cells and blocks bone degradation in mice models of osteoporosis. We showed that the catalytic DHR2 domain of DOCK5 has a high basal GEF activity in the absence of membranes which is not regulated by a simple feedback loop. C21 blocks this activity in a non-competitive manner and is specific for DOCK5. In contrast, another Dock inhibitor, CPYPP, inhibits both DOCK5 and an unrelated GEF, Trio. To gain insight into structural features of the inhibitory mechanism of C21, we used SAXS analysis of DOCK5DHR2 and crystallographic analysis of unbound Rac1-GDP. Together, these data suggest that C21 takes advantage of intramolecular dynamics of DOCK5 and Rac1 to remodel the complex into an unproductive conformation. Based on this allosteric mechanism, we propose that diversion of intramolecular dynamics is a potent mechanism for the inhibition of multidomain regulators of small GTPases.
Collapse
|
15
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1102] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
16
|
Bai Z, Hou S, Zhang S, Li Z, Zhou P. Targeting Self-Binding Peptides as a Novel Strategy To Regulate Protein Activity and Function: A Case Study on the Proto-oncogene Tyrosine Protein Kinase c-Src. J Chem Inf Model 2017; 57:835-845. [DOI: 10.1021/acs.jcim.6b00673] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengya Bai
- Center for Informational Biology, School of Life Science and Technology, ‡Center for Information
in BioMedicine, and §Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Shasha Hou
- Center for Informational Biology, School of Life Science and Technology, ‡Center for Information
in BioMedicine, and §Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Shilei Zhang
- Center for Informational Biology, School of Life Science and Technology, ‡Center for Information
in BioMedicine, and §Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhongyan Li
- Center for Informational Biology, School of Life Science and Technology, ‡Center for Information
in BioMedicine, and §Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, ‡Center for Information
in BioMedicine, and §Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
17
|
Sonderegger C, Fizil Á, Burtscher L, Hajdu D, Muñoz A, Gáspári Z, Read ND, Batta G, Marx F. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function. PLoS One 2017; 12:e0169920. [PMID: 28072824 PMCID: PMC5224997 DOI: 10.1371/journal.pone.0169920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.
Collapse
Affiliation(s)
- Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Laura Burtscher
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nick D. Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
19
|
Pommier Y, Kiselev E, Marchand C. Interfacial inhibitors. Bioorg Med Chem Lett 2015; 25:3961-5. [PMID: 26235949 PMCID: PMC7747010 DOI: 10.1016/j.bmcl.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Targeting macromolecular interface is a general mechanism by which natural products inactivate macromolecular complexes by stabilizing normally transient intermediates. Demonstrating interfacial inhibition mechanism ultimately relies on the resolution of drug-macromolecule structures. This review focuses on medicinal drugs that trap protein-DNA complexes by binding at protein-DNA interfaces. It provides proof-of-concept and detailed structural and mechanistic examples for topoisomerase inhibitors and HIV integrase inhibitors. Additional examples of recent interfacial inhibitors for protein-DNA interfaces are provided, as well as prospects for targeting previously 'undruggable' targets including transcription, replication and chromatin remodeling complexes. References and discussion are included for interfacial inhibitors of protein-protein interfaces.
Collapse
Affiliation(s)
- Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
20
|
Kellermann G, Kaiser M, Dingli F, Lahuna O, Naud-Martin D, Mahuteau-Betzer F, Loew D, Ségal-Bendirdjian E, Teulade-Fichou MP, Bombard S. Identification of human telomerase assembly inhibitors enabled by a novel method to produce hTERT. Nucleic Acids Res 2015; 43:e99. [PMID: 25958399 PMCID: PMC4551907 DOI: 10.1093/nar/gkv425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/20/2015] [Indexed: 01/23/2023] Open
Abstract
Telomerase is the enzyme that maintains the length of telomeres. It is minimally constituted of two components: a core reverse transcriptase protein (hTERT) and an RNA (hTR). Despite its significance as an almost universal cancer target, the understanding of the structure of telomerase and the optimization of specific inhibitors have been hampered by the limited amount of enzyme available. Here, we present a breakthrough method to produce unprecedented amounts of recombinant hTERT and to reconstitute human telomerase with purified components. This system provides a decisive tool to identify regulators of the assembly of this ribonucleoprotein complex. It also enables the large-scale screening of small-molecules capable to interfere with telomerase assembly. Indeed, it has allowed us to identify a compound that inhibits telomerase activity when added prior to the assembly of the enzyme, while it has no effect on an already assembled telomerase. Therefore, the novel system presented here may accelerate the understanding of human telomerase assembly and facilitate the discovery of potent and mechanistically unique inhibitors.
Collapse
Affiliation(s)
- Guillaume Kellermann
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France Université Paris Descartes, Paris Sorbonne Cité, Paris, France
| | - Markus Kaiser
- Institut Curie, CMIB, CNRS UMR 9187- INSERM U1196, Orsay, France
| | - Florent Dingli
- Institut Curie/laboratoire de spectrométrie de masse protéomique, Paris, France
| | | | | | | | - Damarys Loew
- Institut Curie/laboratoire de spectrométrie de masse protéomique, Paris, France
| | - Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France Université Paris Descartes, Paris Sorbonne Cité, Paris, France
| | | | - Sophie Bombard
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France Université Paris Descartes, Paris Sorbonne Cité, Paris, France
| |
Collapse
|
21
|
Abstract
The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also examine the regulation of CtIP function by post-translational modifications, and its involvement in transcription- and replication-dependent functions through association with other protein complexes. The tumor suppressor function of CtIP likely is dependent on a combination of these roles in many aspects of DNA metabolism.
Collapse
|
22
|
Reuter C, Opitz R, Soicke A, Dohmen S, Barone M, Chiha S, Klein MT, Neudörfl JM, Kühne R, Schmalz HG. Design and Stereoselective Synthesis of ProM-2: A Spirocyclic Diproline Mimetic with Polyproline Type II (PPII) Helix Conformation. Chemistry 2015; 21:8464-70. [DOI: 10.1002/chem.201406493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/11/2015] [Indexed: 11/08/2022]
|
23
|
Kopra K, Härmä H. Quenching resonance energy transfer (QRET): a single-label technique for inhibitor screening and interaction studies. N Biotechnol 2015; 32:575-80. [PMID: 25721971 DOI: 10.1016/j.nbt.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/01/2022]
Abstract
The increased number of therapeutic targets has led to a growing need for screening methods enabling possible inhibitor compound selection. Information for new therapeutic targets has been found mostly from sequencing of the human genome but this knowledge cannot be directly converted into clinically relevant drug molecules. After target identification, the multistep drug development process takes many years and hundreds of millions of dollars are spent without certainty of the outcome. The first and the most critical step in the drug development process is hit selection. The optimal high throughput screening method should provide the highest possible number of true positive hits for further studies and lead discovery. The result should be achieved with low material consumption in a rapid and automated process. Radioactive label based methods are sensitive, but due to the problems arising from the radioactivity, luminescence-based methods have become increasingly popular in screening. In this review, the time-resolved luminescence based quenching resonance energy transfer (QRET) technique is discussed for primary screening.
Collapse
Affiliation(s)
- Kari Kopra
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland.
| | - Harri Härmä
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland
| |
Collapse
|
24
|
Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat Struct Mol Biol 2015; 22:158-66. [PMID: 25580577 PMCID: PMC4318798 DOI: 10.1038/nsmb.2945] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 01/07/2023]
Abstract
Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.
Collapse
|
25
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
26
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|
27
|
Fluorescent biosensors for drug discovery new tools for old targets--screening for inhibitors of cyclin-dependent kinases. Eur J Med Chem 2014; 88:74-88. [PMID: 25314935 DOI: 10.1016/j.ejmech.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases play central roles in regulation of cell cycle progression, transcriptional regulation and other major biological processes such as neuronal differentiation and metabolism. These kinases are hyperactivated in most human cancers and constitute attractive pharmacological targets. A large number of ATP-competitive inhibitors of CDKs have been identified from natural substances, in high throughput screening assays, or through structure-guided approaches. Alternative strategies have been explored to target essential protein/protein interfaces and screen for allosteric inhibitors that trap inactive intermediates or prevent conformational activation. However this remains a major challenge given the highly conserved structural features of these kinases, and calls for new and alternative screening technologies. Fluorescent biosensors constitute powerful tools for the detection of biomolecules in complex biological samples, and are well suited to study dynamic processes and highlight molecular alterations associated with pathological disorders. They further constitute sensitive and selective tools which can be readily implemented to high throughput and high content screens in drug discovery programmes. Our group has developed fluorescent biosensors to probe cyclin-dependent kinases and gain insight into their molecular behaviour in vitro and in living cells. These tools provide a means of monitoring subtle alterations in the abundance and activity of CDK/Cyclins and can respond to compounds that interfere with the conformational dynamics of these kinases. In this review we discuss the different strategies which have been devised to target CDK/Cyclins, and describe the implementation of our CDK/Cyclin biosensors to develop HTS/HCS assays in view of identifying new classes of inhibitors for cancer therapeutics.
Collapse
|
28
|
Soicke A, Reuter C, Winter M, Neudörfl JM, Schlörer N, Kühne R, Schmalz HG. Stereoselective Synthesis of Tricyclic Diproline Analogues that Mimic a PPII Helix: Structural Consequences of Ring-Size Variation. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Zagotto G, Gianoncelli A, Sissi C, Marzano C, Gandin V, Pasquale R, Capranico G, Ribaudo G, Palumbo M. Novel ametantrone-amsacrine related hybrids as topoisomerase IIβ poisons and cytotoxic agents. Arch Pharm (Weinheim) 2014; 347:728-37. [PMID: 25042690 DOI: 10.1002/ardp.201400111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/07/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022]
Abstract
The precise definition of the structural requirements for effective topoisomerase II poisoning by drug molecules is still an elusive issue. In the attempt to better define a pharmacophoric pattern, we prepared several conjugates combining the chemical features of two well-known topoisomerase II poisons, amsacrine and ametantrone. Indeed, an appropriate fusion geometry, which entails the anthracenedione moiety of ametantrone appropriately connected to the methanesulfonamidoaniline side chain of amsacrine, elicits DNA-intercalating properties, the capacity to inhibit the human topoisomerase IIβ isoform, and cytotoxic activity resembling that of the parent compounds. In addition, the properties of the lateral groups linked to the anthracenedione group play an important role in modulating DNA binding and cell cytotoxicity. Among the compounds tested, 10, 11, and 19 appear to be promising for further development.
Collapse
Affiliation(s)
- Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Villoutreix BO, Kuenemann MA, Poyet JL, Bruzzoni-Giovanelli H, Labbé C, Lagorce D, Sperandio O, Miteva MA. Drug-Like Protein-Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Mol Inform 2014; 33:414-437. [PMID: 25254076 PMCID: PMC4160817 DOI: 10.1002/minf.201400040] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Abstract
[Formula: see text] Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein-protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein-protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Melaine A Kuenemann
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Jean-Luc Poyet
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- IUH, Hôpital Saint-LouisParis, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Heriberto Bruzzoni-Giovanelli
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CIC, Clinical investigation center, Hôpital Saint-LouisParis, France
| | - Céline Labbé
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - David Lagorce
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| | - Olivier Sperandio
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
- CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse59000 Lille, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 InsermParis 75013, France
- Inserm, U973Paris 75013, France
| |
Collapse
|
31
|
Lin YS, Huang WC, Chen MS, Hsieh TS. Toward discovering new anti-cancer agents targeting topoisomerase IIα: a facile screening strategy adaptable to high throughput platform. PLoS One 2014; 9:e97008. [PMID: 24809695 PMCID: PMC4014593 DOI: 10.1371/journal.pone.0097008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/14/2014] [Indexed: 01/18/2023] Open
Abstract
Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microbial agents. However, the rapid rise of drug resistance that impedes the therapeutic efficacy of these life-saving drugs makes the discovering of new lead compounds ever more urgent. We report here a facile high throughput screening system for agents targeting human topoisomerase IIα (Top2α). The assay is based on the measurement of fluorescence anisotropy of a 29 bp fluorophore-labeled oligonucleotide duplex. Since drug-stabilized Top2α-bound DNA has a higher anisotropy compared with free DNA, this assay can work if one can use a dissociating agent to specifically disrupt the enzyme/DNA binary complexes but not the drug-stabilized ternary complexes. Here we demonstrate that NaClO4, a chaotropic agent, serves a critical role in our screening method to differentiate the drug-stabilized enzyme/DNA complexes from those that are not. With this strategy we screened a chemical library of 100,000 compounds and obtained 54 positive hits. We characterized three of them on this list and demonstrated their effects on the Top2α–mediated reactions. Our results suggest that this new screening strategy can be useful in discovering additional candidates of anti-cancer agents.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Shya Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tao-shih Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Reuter C, Kleczka M, de Mazancourt S, Neudörfl JM, Kühne R, Schmalz HG. Stereoselective Synthesis of Proline-Derived Dipeptide Scaffolds (ProM-3 and ProM-7) Rigidified in a PPII Helix Conformation. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Dezhenkova LG, Tsvetkov VB, Shtil AA. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n01abeh004363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
de Carvalho LL, Maltarollo VG, de Lima EF, Weber KC, Honorio KM, da Silva ABF. Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches. PLoS One 2014; 9:e81301. [PMID: 24416129 PMCID: PMC3885377 DOI: 10.1371/journal.pone.0081301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Among several biological targets to treat AIDS, HIV integrase is a promising enzyme that can be employed to develop new anti-HIV agents. The aim of this work is to propose a mechanistic interpretation of HIV-1 integrase inhibition and to rationalize the molecular features related to the binding affinity of studied ligands. A set of 79 HIV-1 integrase inhibitors and its relationship with biological activity are investigated employing 2D and 3D QSAR models, docking analysis and DFT studies. Analyses of docking poses and frontier molecular orbitals revealed important features on the main ligand-receptor interactions. 2D and 3D models presenting good internal consistency, predictive power and stability were obtained in all cases. Significant correlation coefficients (r(2) = 0.908 and q(2)= 0.643 for 2D model; r(2)= 0.904 and q(2)= 0.719 for 3D model) were obtained, indicating the potential of these models for untested compounds. The generated holograms and contribution maps revealed important molecular requirements to HIV-1 IN inhibition and several evidences for molecular modifications. The final models along with information resulting from molecular orbitals, 2D contribution and 3D contour maps should be useful in the design of new inhibitors with increased potency and selectivity within the chemical diversity of the data.
Collapse
Affiliation(s)
| | | | | | - Karen C. Weber
- Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Kathia M. Honorio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: (KMH); (ABFdS)
| | - Albérico B. F. da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
- * E-mail: (KMH); (ABFdS)
| |
Collapse
|
35
|
García CP, Videla Richardson GA, Romorini L, Miriuka SG, Sevlever GE, Scassa ME. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells. Stem Cell Res 2013; 12:400-14. [PMID: 24380814 DOI: 10.1016/j.scr.2013.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Embryonic stem cells (ESCs) need to maintain their genomic integrity in response to DNA damage to safeguard the integrity of the organism. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and, if not repaired correctly, they can lead to cell death, genomic instability and cancer. How human ESCs (hESCs) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. In the present study we aim to determine the hESC response to the DSB inducing agent camptothecin (CPT). We find that hESCs are hypersensitive to CPT, as evidenced by high levels of apoptosis. CPT treatment leads to DNA-damage sensor kinase (ATM and DNA-PKcs) phosphorylation on serine 1981 and serine 2056, respectively. Activation of ATM and DNA-PKcs was followed by histone H2AX phosphorylation on Ser 139, a sensitive reporter of DNA damage. Nuclear accumulation and ATM-dependent phosphorylation of p53 on serine 15 were also observed. Remarkably, hESC viability was further decreased when ATM or DNA-PKcs kinase activity was impaired by the use of specific inhibitors. The hypersensitivity to CPT treatment was markedly reduced by blocking p53 translocation to mitochondria with pifithrin-μ. Importantly, programmed cell death was achieved in the absence of the cyclin dependent kinase inhibitor, p21(Waf1), a bona fide p53 target gene. Conversely, differentiated hESCs were no longer highly sensitive to CPT. This attenuated apoptotic response was accompanied by changes in cell cycle profile and by the presence of p21(Waf1). The results presented here suggest that p53 has a key involvement in preventing the propagation of damaged hESCs when genome is threatened. As a whole, our findings support the concept that the phenomenon of apoptosis is a prominent player in normal embryonic development.
Collapse
Affiliation(s)
- Carolina Paola García
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| | - Guillermo Agustín Videla Richardson
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| | - Leonardo Romorini
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| | - Santiago Gabriel Miriuka
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| | - Gustavo Emilio Sevlever
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| | - María Elida Scassa
- Laboratorio de Investigación aplicada a Neurociencias-LIAN-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia-FLENI, Ruta 9, Km 52.5, B1625XAF Escobar, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
36
|
Higueruelo AP, Jubb H, Blundell TL. Protein–protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 2013; 13:791-6. [DOI: 10.1016/j.coph.2013.05.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022]
|
37
|
Sadlish H, Galicia-Vazquez G, Paris CG, Aust T, Bhullar B, Chang L, Helliwell SB, Hoepfner D, Knapp B, Riedl R, Roggo S, Schuierer S, Studer C, Porco JA, Pelletier J, Movva NR. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem Biol 2013; 8:1519-27. [PMID: 23614532 DOI: 10.1021/cb400158t] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Translation initiation is an emerging target in oncology and neurobiology indications. Naturally derived and synthetic rocaglamide scaffolds have been used to interrogate this pathway; however, there is uncertainty regarding their precise mechanism(s) of action. We exploited the genetic tractability of yeast to define the primary effect of both a natural and a synthetic rocaglamide in a cellular context and characterized the molecular target using biochemical studies and in silico modeling. Chemogenomic profiling and mutagenesis in yeast identified the eIF (eukaryotic Initiation Factor) 4A helicase homologue as the primary molecular target of rocaglamides and defined a discrete set of residues near the RNA binding motif that confer resistance to both compounds. Three of the eIF4A mutations were characterized regarding their functional consequences on activity and response to rocaglamide inhibition. These data support a model whereby rocaglamides stabilize an eIF4A-RNA interaction to either alter the level and/or impair the activity of the eIF4F complex. Furthermore, in silico modeling supports the annotation of a binding pocket delineated by the RNA substrate and the residues identified from our mutagenesis screen. As expected from the high degree of conservation of the eukaryotic translation pathway, these observations are consistent with previous observations in mammalian model systems. Importantly, we demonstrate that the chemically distinct silvestrol and synthetic rocaglamides share a common mechanism of action, which will be critical for optimization of physiologically stable derivatives. Finally, these data confirm the value of the rocaglamide scaffold for exploring the impact of translational modulation on disease.
Collapse
Affiliation(s)
- Heather Sadlish
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | | | - C. Gregory Paris
- Novartis Institutes for BioMedical Research, 250 Massachusetts
Avenue Cambridge Massachusetts 02139, United States
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Lena Chang
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Stephen B. Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Silvio Roggo
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| | - John A. Porco
- Department of Chemistry, Center for Chemical
Methodology and Library Development, Boston University, Boston, Massachusetts, United States
| | | | - N. Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel,
Switzerland
| |
Collapse
|
38
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
39
|
Díaz JF, Andreu JM, Jiménez-Barbero J. The interaction of microtubules with stabilizers characterized at biochemical and structural levels. Top Curr Chem (Cham) 2013; 286:121-49. [PMID: 23563612 DOI: 10.1007/128_2008_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Since the discovery of paclitaxel and its peculiar mechanism of cytotoxicity, which has made it and its analogues widely used antitumour drugs, great effort has been made to understand the way they produce their effect in microtubules and to find other products that share this effect without the undesired side effects of low solubility and development of multidrug resistance by tumour cells. This chapter reviews the actual knowledge about the biochemical and structural mechanisms of microtubule stabilization by microtubule stabilizing agents, and illustrates the way paclitaxel and its biomimetics induce microtubule assembly, the thermodynamics of their binding, the way they reach their binding site and the conformation they have when bound.
Collapse
Affiliation(s)
- J F Díaz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain,
| | | | | |
Collapse
|
40
|
Abstract
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Centre deRecherche de Gif, Gif-sur-Yvette, France
| | | |
Collapse
|
41
|
Abstract
Topoisomerases are ubiquitous enzymes that control DNA supercoiling and entanglements. They are essential during transcription and replication, and topoisomerase inhibitors are among the most effective and most commonly used anticancer and antibacterial drugs. This review consists of two parts. In the first part ("Lessons"), it gives background information on the catalytic mechanisms of the different enzyme families (6 different genes in humans and 4 in most bacteria), describes the "interfacial inhibition" by which topoisomerase-targeted drugs act as topoisomerase poisons, and describes clinically relevant topoisomerase inhibitors. It generalizes the interfacial inhibition principle, which was discovered from the mechanism of action of topoisomerase inhibitors, and discusses how topoisomerase inhibitors kill cells by trapping topoisomerases on DNA rather than by classical enzymatic inhibition. Trapping protein-DNA complexes extends to a novel mechanism of action of PARP inhibitors and could be applied to the targeting of transcription factors. The second part of the review focuses on the challenges for discovery and precise use of topoisomerase inhibitors, including targeting topoisomerase inhibitors using chemical coupling and encapsulation for selective tumor delivery, use of pharmacodynamic biomarkers to follow drug activity, complexity of the response determinants for anticancer activity and patient selection, prospects of rational combinations with DNA repair inhibitors targeting tyrosyl-DNA-phosphodiesterases 1 and 2 (TDP1 and TDP2) and PARP, and the unmet need to develop inhibitors for type IA enzymes.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular
Pharmacology, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
42
|
Deshayes S, Divita G. Fluorescence technologies for monitoring interactions between biological molecules in vitro. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:109-43. [PMID: 23244790 DOI: 10.1016/b978-0-12-386932-6.00004-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last two centuries, the discovery and understanding of the principle of fluorescence have provided new means of characterizing physical/biological/chemical processes in a noninvasive manner. Fluorescence spectroscopy has become one of the most powerful and widely applied methods in the life sciences, from fundamental research to clinical applications. In vitro, fluorescence approaches offer the potential to sense in real-time extra and intracellular molecular interactions and enzymatic reactions, which constitutes a major advantage over other approaches to the study of biomolecular interactions. This technology has been used for the characterization of protein/protein, protein/nucleic acid, protein/substrate, and biomembrane/biomolecule interactions, which play crucial roles in the regulation of cellular pathways. This chapter reviews the different fluorescence strategies that have been developed for sensing molecular interactions in vitro at both steady- and pre-steady-state levels.
Collapse
Affiliation(s)
- Sebastien Deshayes
- Centre de Recherches de Biochimie Macromoléculaire, Department of Chemical Biology and Nanotechnology for Therapeutics, CRBM-CNRS, UMR-5237, UM1-UM2, University of Montpellier, 1919 Route de Mende, Montpellier, France
| | | |
Collapse
|
43
|
Rouhana J, Padilla A, Estaran S, Bakari S, Delbecq S, Boublik Y, Chopineau J, Pugnière M, Chavanieu A. Kinetics of interaction between ADP-ribosylation factor-1 (Arf1) and the Sec7 domain of Arno guanine nucleotide exchange factor, modulation by allosteric factors, and the uncompetitive inhibitor brefeldin A. J Biol Chem 2012; 288:4659-72. [PMID: 23255605 DOI: 10.1074/jbc.m112.391748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg(2+), and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg(2+) potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg(2+)-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex.
Collapse
Affiliation(s)
- Jad Rouhana
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS-Universités Montpellier 1 et 2 Faculté de Pharmacie, 15 avenue Charles Flahault BP14491, 34093 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Integrase (IN) is a clinically validated target for the treatment of human immunodeficiency virus infections and raltegravir exhibits remarkable clinical activity. The next most advanced IN inhibitor is elvitegravir. However, mutant viruses lead to treatment failure and mutations within the IN coding sequence appear to confer cross-resistance. The characterization of those mutations is critical for the development of second generation IN inhibitors to overcome resistance. This review focuses on IN resistance based on structural and biochemical data, and on the role of the IN flexible loop i.e., between residues G140-G149 in drug action and resistance.
Collapse
Affiliation(s)
| | | | | | - Yves Pommier
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-5944; Fax: +1-301-402-0752
| |
Collapse
|
45
|
Grimme D, González-ruiz D, Gohlke* H. Computational Strategies and Challenges for Targeting Protein–Protein Interactions with Small Molecules. PHYSICO-CHEMICAL AND COMPUTATIONAL APPROACHES TO DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735377-00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Fronza M, Lamy E, Günther S, Heinzmann B, Laufer S, Merfort I. Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. PHYTOCHEMISTRY 2012; 78:107-119. [PMID: 22436445 DOI: 10.1016/j.phytochem.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 05/27/2023]
Abstract
Abietane diterpenes, especially those containing quinone moieties, are often reported to have cytotoxic effects on cancer cell lines. They deserve greater attention because several cancer chemotherapeutic agents also possess the quinone structural feature. To date, very little is known about their cytotoxic molecular modes of action. In the present study, five diterpenes, 7 alpha-acetoxyroyleanone, horminone, royleanone, 7-ketoroyleanone and sugiol which have been previously isolated from the medicinal plant Peltodon longipes were shown to possess cytotoxic activity against the human pancreatic cancer cell line MIA PaCa-2. 7 alpha-Acetoxyroyleanone, horminone and royleanone were demonstrated to possess alkylating properties using the nucleophile 4-(4-nitrobenzyl)pyridine. However, no clear correlation between the alkylating properties and cytotoxicity of these diterpenes was observed. Furthermore, the relaxation activity of human DNA topoisomerases I and II was found to be influenced by these compounds, with 7-ketoroyleanone and sugiol being the most active. These two diterpenes preferentially inhibited topoisomerase I and exhibited lower IC(50) values than the classical topoisomerase I inhibitor camptothecin. Molecular docking studies revealed possible interactions of diterpenes with topoisomerase I, indicating that these compounds do not form the drug-enzyme-DNA covalent ternary complex as observed with camptothecin. A binding pocket located at the surface of the DNA-interaction site was proposed. Moreover, the ability of the five diterpenes to generate DNA-strand breaks in single cells was confirmed using the alkaline comet assay. As expected, these diterpenes also influenced cell cycle progression and arrested cells in different phases of the cell cycle, primarily the G1/G0 and S-phases. Interestingly, the diterpenes only exhibited a slight ability to induce apoptotic cell death and failed to generate intracellular reactive oxygen species. These results provide additional understanding of the cytotoxic effects of abietane diterpenes. Depending on their functional groups, we propose that abietane diterpenes utilise different mechanisms to induce cell death.
Collapse
Affiliation(s)
- Marcio Fronza
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD, Passaniti A. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res 2012; 27:913-25. [PMID: 22189971 DOI: 10.1002/jbmr.1504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fat-soluble prohormone cholecalciferol (Vitamin D3) is a precursor of the circulating 25-OH Vitamin D3, which is converted by 1α-hydroxylase to the biologically active 1,25-OH Vitamin D3. Active Vitamin D3 interacts with the Vitamin D receptor (VDR), a transcription factor that plays an important role in calcium mobilization and bone formation. RUNX2 is a DNA-binding transcription factor that regulates target genes important in bone formation, angiogenesis, and cancer metastasis. Using computer-assisted drug design (CADD) and a microtiter plate-based DNA-binding enzyme-linked immunosorbent assay (D-ELISA) to measure nuclear RUNX2 DNA binding, we have found that Vitamin D3 prohormones can modulate RUNX2 DNA binding, which was dose-dependent and sensitive to trypsin, salt, and phosphatase treatment. Unlabeled oligonucleotide or truncated, dominant negative RUNX2 proteins were competitive inhibitors of RUNX2 DNA binding. The RUNX2 heterodimeric partner, Cbfβ, was detected in the binding complexes with specific antibodies. Evaluation of several RUNX2:DNA targeted small molecules predicted by CADD screening revealed a previously unknown biological activity of the inactive Vitamin D3 precursor, cholecalciferol. Cholecalciferol modulated RUNX2:DNA binding at nanomolar concentrations even in cells with low VDR. Cholecalciferol and 25-OH Vitamin D3 prohormones were selective inhibitors of RUNX2-positive endothelial, bone, and breast cancer cell proliferation, but not of cells lacking RUNX2 expression. These compounds may have application in modulating RUNX2 activity in an angiogenic setting, in metastatic cells, and to promote bone formation in disease-mediated osteoporosis. The combination CADD discovery and D-ELISA screening approaches allows the testing of other novel derivatives of Vitamin D and/or transcriptional inhibitors with the potential to regulate DNA binding and biological function.
Collapse
Affiliation(s)
- Karen F Underwood
- The Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mattiazzi M, Petrovič U, Križaj I. Yeast as a model eukaryote in toxinology: a functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon 2012; 60:558-71. [PMID: 22465496 DOI: 10.1016/j.toxicon.2012.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Yeast Saccharomyces cerevisiae has proven to be a relevant and convenient model organism for the study of diverse biological phenomena, due to its straightforward genetics, cost-effectiveness and rapid growth, combined with the typical characteristics of a eukaryotic cell. More than 40% of yeast proteins share at least part of their primary amino acid sequence with the corresponding human protein, making yeast a valuable model in biomedical research. In the last decade, high-throughput and genome-wide experimental approaches developed in yeast have paved the way to functional genomics that aims at a global understanding of the relationship between genotype and phenotype. In this review we first present the yeast strain and plasmid collections for genome-wide experimental approaches to study complex interactions between genes, proteins and endo- or exogenous small molecules. We describe methods for protein-protein, protein-DNA, genetic and chemo-genetic interactions, as well as localization studies, focussing on their application in research on small pharmacologically active molecules. Next we review the use of yeast as a model organism in neurobiology, emphasizing work done towards elucidating the pathogenesis of neurodegenerative diseases and the mechanism of action of neurotoxic phospholipases A(2).
Collapse
Affiliation(s)
- Mojca Mattiazzi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | |
Collapse
|
49
|
Kiselev E, Agama K, Pommier Y, Cushman M. Azaindenoisoquinolines as topoisomerase I inhibitors and potential anticancer agents: a systematic study of structure-activity relationships. J Med Chem 2012; 55:1682-97. [PMID: 22329436 DOI: 10.1021/jm201512x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive study of a series of azaindenoisoquinoline topoisomerase I (Top1) inhibitors is reported. The synthetic pathways have been developed to prepare 7-, 8-, 9-, and 10-azaindenoisoquinolines. The present study shows that 7-azaindenoisoquinolines possess the greatest Top1 inhibitory activity and cytotoxicity. Additionally, the introduction of a methoxy group into the D-ring of 7-azaindenoisoquinolines improved their biological activities, leading to new lead molecules for further development. A series of QM calculations were performed on the model "sandwich" complexes of azaindenoisoquinolines with flanking DNA base pairs from the Drug-Top1-DNA ternary complex. The results of these calculations demonstrate how changes in two forces contributing to the π-π stacking (dispersion and charge-transfer interactions) affect the binding of the drug to the Top1-DNA cleavage complex and thus modulate the drug's Top1 inhibitory activity.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
50
|
Zhao XZ, Maddali K, Metifiot M, Smith SJ, Vu BC, Marchand C, Hughes SH, Pommier Y, Burke TR. Bicyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors. Chem Biol Drug Des 2011; 79:157-65. [PMID: 22107736 DOI: 10.1111/j.1747-0285.2011.01270.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HIV-1 integrase (IN) is a validated therapeutic target for the treatment of AIDS. However, the emergence of resistance to raltegravir, the sole marketed FDA-approved IN inhibitor, emphasizes the need to develop second-generation inhibitors that retain efficacy against clinically relevant IN mutants. We report herein bicyclic hydroxy-1H-pyrrolopyridine-triones as a new family of HIV-1 integrase inhibitors that were efficiently prepared using a key 'Pummerer cyclization deprotonation cycloaddition' cascade of imidosulfoxides. In in vitro HIV-1 integrase assays, the analogs showed low micromolar inhibitory potencies with selectivity for strand transfer reactions as compared with 3'-processing inhibition. A representative inhibitor (5e) retained most of its inhibitory potency against the three major raltegravir-resistant IN mutant enzymes, G140S/Q148H, Y143R, and N155H. In antiviral assays employing viral vectors coding these IN mutants, compound 5e was approximately 200- and 20-fold less affected than raltegravir against the G140S/Q148H and Y143R mutations, respectively. Against the N155H mutation, 5e was approximately 10-fold less affected than raltegravir. Thus, our new compounds represent a novel structural class that may be further developed to overcome resistance to raltegravir, particularly in the case of the G140S/Q148H mutations.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|