1
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
2
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
3
|
Kim YJ, Song J, Lee DH, Um SH, Bhang SH. Suppressing cancer by damaging cancer cell DNA using LED irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112714. [PMID: 37084656 DOI: 10.1016/j.jphotobiol.2023.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND High-energy irradiation eliminates cancer cells by destroying their genetic components. However, there are several side effects from doing this, such as fatigue, dermatitis, and hair loss, which remain obstacles to this treatment. Here, we propose a moderate method that uses low-energy white light from a light-emitting diode (LED) to selectively inhibit cancer cell proliferation without affecting normal cells. METHODS The association between LED irradiation and cancer cell growth arrest was evaluated based on cell proliferation, viability, and apoptotic activity. Immunofluorescence, polymerase chain reaction, and western blotting were performed in vitro and in vivo to identify the metabolism related to the inhibition of HeLa cell proliferation. RESULTS LED irradiation aggravated the defective p53 signaling pathway and induced cell growth arrest in cancer cells. Consequently, cancer cell apoptosis was induced by the increased DNA damage. Additionally, LED irradiation inhibited the proliferation of cancer cells by suppressing the MAPK pathway. Furthermore, the suppression of cancer growth by the regulation of p53 and MAPK was observed in cancer-bearing mice irradiated with LED. CONCLUSIONS Our findings suggest that LED irradiation can suppress cancer cell activity and may contribute to preventing the proliferation of cancer cells after medical surgery without causing side effects.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
5
|
Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Adil M, Kanwal S, Rasheed S, Iqbal M, Abbas G. Cancer Chemoresistance; Recent Challenges and Future Considerations. Cancer Treat Res 2023; 185:237-253. [PMID: 37306912 DOI: 10.1007/978-3-031-27156-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer remains one of the serious health hazards and major causes of human mortality across the world. Despite the development of many typical antineoplastic drugs and introduction of novel targeted agents, chemoresistance constitutes a major challenge in the effective therapeutic management of cancer. Drug inactivation, efflux of anticancer agents, modification of target sites, enhanced repair of DNA damage, apoptosis failure and induction of epithelial-mesenchymal transition are the principal mechanisms of cancer chemoresistance. Moreover, epigenetics, cell signaling, tumor heterogeneity, stem cells, microRNAs, endoplasmic reticulum, tumor microenvironment and exosomes have also been implicated in the multifaceted phenomenon of anticancer drug resistance. The tendency of resistance is either intrinsically possessed or subsequently acquired by cancerous cells. From clinical oncology standpoint, therapeutic failure and tumor progression are the most probable consequences of cancer chemoresistance. Combination therapy can help to overcome the issue of drug resistance, and therefore, the development of such treatment regimens is recommended for counteracting the emergence and dissemination of cancer chemoresistance. This chapter outlines the current knowledge on underlying mechanisms, contributory biological factors and likely consequences of cancer chemoresistance. Besides, prognostic biomarkers, diagnostic methods and potential approaches to overcome the emergence of antineoplastic drug resistance have also been described.
Collapse
Affiliation(s)
- Muhammad Adil
- Pharmacology and Toxicology Section, University of Veterinary and Animal Sciences, Lahore, Jhang Campus, Jhang, 35200, Pakistan.
| | - Shamsa Kanwal
- Microbiology Section, University of Veterinary and Animal Sciences, Lahore, Jhang Campus, Jhang, 35200, Pakistan
| | - Sarmad Rasheed
- Microbiology Section, University of Veterinary and Animal Sciences, Lahore, Jhang Campus, Jhang, 35200, Pakistan
| | - Mavara Iqbal
- Microbiology Section, University of Veterinary and Animal Sciences, Lahore, Jhang Campus, Jhang, 35200, Pakistan
| | - Ghazanfar Abbas
- Microbiology Section, University of Veterinary and Animal Sciences, Lahore, Jhang Campus, Jhang, 35200, Pakistan
| |
Collapse
|
7
|
Guo N, Li MZ, Wang LM, Chen HD, Song SS, Miao ZH, He JX. Repeated treatments of Capan-1 cells with PARP1 and Chk1 inhibitors promote drug resistance, migration and invasion. Cancer Biol Ther 2022; 23:69-82. [PMID: 35000525 PMCID: PMC8812781 DOI: 10.1080/15384047.2021.2024414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PARP1 and Chk1 inhibitors have been shown to be synergistic in different cancer models in relatively short time treatment modes. However, the consequences of long-term/repeated treatments with the combinations in cancer models remain unclear. In this study, the synergistic cytotoxicity of their combinations in 8 tumor cell lines was confirmed in a 7-day exposure mode. Then, pancreatic Capan-1 cells were repeatedly treated with the PARP1 inhibitor olaparib, the Chk1 inhibitor rabusertib or their combination for 211–214 days, during which the changes in drug sensitivity were monitored at a 35-day interval. Unexpectedly, among the 3 treatment modes, the combination treatments resulted in the highest-grade resistance to Chk1 (~14.6 fold) and PARP1 (~420.2 fold) inhibitors, respectively. Consistently, G2/M arrest and apoptosis decreased significantly in the resulting resistant variants exposed to olaparib. All 3 resistant variants also unexpectedly obtained enhanced migratory and invasive capabilities. Moreover, the combination treatments resulted in increased migration and invasion than olaparib alone. The expression of 124 genes changed significantly in all the resistant variants. We further demonstrate that activating CXCL3-ERK1/2 signaling might contribute to the enhanced migratory capabilities rather than the acquired drug resistance. Our findings indicate that repeated treatments with the rabusertib/olaparib combination result in increased drug resistance and a more aggressive cell phenotype than those with either single agent, providing new clues for future clinical anticancer tests of PARP1 and Chk1 inhibitor combinations.
Collapse
Affiliation(s)
- Ne Guo
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Zhu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Min Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan-Shan Song
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xue He
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
9
|
Zheng L, Ren R, Sun X, Zou Y, Shi Y, Di B, Niu MM. Discovery of a Dual Tubulin and Poly(ADP-Ribose) Polymerase-1 Inhibitor by Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, and Biological Evaluation. J Med Chem 2021; 64:15702-15715. [PMID: 34670362 DOI: 10.1021/acs.jmedchem.1c00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dual inhibition of tubulin and poly(ADP-ribose) polymerase-1 (PARP-1) may become an attractive approach for cancer therapy. Here, we discover a dual tubulin/PARP-1 inhibitor (termed as TP-3) using structure-based virtual screening. TP-3 shows strong dual inhibitory effects on both tubulin and PARP-1. Cellular assays reveal that TP-3 shows superior antiproliferative activities against human cancer cells, including breast, liver, ovarian, and cervical cancers. Further studies indicate that TP-3 plays an antitumor role through multiple mechanisms, including the disturbance of the microtubule network and the PARP-1 DNA repairing function, accumulation of DNA double-strand breaks, inhibition of the tube formation, and induction of G2/M cell cycle arrest and apoptosis. In vivo assessment indicates that TP-3 inhibits the growth of MDA-MB-231 xenograft tumors in nude mouse with no notable side effects. These data demonstrate that TP-3 is a dual-targeting, high-efficacy, and low-toxic antitumor agent.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Yiru Shi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 2021; 12:3153. [PMID: 34039990 PMCID: PMC8155215 DOI: 10.1038/s41467-021-23505-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders. XPA-binding protein (XAB)-2 is the human homologue of the yeast pre-mRNA splicing factor Syf1. Here the authors use an in vivo biotinylation tagging approach to show XAB2’s role in DNA repair, RNA splicing and transcription during mammalian development.
Collapse
|
11
|
Zhang Z, Chang X, Zhang C, Zeng S, Liang M, Ma Z, Wang Z, Huang W, Shen Z. Identification of probe-quality degraders for Poly(ADP-ribose) polymerase-1 (PARP-1). J Enzyme Inhib Med Chem 2021; 35:1606-1615. [PMID: 32779949 PMCID: PMC7470090 DOI: 10.1080/14756366.2020.1804382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), a critical DNA repair enzyme in the base excision repair pathway, has been pursued as an attractive cancer therapeutic target. Intervention with PARP-1 has been proved to be more sensitive to cancer cells carrying BRCA1/2 mutations. Several PARP-1 inhibitors have been available on market for the treatment of breast, ovarian and prostatic cancer. Promisingly, the newly developed proteolysis targeting chimaeras (PROTACs) may provide a more potential strategy based on the degradation of PARP-1. Here we report the design, synthesis, and evaluation of a proteolysis targeting chimaera (PROTAC) based on the combination of PARP-1 inhibitor olaparib and the CRBN (cereblon) ligand lenalidomide. In SW620 cells, our probe-quality degrader compound 2 effectively induced PARP-1 degradation which results in anti-proliferation, cells apoptosis, cell cycle arresting, and cancer cells migratory inhibition. Thus, our findings qualify a new chemical probe for PARP-1 knockdown.
Collapse
Affiliation(s)
- Zhimin Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Xinyue Chang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Chixiao Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Meihao Liang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Zhen Ma
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Zunyuan Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| | - Zhengrong Shen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, P. R. China
| |
Collapse
|
12
|
Tang Z, Wang Y, Wan Y, Xie Y, Li S, Tao D, Wang C, Wu YZ, Sui JD. Apurinic/apyrimidinic endonuclease 1/reduction-oxidation effector factor-1 (APE1) regulates the expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome through modulating transcription factor NF-κB and promoting the secretion of inflammatory mediators in macrophages. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:145. [PMID: 33569447 PMCID: PMC7867945 DOI: 10.21037/atm-20-7752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Inflammatory mediators play an important role in the occurrence, development, and metastasis of tumors. The aim of the present study was to elucidate the effect of apurinic/apyrimidinic endonuclease 1/reduction-oxidation effector factor-1 (APE1) on inflammatory mediator secretion, which is dependent on the APE1-mediated NLR family pyrin domain containing 3 (NLRP3) regulatory mechanism. Methods The human myeloid leukemia mononuclear cell line (THP-1) cells were cultured and polarized to M2 subset macrophages. Enzyme-linked immunosorbent assay was used for determining tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, IL-10, and IL-33 levels. Reverse transcription–polymerase chain reaction and western blot were used for evaluating TNF-α, NLR family pyrin domain containing 1 (NLRP1), NLRP3, caspase-1, and apoptosis-associated speck-like protein containing a card expression. Plasmid silencing APE1 gene (APE1shRNA) was synthesized and packaged into lentiviral. For activating inflammasomes, M2-type THP-1 cells were transfected with lentiviral vector APE1shRNA incubated with lipopolysaccharide (LPS) (100 ng/mL)/APE1 inhibitor (E3330, 20 µM) and ATP. Electrophoretic mobility shift assay and dual-luciferase reporter assay were used for determining the interaction between NLRP3 and nuclear factor-κB (NF-κB) molecule. Results APE1 significantly induced LPS-induced pro-inflammatory cytokine production, including TNF-α, IL-1β, and IL18, compared with THP-1 cells without APE1 treatment (P<0.05). APE1 promoted LPS-induced NLRP3 inflammasome activation by modulating the gene transcription of NLRP3-associated molecules. APE1 enhanced LPS-induced NLRP3 inflammasome activation by regulating NLRP3 and caspase-1 protein expression. APE1 improved NLRP3 activity by modulating the interaction between NLRP3 and NF-κB, and the modulation of NF-κB. APE1 promoted LPS-induced NLRP3 inflammasome activation through an NF-κB-dependent pathway. Conclusions APE1 regulates the expression of NLRP3 by modulating transcription factor NF-κB and further promoting the secretion of inflammatory mediators IL-1β and IL-18 in macrophages. The findings of the present study provide theoretical and experimental bases for the design of tumor-associated macrophage (TAM)-targeted therapy, with APE1 as the target molecule.
Collapse
Affiliation(s)
- Zheng Tang
- College of Bioengineering, Chongqing University, Chongqing, China.,Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yue Wan
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yue Xie
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Shujie Li
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Dan Tao
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Can Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
13
|
Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, Jin GZ, Xuan Y. 3D culture technologies of cancer stem cells: promising ex vivo tumor models. J Tissue Eng 2020; 11:2041731420933407. [PMID: 32637062 PMCID: PMC7318804 DOI: 10.1177/2041731420933407] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Air Force Medical Center of the Chinese PLA, Beijing, China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae-Su Jang
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
14
|
Guo C, Zhang F, Wu X, Yu X, Wu X, Shi D, Wang L. BTH-8, a novel poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, causes DNA double-strand breaks and exhibits anticancer activities in vitro and in vivo. Int J Biol Macromol 2020; 150:238-245. [DOI: 10.1016/j.ijbiomac.2020.02.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
|
15
|
Zhu H, Wei M, Xu J, Hua J, Liang C, Meng Q, Zhang Y, Liu J, Zhang B, Yu X, Shi S. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Mol Cancer 2020; 19:49. [PMID: 32122376 PMCID: PMC7053129 DOI: 10.1186/s12943-020-01167-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| |
Collapse
|
16
|
Tian YN, Chen HD, Tian CQ, Wang YQ, Miao ZH. Polymerase independent repression of FoxO1 transcription by sequence-specific PARP1 binding to FoxO1 promoter. Cell Death Dis 2020; 11:71. [PMID: 31992690 PMCID: PMC6987093 DOI: 10.1038/s41419-020-2265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates gene transcription in addition to functioning as a DNA repair factor. Forkhead box O1 (FoxO1) is a transcription factor involved in extensive biological processes. Here, we report that PARP1 binds to two separate motifs on the FoxO1 promoter and represses its transcription in a polymerase-independent manner. Using PARP1-knock out (KO) cells, wild-type-PARP1-complemented cells and catalytic mutant PARP1E988K-reconstituted cells, we investigated transcriptional regulation by PARP1. PARP1 loss led to reduced DNA damage response and ~362-fold resistance to five PARP inhibitors (PARPis) in Ewing sarcoma cells. RNA sequencing showed 492 differentially expressed genes in a PARP1-KO subline, in which the FoxO1 mRNA levels increased up to more than five times. The change in the FoxO1 expression was confirmed at both mRNA and protein levels in different PARP1-KO and complemented cells. Moreover, exogenous PARP1 overexpression reduced the endogenous FoxO1 protein in RD-ES cells. Competitive EMSA and ChIP assays revealed that PARP1 specifically bound to the FoxO1 promoter. DNase I footprinting, mutation analyses, and DNA pulldown FREP assays showed that PARP1 bound to two particular nucleotide sequences separately located at −813 to −826 bp and −1805 to −1828 bp regions on the FoxO1 promoter. Either the PARPi olaparib or the PARP1 catalytic mutation (E988K) did not impair the repression of PARP1 on the FoxO1 expression. Exogenous FoxO1 overexpression did not impair cellular PARPi sensitivity. These findings demonstrate a new PARP1-gene promoter binding mode and a new transcriptional FoxO1 gene repressor.
Collapse
Affiliation(s)
- Yu-Nan Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. .,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
17
|
Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nat Commun 2020; 11:42. [PMID: 31896748 PMCID: PMC6940362 DOI: 10.1038/s41467-019-13894-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1F/−) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1F/− animal sera and are secreted in macrophage media after DNA damage. The Er1F/− EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging. DNA damage is associated with metabolic disorders, but the mechanism in unclear. Here, the authors show that persistent DNA damage induced by lack of the endonuclease XPF-ERCC1 triggers extracellular vesicle biogenesis in tissue infiltrating macrophages, and that vesicle uptake stimulates glucose uptake in recipient cells, leading to increased inflammation.
Collapse
|
18
|
López-Camarillo C, Rincón DG, Ruiz-García E, Astudillo-de la Vega H, Marchat LA. DNA Repair Proteins as Therapeutic Targets in Ovarian Cancer. Curr Protein Pept Sci 2019; 20:316-323. [PMID: 30215333 DOI: 10.2174/1389203719666180914091537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/15/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022]
Abstract
Epithelial ovarian cancer is a serious public health problem worldwide with the highest mortality rate of all gynecologic cancers. The current standard-of-care for the treatment of ovarian cancer is based on chemotherapy based on adjuvant cisplatin/carboplatin and taxane regimens that represent the first-line agents for patients with advanced disease. The DNA repair activity of cancer cells determines the efficacy of anticancer drugs. These features make DNA repair mechanisms a promising target for novel cancer treatments. In this context a better understanding of the DNA damage response caused by antitumor agents has provided the basis for the use of DNA repair inhibitors to improve the therapeutic use of DNA-damaging drugs. In this review, we will discuss the functions of DNA repair proteins and the advances in targeting DNA repair pathways with special emphasis in the inhibition of HRR and BER in ovarian cancer. We focused in the actual efforts in the development and clinical use of poly (ADPribose) polymerase (PARP) inhibitors for the intervention of BRCA1/BRCA2-deficient ovarian tumors. The clinical development of PARP inhibitors in ovarian cancer patients with germline BRCA1/2 mutations and sporadic high-grade serous ovarian cancer is ongoing. Some phase II and phase III trials have been completed with promising results for ovarian cancer patients.
Collapse
Affiliation(s)
- César López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, México City, Mexico
| | - Dolores G Rincón
- Laboratorio de Medicina Translacional. Instituto Nacional de Cancerologia, Ciudad de Mexico, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Translacional. Instituto Nacional de Cancerologia, Ciudad de Mexico, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratorio de Investigacion Translacional en Cancer y Terapia Celular, Hospital de Oncologia Centro Medico Nacional Siglo XXI, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnologia. Instituto Politecnico Nacional. Ciudad de Mexico, Mexico
| |
Collapse
|
19
|
Targeting DNA Replication Stress and DNA Double-Strand Break Repair for Optimizing SCLC Treatment. Cancers (Basel) 2019; 11:cancers11091289. [PMID: 31480716 PMCID: PMC6770306 DOI: 10.3390/cancers11091289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.
Collapse
|
20
|
Pinto DO, Scott TA, DeMarino C, Pleet ML, Vo TT, Saifuddin M, Kovalskyy D, Erickson J, Cowen M, Barclay RA, Zeng C, Weinberg MS, Kashanchi F. Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology 2019; 16:13. [PMID: 31036006 PMCID: PMC6489247 DOI: 10.1186/s12977-019-0475-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/20/2019] [Indexed: 01/03/2023] Open
Abstract
Background HIV-1 patients receiving combination antiretroviral therapy (cART) survive infection but require life-long adherence at high expense. In chronic cART-treated patients with undetectable viral titers, cell-associated viral RNA is still detectable, pointing to low-level viral transcriptional leakiness. To date, there are no FDA-approved drugs against HIV-1 transcription. We have previously shown that F07#13, a third generation Tat peptide mimetic with competitive activity against Cdk9/T1-Tat binding sites, inhibits HIV-1 transcription in vitro and in vivo. Results Here, we demonstrate that increasing concentrations of F07#13 (0.01, 0.1, 1 µM) cause a decrease in Tat levels in a dose-dependent manner by inhibiting the Cdk9/T1-Tat complex formation and subsequent ubiquitin-mediated Tat sequestration and degradation. Our data indicate that complexes I and IV contain distinct patterns of ubiquitinated Tat and that transcriptional inhibition induced by F07#13 causes an overall reduction in Tat levels. This reduction may be triggered by F07#13 but ultimately is mediated by TAR-gag viral RNAs that bind suppressive transcription factors (similar to 7SK, NRON, HOTAIR, and Xist lncRNAs) to enhance transcriptional gene silencing and latency. These RNAs complex with PRC2, Sin3A, and Cul4B, resulting in epigenetic modifications. Finally, we observed an F07#13-mediated decrease of viral burden by targeting the R region of the long terminal repeat (HIV-1 promoter region, LTR), promoting both paused polymerases and increased efficiency of CRISPR/Cas9 editing in infected cells. This implies that gene editing may be best performed under a repressed transcriptional state. Conclusions Collectively, our results indicate that F07#13, which can terminate RNA Polymerase II at distinct sites, can generate scaffold RNAs, which may assemble into specific sets of “RNA Machines” that contribute to gene regulation. It remains to be seen whether these effects can also be seen in various clades that have varying promoter strength, mutant LTRs, and in patient samples. Electronic supplementary material The online version of this article (10.1186/s12977-019-0475-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Tristan A Scott
- Center for Gene Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thy T Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mohammed Saifuddin
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Dmytro Kovalskyy
- Protein Engineering Department, Institute of Molecular Biology and Genetics, UAS, Kiev, Ukraine
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Wits/SA MRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA. .,Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| |
Collapse
|
21
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
22
|
Chen HD, Chen CH, Wang YT, Guo N, Tian YN, Huan XJ, Song SS, He JX, Miao ZH. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor's cytotoxicity. Int J Cancer 2019; 145:714-727. [PMID: 30675909 DOI: 10.1002/ijc.32131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
PARP1 inhibitors (PARPis) are used clinically during cancer therapy and are thought to exert their cytotoxicity through PARP1 polymerase inhibition and PARP1-DNA trapping. Here, we showed no significant correlation between PARP1-DNA trapping and cytotoxicity induced by PARPis. We complemented PARP1-knockout sublines with wild-type PARP1 and 11 mutants with different point mutations that affect the polymerase activity. When examining the PARPi talazoparib, the induced cytotoxicity was highly significantly correlated with cellular PARP1 polymerase activity, but not with its PARP1-DNA trapping or polymerase inhibition. Similarly, talazoparib's PARP1-DNA trapping revealed significant correlation with the polymerase activity rather than its inhibition. Differently, however, when evaluating purified wild-type and mutated PARP1, we identified an almost linear relationship between PARPis' inhibiting PARP1 dissociation from DNA and their cytotoxicity in 17 cancer cell lines. In contrast, no significant correlation existed between PARP1 polymerase inhibition in the histone-based systems and the cytotoxicity. After careful comparisons on different methods and detection targets, we conclude that the PARPi-mediated increase in PARP1-DNA binding by inhibiting autoPARylation of PARP1 on DNA rather than in PARP1-DNA trapping is correlated with PARPi's cytotoxicity. Accordingly, we established a new PARPi screening model that more closely predicts cytotoxicity.
Collapse
Affiliation(s)
- Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuan-Huizi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Ting Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ne Guo
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Nan Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan-Shan Song
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xue He
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
23
|
Cao Y, Li Z, Mao L, Cao H, Kong J, Yu B, Yu C, Liao W. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur J Med Chem 2019; 162:423-434. [DOI: 10.1016/j.ejmech.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
|
24
|
Liu H, Wang X, Huang A, Gao H, Sun Y, Jiang T, Shi L, Wu X, Dong Q, Sun X. Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents. Oncol Res 2018; 27:29-38. [PMID: 29426373 PMCID: PMC7848410 DOI: 10.3727/096504018x15179694020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In this study, we investigated how the expression levels of Artemis may affect the treatment outcome of radiotherapy and chemotherapy in colorectal cancer cells. First, we found that the expression of Artemis is strong in some human rectal cancer samples, being higher than in adjacent normal tissues using immunohistochemical staining. We then knocked down Artemis gene in a human colorectal cancer cell line (RKO) using lentivirus-mediated siRNAs. Compared to the control RKO cells, the Artemis knockdown cells showed significantly increased sensitivity to bleomycin, etoposide, camptothecin, and IR. Induced by DNA-damaging agents, delayed DNA repair kinetics was found by the γ-H2AX foci assay, and a significantly increased cell apoptosis occurred in the Artemis knockdown RKO cells through apoptosis detection methods and Western blot. We also found that the p53/p21 signaling pathway may be involved in the apoptosis process. Taken together, our study indicates that manipulating Artemis can enhance colorectal cancer cell sensitivity to DNA-damaging agents. Therefore, Artemis can serve as a therapeutic target in rectal cancer therapy.
Collapse
Affiliation(s)
- Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xuanxuan Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Aihua Huang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Huaping Gao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yikan Sun
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tingting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xianjie Wu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Qinghua Dong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
25
|
Zhong Z, Yu H, Wang S, Wang Y, Cui L. Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin Med 2018; 13:44. [PMID: 30181769 PMCID: PMC6114245 DOI: 10.1186/s13020-018-0203-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023] Open
Abstract
Background Chemotherapy is a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur with chemotherapy in clinic, resulting in poor prognosis and recurrence. Nowadays, Chinese medicine may shed light on design of new therapeutic modes to overcome chemo-resistance. Although Rhizoma Curcumae possesses anti-cancer activities in various types of cancers, the effects and underlying mechanisms of its bioactive components against chemo-resistance are not clear. Therefore, the present study aims to explore the potential effects of Rhizoma Curcumae on doxorubicin-resistant breast cancer cells. Methods The expression and function of ABC transporters in doxorubicin-resistant MCF-7 breast cancer cells were measured by western blotting and flow cytometry. Cell viability was detected using MTT assay. The combination index was analyzed using the CalcuSyn program (Biosoft, Ferguson, MO), based on the Chou–Talalay method. Results In our present study, P-gp was overexpressed at protein level in doxorubicin-resistant MCF-7 cell line, but short of MRP1 and BCRP1. Essential oil of Rhizoma Curcumae and the main bioactive components were assessed on doxorubicin-resistant MCF-7 cell line. We found that the essential oil and furanodiene both display powerful inhibitory effects on cell viability, but neither of these is the specific inhibitor of ABC transporters. Moreover, furanodiene fails to enhance the efficacy of doxorubicin to improve multidrug resistance. Conclusion Overall, our findings fill the gaps of the researches on chemo-resistance improvement of Rhizoma Curcumae and are also beneficial for Rhizoma Curcumae being developed as a promising natural product for cancer adjuvant therapy in the future. Electronic supplementary material The online version of this article (10.1186/s13020-018-0203-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Haibing Yu
- 3School of Public Health, Guangdong Medical University, Dongguan, Guangdong China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Liao Cui
- 1Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong China
| |
Collapse
|
26
|
He JX, Wang M, Huan XJ, Chen CH, Song SS, Wang YQ, Liao XM, Tan C, He Q, Tong LJ, Wang YT, Li XH, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Gao ZW, Chen XY, Xiong B, Lu XL, Ding J, Yang CH, Miao ZH. Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget 2018; 8:4156-4168. [PMID: 27926532 PMCID: PMC5354820 DOI: 10.18632/oncotarget.13749] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
Abstract
The approval of poly(ADP-ribose) polymerase (PARP) inhibitor AZD2281 in 2014 marked the successful establishment of the therapeutic strategy targeting homologous recombination repair defects of cancers in the clinic. However, AZD2281 has poor water solubility, low tissue distribution and relatively weak in vivo anticancer activity, which appears to become limiting factors for its clinical use. In this study, we found that mefuparib hydrochloride (MPH) was a potent PARP inhibitor, possessing prominent in vitro and in vivo anticancer activity. Notably, MPH displayed high water solubility (> 35 mg/ml) and potent PARP1/2 inhibition in a substrate-competitive manner. It reduced poly(ADP-ribose) (PAR) formation, enhanced γH2AX levels, induced G2/M arrest and subsequent apoptosis in homologous recombination repair (HR)-deficient cells. Proof-of-concept studies confirmed the MPH-caused synthetic lethality. MPH showed potent in vitro and in vivo proliferation and growth inhibition against HR-deficient cancer cells and synergistic sensitization of HR-proficient xenografts to the anticancer drug temozolomide. A good relationship between the anticancer activity and the PARP inhibition of MPH suggested that PAR formation and γH2AX accumulation could serve as its pharmacodynamic biomarkers. Its high bioavailability (40%~100%) and high tissue distribution in both monkeys and rats were its most important pharmacokinetic features. Its average concentrations were 33-fold higher in the tissues than in the plasma in rats. Our work supports the further clinical development of MPH as a novel PARP1/2 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Jin-Xue He
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Huizi Chen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan-Shan Song
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Mei Liao
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Tan
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian He
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Jiang Tong
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Wang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Hua Li
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Su
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Yan Shen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Sun
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Ying Yang
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Yan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Xiong
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Lian Lu
- Cisen Pharmaceutical Co., LTD, Jining 272073, Shandong, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hao Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Wang YT, Yuan B, Chen HD, Xu L, Tian YN, Zhang A, He JX, Miao ZH. Acquired resistance of phosphatase and tensin homolog-deficient cells to poly(ADP-ribose) polymerase inhibitor and Ara-C mediated by 53BP1 loss and SAMHD1 overexpression. Cancer Sci 2018; 109:821-831. [PMID: 29274141 PMCID: PMC5834817 DOI: 10.1111/cas.13477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
With increasing uses of poly(ADP‐ribose) polymerase (PARP) inhibitors (PARPi) for cancer therapy, understanding their resistance is becoming urgent. However, acquired PARPi resistance in the phosphatase and tensin homolog (PTEN)‐deficient background is poorly understood. We generated 3 PARPi‐resistant PTEN‐deficient glioblastoma U251 variants separately with olaparib (U251/OP), talazoparib (U251/TP) and simmiparib (U251/SP). These variants displayed consistent resistance (2.46‐71.78‐fold) to all 5 PARPi, including niraparib and rucaparib, and showed higher degrees of resistance to the PARPi to which the parental cells were more sensitive. The resistance was characteristic of fast emergence and high stability. However, the resistance acquirement did not cause an increasingly aggressive phenotype. The resistance was not correlated to various factors, including PTEN mutations. The PARPi‐treated variants produced less γH2AX and G2/M arrest. Consistently, loss of 53BP1 occurred in all variants and its compensation enhanced their sensitivity to PARPi by approximately 76%. The variants revealed slightly different cross‐resistance profiles to 13 non‐PARPi anticancer drugs. All were resistant to Ara‐C (6‐8‐fold) but showed differential resistance to 5‐fluorouracil, gemcitabine and paclitaxel. Almost no resistance was observed to the rest drugs, including cisplatin. SAMHD1 was overexpressed in all the variants and its knockout completely restored their sensitivity to Ara‐C but did not affect their PARPi sensitivity. The present study demonstrates a consistent resistance profile to PARPi and a unique cross‐resistance profile to non‐PARPi drugs in different PARPi‐resistant U251 cells and reveals 53BP1 loss and SAMHD1 overexpression as the primary mechanisms responsible for their resistance to PARPi and Ara‐C, respectively. These effects probably result from heritable gene change(s) caused by persistent PARPi exposure.
Collapse
Affiliation(s)
- Yu-Ting Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yuan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Nan Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ao Zhang
- Department of Medicinal Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin-Xue He
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Chatzinikolaou G, Apostolou Z, Aid-Pavlidis T, Ioannidou A, Karakasilioti I, Papadopoulos GL, Aivaliotis M, Tsekrekou M, Strouboulis J, Kosteas T, Garinis GA. ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes. Nat Cell Biol 2017; 19:421-432. [PMID: 28368372 DOI: 10.1038/ncb3499] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Inborn defects in DNA repair are associated with complex developmental disorders whose causal mechanisms are poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the nucleotide excision repair (NER) structure-specific endonuclease ERCC1-XPF complex interacts with the insulator binding protein CTCF, the cohesin subunits SMC1A and SMC3 and with MBD2; the factors co-localize with ATRX at the promoters and control regions (ICRs) of imprinted genes during postnatal hepatic development. Loss of Ercc1 or exposure to MMC triggers the localization of CTCF to heterochromatin, the dissociation of the CTCF-cohesin complex and ATRX from promoters and ICRs, altered histone marks and the aberrant developmental expression of imprinted genes without altering DNA methylation. We propose that ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes and that persistent DNA damage triggers chromatin changes that affect gene expression programs associated with NER disorders.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Tamara Aid-Pavlidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Giorgio L Papadopoulos
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Theodore Kosteas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| |
Collapse
|
29
|
Jun DW, Hwang M, Kim YH, Kim KT, Kim S, Lee CH. DDRI-9: a novel DNA damage response inhibitor that blocks mitotic progression. Oncotarget 2017; 7:17699-710. [PMID: 26848527 PMCID: PMC4951243 DOI: 10.18632/oncotarget.7135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA damage response (DDR) is an emerging target for cancer therapy. By modulating the DDR, including DNA repair and cell cycle arrest, the efficacy of anticancer drugs can be enhanced and side effects reduced. We previously screened a chemical library and identified novel DDR inhibitors including DNA damage response inhibitor-9 (DDRI-9; 1H-Purine-2,6-dione,7-[(4-fluorophenyl)methyl]-3,7-dihydro-3-methyl-8-nitro). In this study, we characterized DDRI-9 activity and found that it inhibited phosphorylated histone variant H2AX foci formation upon DNA damage, delayed DNA repair, and enhanced the cytotoxicity of etoposide and ionizing radiation. It also reduced the foci formation of DNA repair-related proteins, including the protein kinase ataxia-telangiectasia mutated, DNA-dependent protein kinase, breast cancer type 1 susceptibility protein, and p53-binding protein 1, but excluding mediator of DNA damage checkpoint protein 1. Cell cycle analysis revealed that DDRI-9 blocked mitotic progression. Like other mitotic inhibitors, DDRI-9 treatment resulted in the accumulation of mitotic protein and induced cell death. Thus, DDRI-9 may affect both DDR signal amplification and mitotic progression. This study suggests that DDRI-9 is a good lead molecule for the development of anticancer drugs.
Collapse
Affiliation(s)
- Dong Wha Jun
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Mihwa Hwang
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea.,System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Yun-Hee Kim
- Molecular Imaging and Therapy Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Kyung-Tae Kim
- Molecular Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Sunshin Kim
- New Experimental Therapeutics Branch, Division of Convergence Technology, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Korea
| |
Collapse
|
30
|
Yuan B, Ye N, Song SS, Wang YT, Song Z, Chen HD, Chen CH, Huan XJ, Wang YQ, Su Y, Shen YY, Sun YM, Yang XY, Chen Y, Guo SY, Gan Y, Gao ZW, Chen XY, Ding J, He JX, Zhang A, Miao ZH. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials. Cancer Lett 2017; 386:47-56. [DOI: 10.1016/j.canlet.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 02/08/2023]
|
31
|
Mentegari E, Kissova M, Bavagnoli L, Maga G, Crespan E. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes (Basel) 2016; 7:genes7090057. [PMID: 27589807 PMCID: PMC5042388 DOI: 10.3390/genes7090057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.
Collapse
Affiliation(s)
- Elisa Mentegari
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Miroslava Kissova
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Laura Bavagnoli
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Emmanuele Crespan
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
32
|
Wang YQ, Wang PY, Wang YT, Yang GF, Zhang A, Miao ZH. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy. J Med Chem 2016; 59:9575-9598. [PMID: 27416328 DOI: 10.1021/acs.jmedchem.6b00055] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.
Collapse
Affiliation(s)
- Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Ping-Yuan Wang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Yu-Ting Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
33
|
Khoram NM, Bigdeli B, Nikoofar A, Goliaei B. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage. J Breast Cancer 2016; 19:18-25. [PMID: 27066092 PMCID: PMC4822103 DOI: 10.4048/jbc.2016.19.1.18] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/17/2015] [Indexed: 12/14/2022] Open
Abstract
Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-231 and T47D breast cancer cells was evaluated by performing an 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To assess clonogenic ability, MDA-MB-231 and T47D cells were treated with CAPE (1 µM) for 72 hours before irradiation, and then, a colony assay was performed. A comet assay was used to determine the number of DNA strand breaks at four different times. Results CAPE decreased the viability of both cell lines in a dose- and time-dependent manner. In the clonogenic assay, pretreatment of cells with CAPE before irradiation significantly reduced the surviving fraction of MDA-MB-231 cells at doses of 6 and 8 Gy. A reduction in the surviving fraction of T47D cells was observed relative to MDA-MB-231 at lower doses of radiation. Additionally, CAPE maintained radiation-induced DNA damage in T47D cells for a longer period than in MDA-MB-231 cells. Conclusion Our results indicate that CAPE impairs DNA damage repair immediately after irradiation. The induction of radiosensitivity by CAPE in radioresistant breast cancer cells may be caused by prolonged DNA damage.
Collapse
Affiliation(s)
- Nastaran Masoudi Khoram
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Bahareh Bigdeli
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - Alireza Nikoofar
- Department of Radiotherapy, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
34
|
Li X, Pan L, Shi J. Nuclear-Targeting MSNs-Based Drug Delivery System: Global Gene Expression Analysis on the MDR-Overcoming Mechanisms. Adv Healthc Mater 2015; 4:2641-8. [PMID: 26450832 DOI: 10.1002/adhm.201500548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/10/2015] [Indexed: 11/07/2022]
Abstract
The biological mechanisms of nuclear-targeting mesoporous silica nanoparticles (MSNs)-based DDSs (DOX@NT-MSNs) in overcoming multidrug resistance of cancer cells are studied. It is interesting to find for the first time that DOX@NT-MSNs down-regulate the expression of apoptosis suppressor genes and inhibit DNA repair process by disturbing the p53 pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| |
Collapse
|
35
|
A novelly synthesized phenanthroline derivative is a promising DNA-damaging anticancer agent inhibiting G1/S checkpoint transition and inducing cell apoptosis in cancer cells. Cancer Chemother Pharmacol 2015; 77:169-80. [PMID: 26590990 DOI: 10.1007/s00280-015-2894-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE The study mainly aimed to determine the biological function of a novelly synthesized phenanthroimidazole derivative, named L233, and to explore its potential mechanisms. METHODS Cell survival was examined using the MTT assays, and the DNA-damaging role of L233 was explored using the comet assay. Moreover, the western blotting assays and immunofluorescence assays were used to detect DNA damage biomarkers. Afterward, the flow cytometry was used to assess the effects of L233 on cell cycle distribution. As for the detection of cell apoptosis upon L233 treatment, the Hoechst 33342 staining, flow cytometry, and western blotting assays were all put into practice. RESULTS We find that L233 inhibits tumor cell growth more efficiently and safely than cisplatin. Moreover, it is a DNA-damaging agent, interrupting the cell cycle G1/S checkpoint transition and inducing cell apoptosis by not only activating ATM/CHK1 signaling pathway, but also targeting CHK1 to reduce the expression of RAP80 and PARP-1 to compromise the DNA damage repair in tumor cells. CONCLUSIONS In summary, L233 is a promising anticancer drug for the development of novel chemotherapies in the future.
Collapse
|
36
|
Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. Eur J Pharm Sci 2015; 74:95-102. [PMID: 25930121 DOI: 10.1016/j.ejps.2015.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/25/2015] [Indexed: 12/24/2022]
Abstract
Up-regulation of glycolysis, a well recognized hallmark of cancer cells, was also found to be predictive of poor chemotherapy response. This observation suggested the attempt of sensitizing cancer cells to conventional chemotherapeutic agents by inhibiting glucose metabolism. Lactate dehydrogenase (LDH) inhibition can be a way to hinder glycolysis of cancer cells without affecting the metabolism of normal tissues, which usually does not require this enzymatic activity. In this paper, we showed that two LDH inhibitors (oxamate and galloflavin) can increase the efficacy of cisplatin in cultured Burkitt's lymphoma (BL) cells and that this potentiating effect is not exerted in proliferating normal lymphocytes. This result was explained by the finding that in BL cells LDH inhibition induced reactive oxygen species (ROS) generation, which was not evidenced in proliferating normal lymphocytes. In BL cells treated with the association of cisplatin and LDH inhibitors, these ROS can be a further cause of DNA damage, to be added to that produced by cisplatin, leading to the failure of the response repair. At present LDH inhibitors suitable for clinical use are actively searched; our results can allow a better understanding of the potentiality of LDH as a possible target to develop innovative anticancer treatments.
Collapse
|
37
|
Zhang J, Yin D, Li H. hMSH2 expression is associated with paclitaxel resistance in ovarian carcinoma, and inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity. Oncol Rep 2014; 32:2199-206. [PMID: 25175513 DOI: 10.3892/or.2014.3430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the association between paclitaxel resistance, gene copy number, and gene expression in ovarian carcinoma, and to restore paclitaxel sensitivity in a paclitaxel-resistant ovarian carcinoma cell line by using hMSH2-targeting siRNA. Paclitaxel-resistant ovarian carcinoma cell lines OC3/TAX300 and OC3/TAX50 and their parental cell lines were analyzed by comparative genomic hybridization, and the expression levels of hMSH2 in ovarian carcinoma cell lines and tissues were determined. An siRNA targeted to hMSH2 mRNA was used to transfect a paclitaxel-resistant cell line. We assessed the morphological features, proliferation, and susceptibility to apoptosis of the transfected cells after paclitaxel treatment. Chromosome 2p21 (gene locus of hMSH2) was amplified in OC3/TAX300 cells. hMSH2 was overexpressed in 93.9 and 47.6% of paclitaxel-treated and untreated ovarian carcinoma tissue samples (P=0.0001), respectively. hMSH2 was overexpressed in 93.3 and 54.2% of low-differentiated and moderate-to-highly differentiated ovarian carcinoma tissue samples (P=0.0008), respectively. hMSH2 expression was inhibited in the OC3/TAX300 cells transfected with hMSH2 siRNA. hMSH2 siRNA increased paclitaxel sensitivity, inhibited OC3/TAX300 cell proliferation (G2/M arrest), and increased susceptibility to apoptosis. hMSH2 expression was upregulated in ovarian carcinoma cell lines and tissues after paclitaxel treatment. hMSH2 overexpression is related to paclitaxel resistance and poor prognosis. Inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity in paclitaxel‑resistant ovarian carcinoma cell lines and indicates a new direction in adjuvant therapy for ovarian carcinoma.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| | - Dongmei Yin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dongcheng, Beijing 100006, P.R. China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| |
Collapse
|
38
|
Banerjee R, Russo N, Liu M, Basrur V, Bellile E, Palanisamy N, Scanlon CS, van Tubergen E, Inglehart RC, Metwally T, Mani RS, Yocum A, Nyati MK, Castilho RM, Varambally S, Chinnaiyan AM, D'Silva NJ. TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nat Commun 2014; 5:4527. [PMID: 25078033 PMCID: PMC4130352 DOI: 10.1038/ncomms5527] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Head and neck cancer (SCCHN) is a common, aggressive, treatment-resistant cancer with a high recurrence rate and mortality, but the mechanism of treatment-resistance remains unclear. Here we describe a mechanism where the AAA-ATPase TRIP13 promotes treatment-resistance. Overexpression of TRIP13 in non-malignant cells results in malignant transformation. High expression of TRIP13 in SCCHN leads to aggressive, treatment-resistant tumors and enhanced repair of DNA damage. Using mass spectrometry, we identify DNA-PKcs complex proteins that mediate non homologous end joining (NHEJ), as TRIP13 binding partners. Using repair-deficient reporter systems, we show that TRIP13 promotes NHEJ, even when homologous recombination is intact. Importantly, overexpression of TRIP13 sensitizes SCCHN to an inhibitor of DNA-PKcs. Thus, this study defines a new mechanism of treatment resistance in SCCHN and underscores the importance of targeting NHEJ to overcome treatment failure in SCCHN and potentially in other cancers that overexpress TRIP13.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emily Bellile
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nallasivam Palanisamy
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina S Scanlon
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Elizabeth van Tubergen
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tarek Metwally
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ram-Shankar Mani
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anastasia Yocum
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sooryanarayana Varambally
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Arul M Chinnaiyan
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Urology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nisha J D'Silva
- 1] Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
39
|
Chakarov S, Roeva I, Russev G. An Experimental Model for Assessment of Global DNA Repair Capacity. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Yang H, Tang Y, Guo W, Du Y, Wang Y, Li P, Zang W, Yin X, Wang H, Chu H, Zhang G, Zhao G. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumour Biol 2014; 35:6557-65. [PMID: 24691972 DOI: 10.1007/s13277-014-1879-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Deregulation of microRNAs (miRNAs) is implicated in tumor progression. We attempt to identify the association between miR-138 and Sentrin/SUMO-specific protease 1 (SENP1) as a radiosensitization-related gene and characterize the biological function by which SENP1 was regulated by miR-138 to influence radiosensitization in lung cancer cells. In this study, we showed that miRNA-138 is reduced in both lung cancer clinical specimens and cell lines and is effective to inhibit SENP1 expression. Moreover, high levels of miR-138 are associated with lower levels of lung cancer cell proliferation and colony formation. Then, we investigated the underlying mechanisms responsible for the increase in the radiosensitivity of lung cancer cells when SENP1 is inhibited by miR-138. We further show that the increased radiosensitivity may be the result of an increased γ-H2AX expression, an increased rate of apoptosis, and changes in the cell cycle. In conclusion, our data demonstrate that the miR-138/SENP1 cascade is relative to radiosensitization in lung cancer cells and is a potential radiotherapy target.
Collapse
Affiliation(s)
- Hui Yang
- Department of Nuclear Medicine, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chemo-sensitisation of HeLa cells to etoposide by a benzoxazine in the absence of DNA-PK inhibition. Invest New Drugs 2013; 31:1466-75. [PMID: 24057508 PMCID: PMC3825418 DOI: 10.1007/s10637-013-0031-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/15/2013] [Indexed: 12/22/2022]
Abstract
The benzoaxines have been developed from structurally similar chromones as specific inhibitors of the PI3K family to sensitize cancer cells to the effects of chemotherapeutic agents; most have been shown to do this through specific inhibition of DNA-PK and DNA repair mechanisms. In this study we examined the benzoxazine, 2-((3-methoxybut-3en-2-yl)amino)-8methyl-4H-benzo[1,3]oxazin-4one (LTUSI54). This compound had no DNA-PK or PI3K inhibitory activity but still sensitized HeLa cells to the effects of Etoposide. LTUSI54 works synergistically with Etoposide to inhibit growth of HeLa cells and sub G1 analysis indicates that this is not due to an increase in apoptosis. LTUSI54 neither enhances DSB formation due to Etoposide nor does it delay the repair of such damage. Cell cycle analysis shows a clear G2 block with Etoposide alone while, in combination with LTUSI54 there is an additional S phase arrest. Phospho-kinase analysis indicated that LTUSI54 engages key regulators of cell cycle progression, specifically p38α, p53 and ERK 1/2. From our results we hypothesize that LTUSI54 is promoting the cell cycle arrest through activation of p38α pathways, independent of p53 mechanisms. This results in a decrease in p53 phosphorylation and hence, restricted apoptosis. Changes in cell number appear to be the result of p38α pathways disrupting cell cycle progression, at the S and G2 checkpoints. Further investigation into the finer mechanisms by which LTUSI54 effects cell cycle progression would be of great interest in assessing this compound as a chemosensitising agent.
Collapse
|
42
|
Karakasilioti I, Kamileri I, Chatzinikolaou G, Kosteas T, Vergadi E, Robinson AR, Tsamardinos I, Rozgaja TA, Siakouli S, Tsatsanis C, Niedernhofer LJ, Garinis GA. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab 2013; 18:403-15. [PMID: 24011075 PMCID: PMC4116679 DOI: 10.1016/j.cmet.2013.08.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/18/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022]
Abstract
Lipodystrophies represent a group of heterogeneous disorders characterized by loss of fat tissue. However, the underlying mechanisms remain poorly understood. Using mice carrying an ERCC1-XPF DNA repair defect systematically or in adipocytes, we show that DNA damage signaling triggers a chronic autoinflammatory response leading to fat depletion. Ercc1-/- and aP2-Ercc1F/- fat depots show extensive gene expression similarities to lipodystrophic Pparγ(ldi/+) animals, focal areas of ruptured basement membrane, the reappearance of primary cilia, necrosis, fibrosis, and a marked decrease in adiposity. We find that persistent DNA damage in aP2-Ercc1F/- fat depots and in adipocytes ex vivo triggers the induction of proinflammatory factors by promoting transcriptionally active histone marks and the dissociation of nuclear receptor corepressor complexes from promoters; the response is cell autonomous and requires ataxia telangiectasia mutated (ATM). Thus, persistent DNA damage-driven autoinflammation plays a causative role in adipose tissue degeneration, with important ramifications for progressive lipodystrophies and natural aging.
Collapse
Affiliation(s)
- Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
XRCC1 Arg399Gln polymorphism contributes to increased risk of colorectal cancer in Chinese population. Mol Biol Rep 2013; 40:4147-51. [DOI: 10.1007/s11033-012-2463-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
|
44
|
Matuo R, Sousa FG, Bonatto D, Mielniczki-Pereira AA, Saffi J, Soares DG, Escargueil AE, Larsen AK, Henriques JAP. ATP-dependent chromatin remodeling and histone acetyltransferases in 5-FU cytotoxicity in Saccharomyces cerevisiae. GENETICS AND MOLECULAR RESEARCH 2013; 12:1440-56. [PMID: 23661467 DOI: 10.4238/2013.april.26.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromatin is thought to modulate access of repair proteins to DNA lesions, and may be altered by chromatin remodelers to facilitate repair. We investigated the participation of chromatin remodelers and DNA repair in 5-fluorouracil (5-FU) cytotoxicity in Saccharomyces cerevisiae. 5-FU is an antineoplastic drug commonly used in clinical settings. Among the several strains tested, only those with deficiencies in ATP-dependent chromatin remodeling (CR) and some histone acetyltransferases (HAT) exhibited sensitivity to 5-FU. CR and HAT double-mutants exhibited increased resistance to 5-FU in comparison to the wild-type mutant, but were still arrested in G2/M, as were the sensitive strains. The participation of Htz1p in 5-FU toxicity was also evaluated in single- and double-mutants of CR and HAT; the most significant effect was on cell cycle distribution. 5-FU lesions are repaired by different DNA repair machineries, including homologous recombination (HR) and post-replication repair (PRR). We investigated the role of CR and HAT in these DNA repair pathways. Deficiencies in Nhp10 and CR combined with deficiencies in HR or PRR increased 5-FU sensitivity; however, combined deficiencies of HAT, HR, and PRR did not. CRs are directly recruited to DNA damage and lead to chromatin relaxation, which facilitates access of HR and PRR proteins to 5-FU lesions. Combined deficiencies in HAT with defects in HR and PRR did not potentiate 5-FU cytotoxicity, possibly because they function in a common pathway.
Collapse
Affiliation(s)
- R Matuo
- Centro de Biotecnologia, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weingeist DM, Ge J, Wood DK, Mutamba JT, Huang Q, Rowland EA, Yaffe MB, Floyd S, Engelward BP. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors. Cell Cycle 2013; 12:907-15. [PMID: 23422001 DOI: 10.4161/cc.23880] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects.
Collapse
Affiliation(s)
- David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cun Y, Dai N, Xiong C, Li M, Sui J, Qian C, Li Z, Wang D. Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model. PLoS One 2013; 8:e55313. [PMID: 23418439 PMCID: PMC3572126 DOI: 10.1371/journal.pone.0055313] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023] Open
Abstract
Resistance to radiotherapy is a key limitation for the treatment of human hepatocellular carcinoma (HCC). To overcome this problem, we investigated the correlation between radioresistance and the human apurinic/apyrimidinic endonuclease (APE1), a bifunctional protein, which plays an important role in DNA repair and redox regulation activity of transcription factors. In the present study, we examined the radiosensitivity profiles of three human HCC cell lines, HepG2, Hep3B, and MHCC97L, using the adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1). The p53 mutant cell lines MHCC97L showed radioresistance, compared with HepG2 and Hep3B cells. APE1 was strongly expressed in MHCC97L cells and was induced by irradiation in a dose-dependent manner, and Ad5/F35-siAPE1 effectively inhibited irradiation-induced APE1 and p53 expression. Moreover, silencing of APE1 significantly potentiated the growth inhibition and apoptosis induction by irradiation in all tested human HCC cell lines. In addition, Ad5/F35-siAPE1 significantly enhanced inhibition of tumor growth and potentiated cell apoptosis by irradiation both in HepG2 and MHCC97L xenografts. In conclusion, down regulation of APE1 could enhance sensitivity of human HCC cells to radiotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Yanping Cun
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengjie Xiong
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
47
|
Jun DW, Jeong YS, Kim HJ, Jeong KC, Kim S, Lee CH. Characterization of DDRI-18 (3,3'-(1H,3'H-5,5'-bibenzo[d]imidazole-2,2'-diyl)dianiline), a novel small molecule inhibitor modulating the DNA damage response. Br J Pharmacol 2013; 167:141-50. [PMID: 22519567 DOI: 10.1111/j.1476-5381.2012.01977.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, the DNA damage response (DDR) has emerged as a promising target for anticancer drug development. In our previous study, we identified several DDR-inhibiting compounds via high-content screening of a small molecule library using γH2AX foci as a biomarker. Here, we studied the effects of the DNA damage response inhibitor DDRI-18 (3,3'-(1H,3'H-5,5'-bibenzo[d]imidazole-2,2'-diyl)dianiline) on DDR. EXPERIMENTAL APPROACH Osteosarcoma U2OS cells were treated with etoposide to induce DDR. The nuclear foci of γH2AX and other signalling molecules in DDR were visualized by immunofluorescence and quantified using an IN Cell Analyzer. The DNA repair capacity of cells was analysed using the comet assay and in vivo DNA end-joining assay. Cell survival after drug treatment was quantified using the MTT assay, and apoptotic cell death was analysed by Annexin V staining and flow cytometry. KEY RESULTS DDRI-18 inhibited the non-homologous end-joining (NHEJ) DNA repair process and delayed the resolution of DNA damage-related proteins (γH2AX, ATM and BRCA1) from DNA lesions at a later phase of DDR. Furthermore, DDRI-18 enhanced the cytotoxic effects of anticancer DNA-damaging drugs, including etoposide, camptothecin, doxorubicin and bleomycin. This synergistic effect on cell death was shown to be due to caspase-dependent apoptosis. CONCLUSIONS AND IMPLICATIONS We identified a chemical compound, DDRI-18, that has chemosensitization activity. Although the target molecule and mechanism of action of DDRI-18 remain unknown, DDRI-18 is an effective chemosensitizing agent and may improve the therapy with classical anticancer drugs.
Collapse
Affiliation(s)
- D W Jun
- Carcinogenesis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Yoshimoto K, Mizoguchi M, Hata N, Murata H, Hatae R, Amano T, Nakamizo A, Sasaki T. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol 2012; 2:186. [PMID: 23227453 PMCID: PMC3514620 DOI: 10.3389/fonc.2012.00186] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022] Open
Abstract
Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.
Collapse
Affiliation(s)
- Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Furgason JM, Bahassi EM. Targeting DNA repair mechanisms in cancer. Pharmacol Ther 2012; 137:298-308. [PMID: 23107892 DOI: 10.1016/j.pharmthera.2012.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022]
Abstract
Preservation of genomic integrity is an essential process for cell homeostasis. DNA-damage response (DDR) promotes faithful transmission of genomes in dividing cells by reversing the extrinsic and intrinsic DNA damage, and is required for cell survival during replication. Radiation and genotoxic drugs have been widely used in the clinic for years to treat cancer but DNA repair mechanisms are often associated with chemo- and radio-resistance. To increase the efficacy of these treatments, inhibitors of the major components of the DDR such as ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), DNA-PK (DNA-dependent protein kinase, catalytic subunit), Chk1 (checkpoint protein 1) and Chk2 (checkpoint protein 2) have been used to confer radio- and/or chemosensitivity upon cancer cells. The elucidation of the molecular mechanisms of DNA repair and the discovery that tumors are frequently repair-deficient provide a therapeutic opportunity to selectively target this deficiency. Genetic mutations in the DNA repair genes constitute not only the initiating event of the cancer cell but also its weakness since the mutated gene is often needed by the cancer cell to maintain its own survival. This weakness has been exploited to specifically kill the tumor cells while sparing the normal ones, a concept known as 'synthetic lethality'. Recent efforts in the design of cancer therapies are directed towards exploiting synthetic lethal interactions with cancer-associated mutations in the DDR. In this review, we will discuss the latest concepts in targeting DNA repair mechanisms in cancer and the novel and promising compounds currently in clinical trials.
Collapse
Affiliation(s)
- John M Furgason
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0508, United States
| | | |
Collapse
|
50
|
Finlay MRV, Griffin RJ. Modulation of DNA repair by pharmacological inhibitors of the PIKK protein kinase family. Bioorg Med Chem Lett 2012; 22:5352-9. [DOI: 10.1016/j.bmcl.2012.06.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|