1
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Wright NJ, Matsuoka Y, Park H, He W, Webster CG, Furutani K, Fedor JG, McGinnis A, Zhao Y, Chen O, Bang S, Fan P, Spasojevic I, Hong J, Ji RR, Lee SY. Design of an equilibrative nucleoside transporter subtype 1 inhibitor for pain relief. Nat Commun 2024; 15:10738. [PMID: 39737929 DOI: 10.1038/s41467-024-54914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R). However, efforts to develop A1R agonists have faced obstacles. The equilibrative nucleoside transporter subtype 1 (ENT1) plays a crucial role in regulating adenosine levels across cell membranes. We postulate that ENT1 inhibition may enhance extracellular adenosine levels, potentiating endogenous adenosine action at A1R and leading to analgesic effects. Here, we modify the ENT1 inhibitor dilazep based on its complex X-ray structure and show that this modified inhibitor reduces neuropathic and inflammatory pain in animal models while dilazep does not. Notably, our ENT1 inhibitor surpasses gabapentin in analgesic efficacy in a neuropathic pain model. Additionally, our inhibitor exhibits less cardiac side effect than dilazep via systemic administration and shows no side effects via local/intrathecal administration. ENT1 is colocalized with A1R in mouse and human dorsal root ganglia, and the analgesic effect of our inhibitor is linked to A1R. Our studies reveal ENT1 as a therapeutic target for analgesia, highlighting the promise of rationally designed ENT1 inhibitors for non-opioid pain medications.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hyeri Park
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Wei He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ping Fan
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Nasrallah K, Berthoux C, Hashimotodani Y, Chávez AE, Gulfo MC, Luján R, Castillo PE. Retrograde adenosine/A 2A receptor signaling facilitates excitatory synaptic transmission and seizures. Cell Rep 2024; 43:114382. [PMID: 38905101 PMCID: PMC11286346 DOI: 10.1016/j.celrep.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.
Collapse
Affiliation(s)
- Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Coralie Berthoux
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yuki Hashimotodani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés E Chávez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle C Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Facultad de Medicina, Universidad Castilla-La Mancha, 02008 Albacete, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
BAŞKÖY SAPPAK, KHUNKHUNA A, SCURIC B, NAYDENOVA Z, COE IR. Characterization of Equilibrative Nucleoside Transport of the Pancreatic Cancer Cell Line: Panc-1. Turk J Pharm Sci 2024; 21:167-173. [PMID: 38994796 PMCID: PMC11590551 DOI: 10.4274/tjps.galenos.2023.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2024]
Abstract
Objectives Gemcitabine, a first-line chemotherapeutic nucleoside analog drug (NAD) for pancreatic cancer, faces limitations due to drug resistance. Characterizing pancreatic cancer cells' transport characteristics may help identify the mechanisms behind drug resistance, and develop more effective therapeutic strategies. Therefore, in this study, we aimed to determine the nucleoside transport properties of Panc-1 cells, one of the commonly used pancreatic adenocarcinoma cell lines. Materials and Methods To assess the presence of equilibrative nucleoside transporter-1 (ENT-1) in Panc-1 cells, we performed immunofluorescence staining, western blot analysis, and S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding assays. We also conducted standard uptake assays to measure the sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine. In addition, we determined the half-maximal inhibitory concentration (IC50) of gemcitabine. Statistical analyses were performed using GraphPad Prism version 8.0 for Windows. Results The sodium-independent uptake of [3H]-labeled chloroadenosine, hypoxanthine, and uridine was measured using standard uptake assays, and the transport rates were determined as 111.1 ± 3.4 pmol/mg protein/10 s, 62.5 ± 4.8 pmol/mg protein/10 s, and 101.3 ± 2.5 pmol/mg protein/10 s, respectively. Furthermore, the presence of ENT-1 protein was confirmed using NBTI binding assays (Bmax 1.52 ± 0.1 pmol/mg protein; equilibrium dissociation constant 0.42 ± 0.1 nM). Immunofluorescence assays and western blot analysis also revealed ENT-1 in Panc-1 cells. The determined IC50 of gemcitabine in Panc-1 cells was 2 μM, indicating moderate sensitivity. Conclusion These results suggest that Panc-1 is a suitable preclinical cellular model for studying NAD transport properties and potential therapies in pancreatic cancer and pharmaceutical research.
Collapse
Affiliation(s)
- Sıla APPAK BAŞKÖY
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| | | | - Bianca SCURIC
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Zlatina NAYDENOVA
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
| | - Imogen R. COE
- Toronto Metropolitan University Faculty of Science, Department of Chemistry and Biology, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
6
|
Li J, Wang C, Zhang S, Cai B, Pan B, Sun C, Qi X, Ma C, Fang W, Jin K, Bi X, Jin Z, Zhuang W. Genetic detection of two novel LRP5 pathogenic variants in patients with familial exudative vitreoretinopathy. BMC Ophthalmol 2023; 23:489. [PMID: 38030997 PMCID: PMC10685552 DOI: 10.1186/s12886-023-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jiayu Li
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chanjuan Wang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Shaochi Zhang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Cai
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Pan
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Caihong Sun
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chunmei Ma
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Wei Fang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Xiaojun Bi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Wenjuan Zhuang
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China.
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| |
Collapse
|
7
|
Lezmy J. How astrocytic ATP shapes neuronal activity and brain circuits. Curr Opin Neurobiol 2023; 79:102685. [PMID: 36746109 DOI: 10.1016/j.conb.2023.102685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/06/2023]
Abstract
Astrocytes play a key role in processing information at synapses, by controlling synapse formation, modulating synapse strength and terminating neurotransmitter action. They release ATP to shape brain activity but it is unclear how, as astrocyte processes contact many targets and ATP-mediated effects are diverse and numerous. Here, I review recent studies showing how astrocytic ATP modulates cellular mechanisms in nearby neurons and glia in the grey and white matter, how it affects signal transmission in these areas, and how it modulates behavioural outputs. I attempt to provide a flowchart of astrocytic ATP signalling, showing that it tends to inhibit neural circuits to match energy demands.
Collapse
Affiliation(s)
- Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
9
|
The Lipophilic Purine Nucleoside-Tdp1 Inhibitor-Enhances DNA Damage Induced by Topotecan In Vitro and Potentiates the Antitumor Effect of Topotecan In Vivo. Molecules 2022; 28:molecules28010323. [PMID: 36615517 PMCID: PMC9822400 DOI: 10.3390/molecules28010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 μM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.
Collapse
|
10
|
LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, Baryiames A, Minot SS, Johnston CD, Bullman S. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. Cell Rep 2022; 41:111625. [PMID: 36384132 PMCID: PMC10790632 DOI: 10.1016/j.celrep.2022.111625] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Fusobacterium nucleatum (Fn) is a dominant bacterial species in colorectal cancer (CRC) tissue that is associated with cancer progression and poorer patient prognosis. Following a small-molecule inhibitor screen of 1,846 bioactive compounds against a Fn CRC isolate, we find that 15% of inhibitors are antineoplastic agents including fluoropyrimidines. Validation of these findings reveals that 5-fluorouracil (5-FU), a first-line CRC chemotherapeutic, is a potent inhibitor of Fn CRC isolates. We also identify members of the intratumoral microbiota, including Escherichia coli, that are resistant to 5-FU. Further, CRC E. coli isolates can modify 5-FU and relieve 5-FU toxicity toward otherwise-sensitive Fn and human CRC epithelial cells. Lastly, we demonstrate that ex vivo patient CRC tumor microbiota undergo community disruption after 5-FU exposure and have the potential to deplete 5-FU levels, reducing local drug efficacy. Together, these observations argue for further investigation into the role of the CRC intratumoral microbiota in patient response to chemotherapy.
Collapse
Affiliation(s)
- Kaitlyn D LaCourse
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Andrew G Kempchinsky
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Alexander Baryiames
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Samuel S Minot
- Data Core, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Boakes JC, Harborne SPD, Ngo JTS, Pliotas C, Goldman A. Novel variants provide differential stabilisation of human equilibrative nucleoside transporter 1 states. Front Mol Biosci 2022; 9:970391. [DOI: 10.3389/fmolb.2022.970391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆Tm 0.7–1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆Tm 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆Tm -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.
Collapse
|
12
|
van Leeuwen JE, Ba-Alawi W, Branchard E, Cruickshank J, Schormann W, Longo J, Silvester J, Gross PL, Andrews DW, Cescon DW, Haibe-Kains B, Penn LZ, Gendoo DMA. Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins. Nat Commun 2022; 13:6323. [PMID: 36280687 PMCID: PMC9592602 DOI: 10.1038/s41467-022-33144-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
Statins, a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the mevalonate metabolic pathway, have demonstrated anticancer activity. Evidence shows that dipyridamole potentiates statin-induced cancer cell death by blocking a restorative feedback loop triggered by statin treatment. Leveraging this knowledge, we develop an integrative pharmacogenomics pipeline to identify compounds similar to dipyridamole at the level of drug structure, cell sensitivity and molecular perturbation. To overcome the complex polypharmacology of dipyridamole, we focus our pharmacogenomics pipeline on mevalonate pathway genes, which we name mevalonate drug-network fusion (MVA-DNF). We validate top-ranked compounds, nelfinavir and honokiol, and identify that low expression of the canonical epithelial cell marker, E-cadherin, is associated with statin-compound synergy. Analysis of remaining prioritized hits led to the validation of additional compounds, clotrimazole and vemurafenib. Thus, our computational pharmacogenomic approach identifies actionable compounds with pathway-specific activities.
Collapse
Affiliation(s)
- Jenna E. van Leeuwen
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wail Ba-Alawi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Emily Branchard
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Cruickshank
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wiebke Schormann
- grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - Joseph Longo
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Silvester
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Peter L. Gross
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8 Canada
| | - David W. Andrews
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - David W. Cescon
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1 Canada
| | - Benjamin Haibe-Kains
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4 Canada ,grid.419890.d0000 0004 0626 690XOntario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3 Canada
| | - Linda Z. Penn
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Deena M. A. Gendoo
- grid.6572.60000 0004 1936 7486Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
13
|
Müller JP, Gründemann D. Does Intracellular Metabolism Render Gemcitabine Uptake Undetectable in Mass Spectrometry? Int J Mol Sci 2022; 23:ijms23094690. [PMID: 35563081 PMCID: PMC9101085 DOI: 10.3390/ijms23094690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine with the highest efficiency. In our assay system, we could not detect any such transport. Subsequently, Sparreboom suggested that the intracellular metabolization of the nucleosides occurs so fast that the original compounds cannot be detected by LC–MS/MS after inward transport. Our current experiments with 293 cells disprove this hypothesis. Uptake of gemcitabine was easily detected by LC–MS/MS measurements when we expressed the Na+/nucleoside cotransporter CNT3 (SLC28A3). Inward transport was 1280 times faster than the intracellular production of gemcitabine triphosphate. The deoxycytidine kinase inhibitor 2-thio-2′-deoxycytidine markedly blocked the production of gemcitabine triphosphate. There was no concomitant surge in intracellular gemcitabine, however. This does not fit the rapid phosphorylation of gemcitabine. Uptake of cytarabine was very slow, but detection by MS was still possible. When the ETT was expressed and incubated with gemcitabine, there was no increase in intracellular gemcitabine triphosphate. We conclude that the ETT does not transport nucleosides.
Collapse
|
14
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gleizes M, Fonta C, Nowak LG. Inhibitors of ectonucleotidases have paradoxical effects on synaptic transmission in the mouse cortex. J Neurochem 2021; 160:305-324. [PMID: 34905223 DOI: 10.1111/jnc.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1 and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.
Collapse
Affiliation(s)
- Marie Gleizes
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Caroline Fonta
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| | - Lionel G Nowak
- CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon Baudot, BP 25202, 31052, Toulouse Cedex
| |
Collapse
|
16
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
17
|
He J, Wu Z, Chen L, Dai Q, Hao H, Su P, Ke C, Feng D. Adenosine Triggers Larval Settlement and Metamorphosis in the Mussel Mytilopsis sallei through the ADK-AMPK-FoxO Pathway. ACS Chem Biol 2021; 16:1390-1400. [PMID: 34254778 DOI: 10.1021/acschembio.1c00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Settlement and metamorphosis of planktonic larvae into benthic adults are critical components of a diverse range of marine invertebrate-mediated processes such as the formation of mussel beds and coral reefs, the recruitment of marine shellfisheries, and the initiation of macrobiofouling. Although larval settlement and metamorphosis induced by natural chemical cues is widespread among marine invertebrates, the mechanisms of action remain poorly understood. Here, we identified that the molecular target of adenosine (an inducer of larval settlement and metamorphosis from conspecific adults in the invasive biofouling mussel Mytilopsis sallei) is adenosine kinase (ADK). The results of transcriptomic analyses, pharmacological assays, temporal and spatial gene expression analyses, and siRNA interference, suggest that ATP-dependent phosphorylation of adenosine catalyzed by ADK activates the downstream AMPK-FoxO signaling pathway, inducing larval settlement and metamorphosis in M. sallei. This study not only reveals the role of the ADK-AMPK-FoxO pathway in larval settlement and metamorphosis of marine invertebrates but it also deepens our understanding of the functions and evolution of adenosine signaling, a process that is widespread in biology and important in medicine.
Collapse
Affiliation(s)
- Jian He
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Liying Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qi Dai
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
18
|
Optimising the energetic cost of the glutamatergic synapse. Neuropharmacology 2021; 197:108727. [PMID: 34314736 DOI: 10.1016/j.neuropharm.2021.108727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
As for electronic computation, neural information processing is energetically expensive. This is because information is coded in the brain as membrane voltage changes, which are generated largely by passive ion movements down electrochemical gradients, and these ion movements later need to be reversed by active ATP-dependent ion pumping. This article will review how much of the energetic cost of the brain reflects the activity of glutamatergic synapses, consider the relative amount of energy used pre- and postsynaptically, outline how evolution has energetically optimised synapse function by adjusting the presynaptic release probability and the postsynaptic number of glutamate receptors, and speculate on how energy use by synapses may be sensed and adjusted.
Collapse
|
19
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
20
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
21
|
Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5197626. [PMID: 33344638 PMCID: PMC7732376 DOI: 10.1155/2020/5197626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Equilibrative nucleoside transporter 2 (ENT2) is a bidirectional transporter embedded in the biological membrane and is ubiquitously found in most tissue and cell types. ENT2 mediates the uptake of purine and pyrimidine nucleosides and nucleobase besides transporting a variety of nucleoside-derived drugs, mostly in anticancer therapy. Since high expression of ENT2 has been correlated with advanced stages of different types of cancers, consequently, this has gained significant interest in the role of ENT2 as a potential therapeutic target. Furthermore, ENT2 plays critical roles in signaling pathway and cell cycle progression. Therefore, elucidating the physiological roles of ENT2 and its properties may contribute to a better understanding of ENT2 roles beyond their transportation mechanism. This review is aimed at highlighting the main roles of ENT2 and at providing a brief update on the recent research.
Collapse
|
22
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
23
|
Randazzo O, Papini F, Mantini G, Gregori A, Parrino B, Liu DSK, Cascioferro S, Carbone D, Peters GJ, Frampton AE, Garajova I, Giovannetti E. "Open Sesame?": Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113206. [PMID: 33142664 PMCID: PMC7692081 DOI: 10.3390/cancers12113206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive tumor characterized by early invasiveness, rapid progression and resistance to treatment. For more than twenty years, gemcitabine has been the main therapy for PDAC both in the palliative and adjuvant setting. After the introduction of FOLFIRINOX as an upfront treatment for metastatic disease, gemcitabine is still commonly used in combination with nab-paclitaxel as an alternative first-line regimen, as well as a monotherapy in elderly patients unfit for combination chemotherapy. As a hydrophilic nucleoside analogue, gemcitabine requires nucleoside transporters to permeate the plasma membrane, and a major role in the uptake of this drug is played by human equilibrative nucleoside transporter 1 (hENT-1). Several studies have proposed hENT-1 as a biomarker for gemcitabine efficacy in PDAC. A recent comprehensive multimodal analysis of hENT-1 status evaluated its predictive role by both immunohistochemistry (with five different antibodies), and quantitative-PCR, supporting the use of the 10D7G2 antibody. High hENT-1 levels observed with this antibody were associated with prolonged disease-free status and overall-survival in patients receiving gemcitabine adjuvant chemotherapy. This commentary aims to critically discuss this analysis and lists molecular factors influencing hENT-1 expression. Improved knowledge on these factors should help the identification of subgroups of patients who may benefit from specific therapies and overcome the limitations of traditional biomarker studies.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Filippo Papini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | - Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| | - Ingrid Garajova
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| |
Collapse
|
24
|
Mollick T, Laín S. Modulating pyrimidine ribonucleotide levels for the treatment of cancer. Cancer Metab 2020; 8:12. [PMID: 33020720 PMCID: PMC7285601 DOI: 10.1186/s40170-020-00218-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable therapeutic index in patients.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 65, Solna, Stockholm, Sweden
| |
Collapse
|
25
|
Longo J, Pandyra AA, Stachura P, Minden MD, Schimmer AD, Penn LZ. Cyclic AMP-hydrolyzing phosphodiesterase inhibitors potentiate statin-induced cancer cell death. Mol Oncol 2020; 14:2533-2545. [PMID: 32749766 PMCID: PMC7530792 DOI: 10.1002/1878-0261.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
Dipyridamole, an antiplatelet drug, has been shown to synergize with statins to induce cancer cell-specific apoptosis. However, given the polypharmacology of dipyridamole, the mechanism by which it potentiates statin-induced apoptosis remains unclear. Here, we applied a pharmacological approach to identify the activity of dipyridamole specific to its synergistic anticancer interaction with statins. We evaluated compounds that phenocopy the individual activities of dipyridamole and assessed whether they could potentiate statin-induced cell death. Notably, we identified that a phosphodiesterase (PDE) inhibitor, cilostazol, and other compounds that increase intracellular cyclic adenosine monophosphate (cAMP) levels potentiate statin-induced apoptosis in acute myeloid leukemia and multiple myeloma cells. Additionally, we demonstrated that both dipyridamole and cilostazol further inhibit statin-induced activation of sterol regulatory element-binding protein 2, a known modulator of statin sensitivity, in a cAMP-independent manner. Taken together, our data support that PDE inhibitors such as dipyridamole and cilostazol can potentiate statin-induced apoptosis via a dual mechanism. Given that several PDE inhibitors are clinically approved for various indications, they are immediately available for testing in combination with statins for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aleksandra A. Pandyra
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Department of Gastroenterology, Hepatology, and Infectious DiseasesHeinrich Heine UniversityDüsseldorfGermany
| | - Paweł Stachura
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Mark D. Minden
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aaron D. Schimmer
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Linda Z. Penn
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| |
Collapse
|
26
|
Zhang D, Jin W, Liu H, Liang T, Peng Y, Zhang J, Zhang Y. ENT1 inhibition attenuates apoptosis by activation of cAMP/pCREB/Bcl2 pathway after MCAO in rats. Exp Neurol 2020; 331:113362. [PMID: 32445645 DOI: 10.1016/j.expneurol.2020.113362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE The present study was designed to investigate the potential role and the mechanism of equilibrative nucleoside transporter 1 (ENT1) on neuronal apoptosis and neurological deficits after middle cerebral artery occlusion (MCAO) in rats. METHODS One hundred and thirty-four male Sprague-Dawley rats were subjected to two hours of MCAO followed by reperfusion. The time course of the expression level of ENT1 and phosphorylation of CREB were detected by western blot and immunofluorescence staining. Another set of animals were administrated with NBTI, the ENT1 inhibitor, by daily intraperitoneal injection starting at 0.5 h post-MCAO, infarction volume and neurological deficits were measured both at 24 h and 72 h post MCAO. We further explored the neuroprotection machenism by using H89, cAMP dependent protein kinase inhibitor, the expression of Bcl-2, Bax, phosphorylated CREB and Cleaved caspase-3 were quantified by Western blot, neuronal apoptosis were analyed by TUNEL staining. RESULTS The endogenous expression of ENT1 were significantly increased and peaked at 12 h after MCAO. High-dose of NBTI (15 mg/kg) reduced brain infarction volume and improved neurologic deficits both at 24 h and 72 h post MCAO. Moreover, NBTI significantly increased the level of CREB phosphorylation and extracellular adenosine concentration, and decreased the neuronal apoptosis 24 h after MCAO. NBTI treatment reduced the expression of Bax and cleaved caspase-3, while up-regulated Bcl-2 compared with vehicle group. These effects were abolished by H89 pretreatment. CONCLUSIONS ENT1 inhibition prevented neuronal apoptosis and improves neurological deficits through cAMP/PKA/CREB/Bcl-2 signaling pathway after MCAO in rats. ENT1 might be an effective target in the treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of rehabilitation medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Weidong Jin
- Department of Laboratory Medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongliang Liu
- Department of rehabilitation medicine, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Liang
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Yan Peng
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China
| | - Jun Zhang
- Department of neurology, Affiliated Hospital, Zunyi medical University, Zunyi, China.
| | - Yang Zhang
- Department of Laboratory Medicine, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
27
|
Baqi Y, Rashed M, Schäkel L, Malik EM, Pelletier J, Sévigny J, Fiene A, Müller CE. Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3. Front Pharmacol 2020; 11:1282. [PMID: 32973513 PMCID: PMC7481482 DOI: 10.3389/fphar.2020.01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of nucleoside tri- and di-phosphates to mono-phosphates. The products are subsequently hydrolyzed by ecto-5′-nucleotidase (ecto-5′-NT) to nucleosides. NTPDase inhibitors have potential as novel drugs, e.g., for the treatment of inflammation, neurodegenerative diseases, and cancer. In this context, a series of anthraquinone derivatives structurally related to the anthraquinone dye reactive blue-2 (RB-2) was synthesized and evaluated as inhibitors of human NTPDases utilizing a malachite green assay. We identified several potent and selective inhibitors of human NTPDase2 and -3. Among the most potent NTPDase2 inhibitors were 1-amino-4-(9-phenanthrylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (20, PSB-16131, IC50 of 539 nM) and 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (48, PSB-2020, IC50 of 551 nM). The most potent NTPDase3 inhibitors were 1-amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (42, PSB-1011, IC50 of 390 nM) and 1-amino-4-(3-carboxy-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (33, PSB-2046, IC50 of 723 nM). The best NTPDase2 inhibitor 20 showed a non-competitive inhibition type, while the NTPDase3 inhibitor 42 behaved as a mixed-type inhibitor. These potent compounds were found to be selective vs. other NTPDases. They will be useful tools for studying the roles of NTPDase2 and -3 in physiology and under pathological conditions.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Zhou Y, Liao L, Wang C, Li J, Chi P, Xiao Q, Liu Q, Guo L, Sun L, Deng D. Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol 2020; 18:e3000790. [PMID: 32776918 PMCID: PMC7440666 DOI: 10.1371/journal.pbio.3000790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/20/2020] [Accepted: 07/20/2020] [Indexed: 01/17/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs), members of the solute carrier (SLC) 28 transporter family, facilitate the salvage of nucleosides and therapeutic nucleoside derivatives across the plasma membrane. Despite decades of investigation, the structures of human CNTs remain unknown. We determined the cryogenic electron microscopy (cryo-EM) structure of human CNT (hCNT) 3 at an overall resolution of 3.6 Å. As with its bacterial homologs, hCNT3 presents a trimeric architecture with additional N-terminal transmembrane helices to stabilize the conserved central domains. The conserved binding sites for the substrate and sodium ions unravel the selective nucleoside transport and distinct coupling mechanism. Structural comparison of hCNT3 with bacterial homologs indicates that hCNT3 is stabilized in an inward-facing conformation. This study provides the molecular determinants for the transport mechanism of hCNTs and potentially facilitates the design of nucleoside drugs.
Collapse
Affiliation(s)
- Yanxia Zhou
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lianghuan Liao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chen Wang
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Pengliang Chi
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingjie Xiao
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingting Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Li Guo
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Linfeng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- * E-mail: (LS); (DD)
| | - Dong Deng
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- * E-mail: (LS); (DD)
| |
Collapse
|
29
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
30
|
Verkhratsky A, Rose CR. Na +-dependent transporters: The backbone of astroglial homeostatic function. Cell Calcium 2019; 85:102136. [PMID: 31835178 DOI: 10.1016/j.ceca.2019.102136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
Astrocytes are the principal homeostatic cells of the central nerves system (CNS) that support the CNS function at all levels of organisation, from molecular to organ. Several fundamental homeostatic functions of astrocytes are mediated through plasmalemmal pumps and transporters; most of which are also regulated by the transplasmalemmal gradient of Na+ ions. Neuronal activity as well as mechanical or chemical stimulation of astrocytes trigger plasmalemmal Na+ fluxes, which in turn generate spatio-temporally organised transient changes in the cytosolic Na+ concentration, which represent the substrate of astroglial Na+ signalling. Astroglial Na+ signals link and coordinate neuronal activity and CNS homeostatic demands with the astroglial homeostatic response.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
31
|
Mild hypothermia protects synaptic transmission from experimental ischemia through reduction in the function of nucleoside transporters in the mouse hippocampus. Neuropharmacology 2019; 163:107853. [PMID: 31734385 DOI: 10.1016/j.neuropharm.2019.107853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
Ischemia, a severe metabolic stress, increases adenosine levels and causes the suppression of synaptic transmission through adenosine A1 receptors. Although temperature also regulates extracellular adenosine levels, the effect of temperature on ischemia-induced activation of adenosine receptors is not yet fully understood. Here we examined the role of adenosine A1 receptors in mild hypothermia-mediated neuroprotection during the acute phase of ischemia. Severe ischemia-induced neurosynaptic impairment was reproduced by oxygen-glucose deprivation at normothermia (36 °C) and assessed with extracellular recordings or whole-cell patch clamp recordings in acute hippocampal slices in mice. Mild hypothermia (32 °C) induced the protection of synaptic transmission by activating adenosine A1 receptors. Stricter hypothermia (28 °C) caused additional neuroprotective effects by extending the onset time to anoxic depolarization; however, this effect was not associated with adenosine A1 receptors. The response of exogenous adenosine-induced inhibition of hippocampal synaptic transmission was increased by lowering the temperature to 32 °C or 28 °C. Hypothermia also reduced the function of dipryidamole-sensitive nucleoside transporters. These findings suggest that an increased response of adenosine A1 receptors, caused by a reduction in the function of nucleoside transporters, is one mechanism by which therapeutic hypothermia (usually used within the mild range) mediates neurosynaptic protection in the acute phase of stroke.
Collapse
|
32
|
Rouquette M, Lepetre-Mouelhi S, Couvreur P. Adenosine and lipids: A forced marriage or a love match? Adv Drug Deliv Rev 2019; 151-152:233-244. [PMID: 30797954 DOI: 10.1016/j.addr.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a fascinating compound, crucial in many biochemical processes: this ubiquitous nucleoside serves as an essential building block of RNA, is also a component of ATP and regulates numerous pathophysiological mechanisms via binding to four extracellular receptors. Due to its hydrophilic nature, it belongs to a different world than lipids, and has no affinity for them. Since the 1970's, however, new discoveries have emerged and prompted the scientific community to associate adenosine with the lipid family, especially via liposomal preparations and bioconjugation. This seems to be an arranged marriage, but could it turn into a true love match? This review considered all types of unions established between adenosine and lipids. Even though exciting supramolecular structures were observed with adenosine-lipid conjugates, as well as with liposomal preparations which resulted in promising pre-clinical results, the translation of these technologies to the clinic is still limited.
Collapse
|
33
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
34
|
Reklow RJ, Alvares TS, Zhang Y, Miranda Tapia AP, Biancardi V, Katzell AK, Frangos SM, Hansen MA, Toohey AW, Cass CE, Young JD, Pagliardini S, Boison D, Funk GD. The Purinome and the preBötzinger Complex - A Ménage of Unexplored Mechanisms That May Modulate/Shape the Hypoxic Ventilatory Response. Front Cell Neurosci 2019; 13:365. [PMID: 31496935 PMCID: PMC6712068 DOI: 10.3389/fncel.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.
Collapse
Affiliation(s)
- Robert J. Reklow
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tucaaue S. Alvares
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yong Zhang
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana P. Miranda Tapia
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexis K. Katzell
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sara M. Frangos
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan A. Hansen
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander W. Toohey
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carol E. Cass
- Professor Emerita, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - James D. Young
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Gregory D. Funk
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Yao SYM, Young JD. Inward- and outward-facing homology modeling of human concentrative nucleoside transporter 3 (hCNT3) predicts an elevator-type transport mechanism. Channels (Austin) 2019; 12:291-298. [PMID: 30096006 PMCID: PMC6986796 DOI: 10.1080/19336950.2018.1506665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human SLC28 family of concentrative (Na+-dependent) nucleoside transporters has three members, hCNT1, hCNT2 and hCNT3. Previously, we have used heterologous expression in Xenopus laevis oocytes in combination with an engineered cysteine-less hCNT3 protein hCNT3(C-) to undertake systematic substituted cysteine accessibility method (SCAM) analysis of the transporter using the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate (PCMBS). A continuous sequence of more than 300 individual amino acid residue positions were investigated, including the entire transport domain of the protein, as well as important elements of the corresponding hCNT3 structural domain. We have now constructed 3D structural homology models of hCNT3 based upon inward-facing, intermediates and outward-facing crystal structures of the bacterial CNT Neisseria wadsworthii CNTNW to show that all previously identified PCMBS-sensitive residues in hCNT3 are located above (ie on the extracellular side of) the key diagonal barrier scaffold domain TM9 in the transporter’s outward-facing conformation. In addition, both the Na+ and permeant binding sites of the mobile transport domain of hCNT3 are elevated from below the scaffold domain TM9 in the inward-facing conformation to above TM9 in the outward-facing conformation. The hCNT3 homology models generated in the present study validate our previously published PCMBS SCAM data, and confirm an elevator-type mechanism of membrane transport.
Collapse
Affiliation(s)
- Sylvia Y M Yao
- a Membrane Protein Disease Research Group, Department of Physiology , University of Alberta , Edmonton , Canada
| | - James D Young
- a Membrane Protein Disease Research Group, Department of Physiology , University of Alberta , Edmonton , Canada
| |
Collapse
|
36
|
Perrier SP, Gleizes M, Fonta C, Nowak LG. Effect of adenosine on short-term synaptic plasticity in mouse piriform cortex in vitro: adenosine acts as a high-pass filter. Physiol Rep 2019; 7:e13992. [PMID: 30740934 PMCID: PMC6369103 DOI: 10.14814/phy2.13992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of adenosine and of adenosine A1 receptor blockage on short-term synaptic plasticity in slices of adult mouse anterior piriform cortex maintained in vitro in an in vivo-like ACSF. Extracellular recording of postsynaptic responses was performed in layer 1a while repeated electrical stimulation (5-pulse-trains, frequency between 3.125 and 100 Hz) was applied to the lateral olfactory tract. Our stimulation protocol was aimed at covering the frequency range of oscillatory activities observed in the olfactory bulb in vivo. In control condition, postsynaptic response amplitude showed a large enhancement for stimulation frequencies in the beta and gamma frequency range. A phenomenological model of short-term synaptic plasticity fitted to the data suggests that this frequency-dependent enhancement can be explained by the interplay between a short-term facilitation mechanism and two short-term depression mechanisms, with fast and slow recovery time constants. In the presence of adenosine, response amplitude evoked by low-frequency stimulation decreased in a dose-dependent manner (IC50 = 70 μmol/L). Yet short-term plasticity became more dominated by facilitation and less influenced by depression. Both changes compensated for the initial decrease in response amplitude in a way that depended on stimulation frequency: compensation was strongest at high frequency, up to restoring response amplitudes to values similar to those measured in control condition. The model suggested that the main effects of adenosine were to decrease neurotransmitter release probability and to attenuate short-term depression mechanisms. Overall, these results suggest that adenosine does not merely inhibit neuronal activity but acts in a more subtle, frequency-dependent manner.
Collapse
|
37
|
Couto N, Al-Majdoub ZM, Achour B, Wright PC, Rostami-Hodjegan A, Barber J. Quantification of Proteins Involved in Drug Metabolism and Disposition in the Human Liver Using Label-Free Global Proteomics. Mol Pharm 2019; 16:632-647. [DOI: 10.1021/acs.molpharmaceut.8b00941] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Narciso Couto
- Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
- Department of Chemical and Biological Engineering, ChELSI Institute (Chemical Engineering at the Life Science Interface), University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K
| | - Zubida M. Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering, ChELSI Institute (Chemical Engineering at the Life Science Interface), University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
- Simcyp Ltd. (a Certara company), 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
38
|
Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem Int 2019; 122:8-18. [DOI: 10.1016/j.neuint.2018.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
|
39
|
Preliminary Evidence for Enhanced Thymine Absorption: A Putative New Phenotype Associated With Fluoropyrimidine Toxicity in Cancer Patients. Ther Drug Monit 2018; 40:495-502. [PMID: 29846282 DOI: 10.1097/ftd.0000000000000532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chemotherapy for colorectal, head and neck, and breast cancer continues to rely heavily on 5-fluorouracil and its oral prodrug capecitabine. Associations of serious fluoropyrimidine adverse effects have focused on inherited deficiency of the catabolic enzyme, dihydropyrimidine dehydrogenase. However, abnormal dihydropyrimidine dehydrogenase activity accounts for only about one-third of observed toxicity cases. Thus, the cause of most fluorouracil toxicity cases remains unexplained. METHODS For this small cohort study, thymine (THY) 250 mg was administered orally to 6 patients who had experienced severe toxicity during treatment with 5FU or capecitabine. Plasma and urine were analyzed for THY and its catabolites dihydrothymine (DHT) and β-ureidoisobutyrate. RESULTS Of the 6 patients, 2 had decreased THY elimination and raised urinary THY recovery consistent with inherited partial dihydropyrimidine dehydrogenase deficiency, confirmed by DPYD sequencing. Unexpectedly, 3 patients displayed grossly raised plasma THY concentrations but normal elimination profiles (compared with a normal range for healthy volunteers previously published by the authors). DPYD and DPYS sequencing of these 3 patients did not reveal any significant loss-of-activity allelic variants. The authors labeled the phenotype in these 3 patients as "enhanced thymine absorption". Only 1 of the 6 cases of toxicity had a normal postdose plasma profile for THY and its catabolites. Postdose urine collections from all 6 patients had THY/DHT urinary ratios above 4.0, clearly separated from the ratios in healthy subjects that were all below 3.0. CONCLUSIONS This small cohort provided evidence for a hypothesis that fluorouracil toxicity cases may include a previously undescribed pyrimidine absorption variant, "enhanced thymine absorption," and elevated THY/DHT ratios in urine may predict fluorouracil toxicity. A prospective study is currently being conducted.
Collapse
|
40
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
41
|
Chaliotis A, Vlastaridis P, Ntountoumi C, Botou M, Yalelis V, Lazou P, Tatsaki E, Mossialos D, Frillingos S, Amoutzias GD. NAT/NCS2-hound: a webserver for the detection and evolutionary classification of prokaryotic and eukaryotic nucleobase-cation symporters of the NAT/NCS2 family. Gigascience 2018; 7:5168872. [PMID: 30418564 PMCID: PMC6308229 DOI: 10.1093/gigascience/giy133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Nucleobase transporters are important for supplying the cell with purines and/or pyrimidines, for controlling the intracellular pool of nucleotides, and for obtaining exogenous nitrogen/carbon sources for metabolism. Nucleobase transporters are also evaluated as potential targets for antimicrobial therapies, since several pathogenic microorganisms rely on purine/pyrimidine salvage from their hosts. The majority of known nucleobase transporters belong to the evolutionarily conserved and ubiquitous nucleobase-ascorbate transporter/nucleobase-cation symporter-2 (NAT/NCS2) protein family. Based on a large-scale phylogenetic analysis that we performed on thousands of prokaryotic proteomes, we developed a webserver that can detect and distinguish this family of transporters from other homologous families that recognize different substrates. We can further categorize these transporters to certain evolutionary groups with distinct substrate preferences. The webserver scans whole proteomes and graphically displays which proteins are identified as NAT/NCS2, to which evolutionary groups and subgroups they belong to, and which conserved motifs they have. For key subgroups and motifs, the server displays annotated information from published crystal-structures and mutational studies pointing to key functional amino acids that may help experts assess the transport capability of the target sequences. The server is 100% accurate in detecting NAT/NCS2 family members. We also used the server to analyze 9,109 prokaryotic proteomes and identified Clostridia, Bacilli, β- and γ-Proteobacteria, Actinobacteria, and Fusobacteria as the taxa with the largest number of NAT/NCS2 transporters per proteome. An analysis of 120 representative eukaryotic proteomes also demonstrates the server's capability of correctly analyzing this major lineage, with plants emerging as the group with the highest number of NAT/NCS2 members per proteome.
Collapse
Affiliation(s)
- A Chaliotis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - P Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - C Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - M Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - V Yalelis
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - P Lazou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - E Tatsaki
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - D Mossialos
- Molecular Bacteriology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| | - S Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, 45110, Greece
| | - G D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, 41500, Greece
| |
Collapse
|
42
|
Giuliani AL, Sarti AC, Di Virgilio F. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 2018; 205:16-24. [PMID: 30439478 DOI: 10.1016/j.imlet.2018.11.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, mainly ATP, but also ADP, UTP, UDP and UDP-sugars, adenosine, and adenine base participate in the "purinergic signalling" pathway, an ubiquitous system of cell-to-cell communication. Fundamental pathophysiological processes such as tissue homeostasis, wound healing, neurodegeneration, immunity, inflammation and cancer are modulated by purinergic signalling. Nucleotides can be released from cells via unspecific or specific mechanisms. A non-regulated nucleotide release can occur from damaged or dying cells, whereas exocytotic granules, plasma membrane-derived microvesicles, membrane channels (connexins, pannexins, calcium homeostasis modulator (CALHM) channels and P2X7 receptor) or specific ATP binding cassette (ABC) transporters are involved in the controlled release. Four families of specific receptors, i.e. nucleotide P2X and P2Y receptors, adenosine P1 receptors, and the adenine-selective P0 receptor, and several ecto- nucleotidases are essential components of the "purinergic signalling" pathway. Thanks to the activity of ecto-nucleotidases, ATP (and possibly other nucleotides) are degraded into additional messenger molecules with specific action. The final biological effects depend on the type and amount of released nucleotides, their modification by ecto-nucleotidases, and their possible cellular re-uptake. Overall, these processes confer a remarkable level of selectivity and plasticity to purinergic signalling that makes this network one of the most relevant extracellular messenger systems in higher organisms.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferarra, Italy.
| |
Collapse
|
43
|
Role of cysteine 416 in N-ethylmaleimide sensitivity of human equilibrative nucleoside transporter 1 (hENT1). Biochem J 2018; 475:3293-3309. [PMID: 30254099 DOI: 10.1042/bcj20180543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Human equilibrative nucleoside transporter 1 (hENT1), the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for cellular uptake of physiologic nucleosides and many antineoplastic and antiviral nucleoside drugs. hENT1, which is potently inhibited by nitrobenzylthioinosine (NBMPR), possesses 11 transmembrane helical domains with an intracellular N-terminus and an extracellular C-terminus. As a protein with 10 endogenous cysteine residues, it is sensitive to inhibition by the membrane permeable sulfhydryl-reactive reagent N-ethylmaleimide (NEM) but is unaffected by the membrane impermeable sulfhydryl-reactive reagent p-chloromercuriphenyl sulfonate. To identify the residue(s) involved in NEM inhibition, we created a cysteine-less version of hENT1 (hENT1C-), with all 10 endogenous cysteine residues mutated to serine, and showed that it displays wild-type uridine transport and NBMPR-binding characteristics when produced in the Xenopus oocyte heterologous expression system, indicating that endogenous cysteine residues are not essential for hENT1 function. We then tested NEM sensitivity of recombinant wild-type hENT1, hENT1 mutants C1S to C10S (single cysteine residues replaced by serine), hENT1C- (all cysteine residues replaced by serine), and hENT1C- mutants S1C to S10C (single serine residues converted back to cysteine). Mutants C9S (C416S/hENT1) and S9C (S416C/hENT1C-) were insensitive and sensitive, respectively, to inhibition by NEM, identifying Cys416 as the endofacial cysteine residue in hENT1 responsible for NEM inhibition. Kinetic experiments suggested that NEM modification of Cys416, which is located at the inner extremity of TM10, results in the inhibition of hENT1 uridine transport and NBMPR binding by constraining the protein in its inward-facing conformation.
Collapse
|
44
|
Chen NC, Partridge AT, Tuzer F, Cohen J, Nacarelli T, Navas-Martín S, Sell C, Torres C, Martín-García J. Induction of a Senescence-Like Phenotype in Cultured Human Fetal Microglia During HIV-1 Infection. J Gerontol A Biol Sci Med Sci 2018; 73:1187-1196. [PMID: 29415134 PMCID: PMC6093403 DOI: 10.1093/gerona/gly022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
HIV-1 causes premature aging in chronically infected patients. Despite effective anti-retroviral therapy, around 50% of patients suffer HIV-associated neurocognitive disorders (HAND), which likely potentiate aging-associated neurocognitive decline. Microglia support productive HIV-1 infection in the brain. Elevated markers of cellular senescence, including p53 and p21, have been detected in brain tissues from patients with HAND, but the potential for microglia senescence during HIV-1 infection has not been investigated. We hypothesized that HIV-1 can induce senescence in microglia. Primary human fetal microglia were exposed to single-round infectious HIV-1 pseudotypes or controls, and examined for markers of senescence. Post-infection, microglia had significantly elevated: senescence-associated β-galactosidase activity, p21 levels, and production of cytokines such as IL-6 and IL-8, potentially indicative of a senescence-associated secretory phenotype. We also found increased detection of p53-binding protein foci in microglia nuclei post-infection. Additionally, we examined mitochondrial reactive oxygen species (ROS) and respiration, and found significantly increased mitochondrial ROS levels and decreased ATP-linked respiration during HIV-1 infection. Supernatant transfer from infected cultures to naïve microglia resulted in elevated p21 and caveolin-1 levels, and IL-8 production. Finally, nucleoside treatment reduced senescence markers induction in microglia. Overall, HIV-1 induces a senescence-like phenotype in human microglia, which could play a role in HAND.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- MD/PhD Program, Philadelphia, Pennsylvania
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Microbiology and Immunology Graduate Program, Philadelphia, Pennsylvania
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Justin Cohen
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Timothy Nacarelli
- Molecular and Cell Biology and Genetics Graduate Program, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Cellai L, Carvalho K, Faivre E, Deleau A, Vieau D, Buée L, Blum D, Mériaux C, Gomez-Murcia V. The Adenosinergic Signaling: A Complex but Promising Therapeutic Target for Alzheimer's Disease. Front Neurosci 2018; 12:520. [PMID: 30123104 PMCID: PMC6085480 DOI: 10.3389/fnins.2018.00520] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/11/2018] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly people. AD is characterized by a progressive cognitive decline and it is neuropathologically defined by two hallmarks: extracellular deposits of aggregated β-amyloid (Aβ) peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. AD results from multiple genetic and environmental risk factors. Epidemiological studies reported beneficial effects of caffeine, a non-selective adenosine receptors antagonist. In the present review, we discuss the impact of caffeine and of adenosinergic system modulation on AD, in terms of pathology and therapeutics.
Collapse
Affiliation(s)
- Lucrezia Cellai
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Kevin Carvalho
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Emilie Faivre
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Aude Deleau
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Didier Vieau
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Luc Buée
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - David Blum
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Céline Mériaux
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| | - Victoria Gomez-Murcia
- Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-JPArc, LabEx DISTALZ, Université de Lille, Lille, France
| |
Collapse
|
46
|
Che X, Liu P, Wu C, Song W, An N, Yu L, Bai Y, Xing Z, Cai J, Wang X, Yang J. Potential role of the ecto-5'-nucleotidase in morphine-induced uridine release and neurobehavioral changes. Neuropharmacology 2018; 141:1-10. [PMID: 30071207 DOI: 10.1016/j.neuropharm.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism. We previously found that acute morphine treatment significantly increased uridine release in the dorsal striatum of mice, indicating that uridine may contribute to morphine-induced neurobehavioral changes. In the present study, we analyzed the mechanism involved in morphine-induced uridine release and the role of uridine in morphine-induced neurobehavioral changes. Uridine release in the dorsal striatum of mice was assessed by in vivo microdialysis coupled with high performance liquid chromatography (HPLC) after morphine treatment. Western blotting and immunofluorescence were used to evaluate the expression of uridine-related proteins. Morphine-induced neurobehavioral changes were assessed by locomotor activity, behavioral sensitization and conditioned place preference (CPP) test. The expression of NT5E, an extracellular enzyme involved in formation of nucleosides, including uridine, was specifically knocked down in the dorsal striatum of mice using adeno-associated virus (AAV)-mediated short hairpin RNA (shRNA). The results indicated that both acute and chronic morphine administration significantly increased uridine release in the dorsal striatum, and this was associated with upregulation of NT5E but not other uridine-related proteins. Inhibition of NT5E with APCP or shRNA markedly inhibited morphine-induced uridine release in the dorsal striatum and related neurobehavioral changes, including hyperlocomotor activity, behavioral sensitization and CPP. Our data give a better understanding of the contribution of NT5E to morphine-induced uridine release and neurobehavioral changes, and identify NT5E as a potential target for treating morphine abuse.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Ping Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Wu Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Nina An
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Lisha Yu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Zheng Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Xiaomin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
47
|
Inhibition of the hypercapnic ventilatory response by adenosine in the retrotrapezoid nucleus in awake rats. Neuropharmacology 2018; 138:47-56. [PMID: 29857188 DOI: 10.1016/j.neuropharm.2018.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023]
Abstract
The brain regulates breathing in response to changes in tissue CO2/H+ via a process called central chemoreception. Neurons and astrocytes in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors. The role of astrocytes in this process appears to involve CO2/H+-dependent release of ATP to enhance activity of chemosensitive RTN neurons. Considering that in most brain regions extracellular ATP is rapidly broken down to adenosine by ectonucleotidase activity and since adenosine is a potent neuromodulator, we wondered whether adenosine signaling contributes to RTN chemoreceptor function. To explore this possibility, we pharmacologically manipulated activity of adenosine receptors in the RTN under control conditions and during inhalation of 7-10% CO2 (hypercapnia). In urethane-anesthetized or unrestrained conscious rats, bilateral injections of adenosine into the RTN blunted the hypercapnia ventilatory response. The inhibitory effect of adenosine on breathing was blunted by prior RTN injection of a broad spectrum adenosine receptor blocker (8-PT) or a selective A1-receptor blocker (DPCPX). Although RTN injections of 8PT, DPCPX or the ectonucleotidase inhibitor ARL67156 did not affected baseline breathing in either anesthetized or awake rats. We did find that RTN application of DPCPX or ARL67156 potentiated the respiratory frequency response to CO2, suggesting a portion of ATP released in the RTN during high CO2/H+ is converted to adenosine and serves to limit chemoreceptor function. These results identify adenosine as a novel purinergic regulator of RTN chemoreceptor function during hypercapnia.
Collapse
|
48
|
Choi JS, Kim S, Motea E, Berdis A. Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents. Oncotarget 2018; 8:40804-40816. [PMID: 28489578 PMCID: PMC5522278 DOI: 10.18632/oncotarget.17254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023] Open
Abstract
Anti-cancer agents exert therapeutic effects by damaging DNA. Unfortunately, DNA polymerases can effectively replicate the formed DNA lesions to cause drug resistance and create more aggressive cancers. To understand this process at the cellular level, we developed an artificial nucleoside that visualizes the replication of damaged DNA to identify cells that acquire drug resistance through this mechanism. Visualization is achieved using "click" chemistry to covalently attach azide-containing fluorophores to the ethynyl group present on the nucleoside analog after its incorporation opposite damaged DNA. Flow cytometry and microscopy techniques demonstrate that the extent of nucleotide incorporation into genomic DNA is enhanced by treatment with DNA damaging agents. In addition, this nucleoside analog inhibits translesion DNA synthesis and synergizes the therapeutic activity of certain anti-cancer agents such as temozolomide. The combined diagnostic and therapeutic activities of this synthetic nucleoside analog represent a new paradigm in personalized medicine.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Seol Kim
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Edward Motea
- Departments of Radiation Oncology and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Gourdin N, Bossennec M, Rodriguez C, Vigano S, Machon C, Jandus C, Bauché D, Faget J, Durand I, Chopin N, Tredan O, Marie JC, Dubois B, Guitton J, Romero P, Caux C, Ménétrier-Caux C. Autocrine Adenosine Regulates Tumor Polyfunctional CD73 +CD4 + Effector T Cells Devoid of Immune Checkpoints. Cancer Res 2018; 78:3604-3618. [PMID: 29559470 DOI: 10.1158/0008-5472.can-17-2405] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
The production of CD73-derived adenosine (Ado) by Tregs has been proposed as a resistance mechanism to anti-PD-1 therapy in murine tumor models. We reported that human Tregs express the ectonucleotidase CD39, which generates AMP from ATP, but do not express the AMPase CD73. In contrast, CD73 defined a subset of effector CD4+ T cells (Teffs) enriched in polyfunctional Th1.17 cells characterized by expression of CXCR3, CCR6, and MDR1, and production of IL17A/IFNγ/IL22/GM-CSF. CD39+ Tregs selectively targeted CD73+ Teffs through cooperative degradation of ATP into Ado inhibiting and restricting the ability of CD73+ Teffs to secrete IL17A. CD73+ Teffs infiltrating breast and ovarian tumors were functionally blunted by Tregs expressing upregulated levels of CD39 and ATPase activity. Moreover, tumor-infiltrating CD73+ Teffs failed to express inhibitory immune checkpoints, suggesting that CD73 might be selected under pressure from immune checkpoint blockade therapy and thus may represent a nonredundant target for restoring antitumor immunity.Significance: Polyfunctional CD73+ T-cell effectors lacking other immune checkpoints are selectively targeted by CD39 overexpressing Tregs that dominate the breast tumor environment. Cancer Res; 78(13); 3604-18. ©2018 AACR.
Collapse
Affiliation(s)
- Nicolas Gourdin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Marion Bossennec
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Céline Rodriguez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Selena Vigano
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christelle Machon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et Toxicologie, Pierre-Bénite, France.,Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de Chimie Analytique, Lyon, France
| | - Camilla Jandus
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Bauché
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion Department of Immunology Virology and Inflammation, INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion, Tumor immunology Program, DKFZ, Heidelberg, Germany
| | - Julien Faget
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Isabelle Durand
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Cytometry platform, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Nicolas Chopin
- Centre Léon Bérard, Medical Oncology Department, Lyon, France
| | - Olivier Tredan
- Centre Léon Bérard, Medical Oncology Department, Lyon, France
| | - Julien C Marie
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion Department of Immunology Virology and Inflammation, INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion, Tumor immunology Program, DKFZ, Heidelberg, Germany
| | - Bertrand Dubois
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et Toxicologie, Pierre-Bénite, France.,Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de Toxicologie, Lyon, France
| | - Pedro Romero
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France. .,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| |
Collapse
|
50
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|