1
|
Chifotides HT, Bose P. SOHO State of the Art Update and Next Questions: Current and Emerging Therapies for Systemic Mastocytosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:1-12. [PMID: 39168723 DOI: 10.1016/j.clml.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
Systemic mastocytosis (SM) is a heterogeneous myeloid neoplasm, characterized by clonal proliferation of mast cells (MCs) in ≥ 1 extracutaneous organs, including the bone marrow (BM) and gastrointestinal tract. Aberrant MC proliferation is driven by mutation KIT D816V in ≈90-95% of SM patients. Indolent SM (ISM) is the most common SM subtype with various symptoms that can be severe. Advanced SM (AdvSM) has markedly poor prognosis. The advent of KIT inhibitors, targeting mutant KIT and neoplastic MCs, led to a paradigm shift in SM management and markedly improved outcomes. Midostaurin inaugurated the era of KIT inhibitors and was approved for AdvSM in 2017. Avapritinib is the first highly potent and selective inhibitor of KIT D816V that was approved to treat AdvSM and symptomatic ISM (platelets ≥ 50 × 109/L), in the US, in 2021 and 2023, respectively. Pooled analysis of the EXPLORER and PATHFINDER studies, assessing avapritinib in AdvSM, demonstrated rapid and profound reductions (≥ 50%) in markers of MC burden, high response rates (71-75%), and prolonged survival. In the PIONEER study, avapritinib significantly and rapidly improved symptoms/quality of life, and reduced markers of MC burden in ISM patients. The investigational agents bezuclastinib and elenestinib are highly potent and selective inhibitors of KIT D816V with minimal blood-brain barrier penetration. Bezuclastinib reduced markers of MC burden by ≥ 50% in ≈50% of AdvSM patients and ≈90-100% of nonAdvSM patients and reduced symptoms (≥ 50%) in the APEX and SUMMIT studies, respectively. Elenestinib demonstrated dose-dependent efficacy in reducing MC burden markers and improved symptoms in ISM patients in the HARBOR study.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
2
|
Lv H, Wang J, Wan Y, Zhou Y. Exploration of the Key Pathways and Genes Involved in Osteoarthritis Genesis: Evidence from Multiple Platforms and Real-World Validation. J Inflamm Res 2024; 17:10223-10237. [PMID: 39649419 PMCID: PMC11625429 DOI: 10.2147/jir.s488935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024] Open
Abstract
Background Osteoarthritis (OA), a degenerative and chronic joint disease, is essential for identifying novel biomarkers for the clinical diagnosis of OA. Methods We collected 35 OA patients and 32 healthy controls from four clinical cohorts and 8 real-world samples from our institute. The activation status of 7530 signalling pathways was calculated via the gene set enrichment analysis (GSEA) algorithm. Ten machine learning algorithms and 101 algorithm combinations were further applied to recognize the most diagnostic genes. KDELR3 was chosen for further validation via immunohistochemical staining to determine its diagnostic value in real-world samples. Results Sixteen pathways, namely, the cellular respiration chain, protein transport, lysosomal and endocytosis pathways, were activated in OA patients. A total of 101 types of algorithm combinations were considered for the diagnostic model, and 58 were successfully output. The two-step model of glmBoost plus RF had the highest average AUC value of 0.95 and was composed of LY86, SORL1, KDELR3, CSK, PTGS1, and PTGS2. Preferable consistency of the diagnostic mole and real conditions was observed in all four cohorts (GSE55235: Kappa=1.000, P<0.001; GSE55457: Kappa=0.700, P<0.001; GSE82107: Kappa=0.643, P=0.004; GSE1919: Kappa=1.000, P<0.001). KDELR3 was expressed at higher levels in OA patients than were the other genes, and with the help of immunohistochemistry (IHC), we confirmed that OA patients presented high levels of KDELR3 in synovial tissues. The infiltration of immunocytes, macrophages, and natural killer T cells was high in OA patients. KDELR3 might be involved in the activation and infiltration of effector memory CD4 T cells (Rpearson = 0.58, P < 0.001) and natural killer T cells (Rpearson = 0.53, P < 0.001). Conclusion We constructed and validated a six-gene diagnostic model for OA patients via machine learning, and KDELR3 emerged as a novel biomarker for OA.
Collapse
Affiliation(s)
- Hao Lv
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Jingkun Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Yang Wan
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| |
Collapse
|
3
|
Yang Y, Wang L, Zeng Z, He C, Wang Y, Huang Y. Gain-of-Function Variant in Spleen Tyrosine Kinase Regulates Macrophage Migration and Functions to Promote Intestinal Inflammation. J Inflamm Res 2024; 17:8713-8726. [PMID: 39559401 PMCID: PMC11570706 DOI: 10.2147/jir.s488901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose Spleen tyrosine kinase (Syk) is a widely-expressed cytoplasmic non-receptor tyrosine kinase involved in regulating various signaling pathways and plays an important role in chronic inflammation and autoimmune diseases. Gain-of-function SYK variants have been implicated in pediatric inflammatory bowel diseases. This study aimed to investigate the effects of gain-of-function SYK variants on the susceptibility to experimental colitis and macrophage function. Methods Colitis was induced using dextran sodium sulfate and dinitrobenzene sulfonic acid in mice harboring a gain-of-function variant in SYK (SykS544Y). Intestinal inflammation was assessed via disease activity index, histological analysis, and Western blotting. The frequencies of macrophages, phagocytosis, and reactive oxygen species (ROS) production in bone marrow-derived macrophages (BMDM) were measured via flow cytometry. Chemokines and BMDM chemotaxis were analyzed using real-time quantitative reverse transcription polymerase chain reaction and Transwell assays. The expression of nucleotide-binding domain leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome-related proteins were detected using immunohistochemistry, enzyme-linked immunoassay and Western blotting. Results SykS544Y mice exhibited increased susceptibility to experimental colitis, and macrophage infiltration in colon tissues significantly increased. We observed increased expression of macrophage chemokines in colon tissues and enhanced chemotaxis in SykS544Y BMDM. Additionally, we detected increased levels of fluorescent microspheres and 2.7-dichloride-hydro fluorescein diacetate-labeled ROS in SykS544Y BMDM. Moreover, enhanced levels of NLRP3 inflammasome-related proteins were observed in the colon tissues and BMDM from SykS544Y mice. Conclusion Gain-of-function variant in SYK may contribute to the pathogenesis of pediatric inflammatory bowel diseases by promoting macrophage migration, phagocytosis, ROS production and activation of NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Ye Yang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Lin Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Zhiyang Zeng
- Department of Central Laboratory, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, People’s Republic of China
| | - Chunmeng He
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Yanqiu Wang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University/National Children’s Medical Center, Shanghai, 201102, People’s Republic of China
| |
Collapse
|
4
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Feng C, Post CB. Protein-Sequence-Based Search of Nonreceptor ITAM-Like Regions to Identify Cytosolic Syk-Recruiting Proteins. J Phys Chem B 2024; 128:9724-9733. [PMID: 39320068 DOI: 10.1021/acs.jpcb.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The recruitment of the protein spleen tyrosine kinase (Syk) to membrane-bound immune receptors is an essential step in initiating an immune response mediated through the activated receptors. Syk recognizes intracellular phosphorylated regions of membrane receptors known as immunoreceptor tyrosine-based activation motifs (ITAMs) defined by a sequence with two tyrosine (Y) amino acids separated by a certain spacing of six to eight residues: YXX(I/L)X6-8YXX(I/L). Syk with doubly phosphorylated ITAM is high-affinity and negatively regulated when Syk itself becomes phosphorylated. While the role of Syk in immune signaling is well characterized, recent information affords new functionality to Syk related to cytoplasmic processes, including the clearance of stress granules and P-bodies, both formed by liquid-liquid phase separation. Little to nothing is known about the molecular interactions involving Syk in these cytoplasmic processes. Given the essential role of receptor ITAMs in recruiting and localizing Syk for immune signaling, we explore here the possibility of a similar localization mechanism occurring for cytoplasmic processes by searching sequences of proteins related to Syk cytoplasmic function for regions that resemble receptor ITAMs. Protein sequence databases were generated from a Syk-dependent phosphoproteome and from genes related to P-bodies. A search of these databases for ITAM-like sequences yielded 102 unique hits, and 33 of these were synthesized and tested experimentally for binding to Syk tandem SH2 domains. The equilibrium dissociation constants were 0.1-50 μM for 28 peptides, and binding was negatively regulated by phosphorylation for many peptides. These results identify cytoplasmic proteins with potential for regulating the localization of Syk in a phosphorylation-dependent manner to nonmembrane cellular regions.
Collapse
Affiliation(s)
- Chao Feng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Markey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
7
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Du Y, Wang D, Katis VL, Zoeller EL, Qui M, Levey AI, Gileadi O, Fu H. Development of a time-resolved fluorescence resonance energy transfer ultra-high throughput screening assay targeting SYK and FCER1G interaction. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100177. [PMID: 39154664 DOI: 10.1016/j.slasd.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as a TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as an acceptor. We have optimized the assay into a 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Elizabeth L Zoeller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Min Qui
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I Levey
- Department of Neurology, Emory Goizueta Alzheimer's Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Vikár S, Szilveszter KP, Koszorú K, Sárdy M, Mócsai A. The Syk Inhibitor Entospletinib Abolishes Dermal-Epidermal Separation in a Fully Human Ex Vivo Model of Bullous Pemphigoid. J Invest Dermatol 2024; 144:1733-1742. [PMID: 38296021 DOI: 10.1016/j.jid.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Bullous pemphigoid (BP) is an autoantibody-mediated blistering skin disease characterized by local inflammation and dermal-epidermal separation, with no approved targeted therapy. The Syk tyrosine kinase is critical for various functions of the immune response. Second-generation Syk inhibitors such as entospletinib are currently being tested for hematological malignancies. Our aim was to test the effect of entospletinib in a fully human model system of BP. Incubating BP serum-treated human frozen skin sections with normal human granulocytes and fresh plasma triggered dermal-epidermal separation that was dependent on complement, NADPH oxidase, and protease activity. Entospletinib dramatically reduced dermal-epidermal separation with a half-maximal inhibitory concentration of ≈16 nM. Entospletinib also reduced ROS production, granule release, and spreading of human granulocytes plated on immobilized immune complexes consisting either of a generic antigen-antibody pair or of recombinant collagen type XVII (BPAg2) and BP serum components (supposedly autoantibodies). However, entospletinib did not affect the chemotactic migration of human granulocytes or their responses to nonphysiological stimulation by phorbol esters. Entospletinib had no effect on the survival of granulocytes either. Taken together, entospletinib abrogates dermal-epidermal separation, likely through inhibition of granulocyte responsiveness to deposited immune complexes. Entospletinib or other Syk inhibitors may provide therapeutic benefits in BP.
Collapse
Affiliation(s)
- Simon Vikár
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kata P Szilveszter
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kamilla Koszorú
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HUN-REN-SU Inflammation Physiology Research Group, Hungarian Research Network, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Fischer R. Vascular syk-ness: A new role for an old immunological favorite. J Biol Chem 2024; 300:107517. [PMID: 38945448 PMCID: PMC11292355 DOI: 10.1016/j.jbc.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a deadly clinical presentation in sepsis, COVID, and other lung disorders where vascular fluid leakage is a severe problem. Recent findings by Shadab et al. in the JBC show that a well-known player in immune function, Syk, also regulates vascular leakage in response to sepsis. An existing FDA-approved inhibitor of Syk, fostamatinib, prevents the vascular leakage and improves survival in a mouse sepsis model, providing promise for ARDS treatment in the clinic.
Collapse
Affiliation(s)
- Robert Fischer
- Laboratory of Cell and Tissue Morphodynamics, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
11
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Du Y, Wang D, Katis VL, Zoeller EL, Qui M, Levey AI, Gileadi O, Fu H. Development of a Time-Resolved Fluorescence Resonance Energy Transfer ultra-high throughput screening assay for targeting SYK and FCER1G interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598473. [PMID: 38915662 PMCID: PMC11195132 DOI: 10.1101/2024.06.11.598473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) interaction has a major role in the normal innate and adaptive immune responses, but dysregulation of this interaction is implicated in several human diseases, including autoimmune disorders, hematological malignancies, and Alzheimer's Disease. Development of small molecule chemical probes could aid in studying this pathway both in normal and aberrant contexts. Herein, we describe the miniaturization of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to measure the interaction between SYK and FCER1G in a 1536-well ultrahigh throughput screening (uHTS) format. The assay utilizes the His-SH2 domains of SYK, which are indirectly labeled with anti-His-terbium to serve as TR-FRET donor and a FITC-conjugated phosphorylated ITAM domain peptide of FCER1G to serve as acceptor. We have optimized the assay into 384-well HTS format and further miniaturized the assay into a 1536-well uHTS format. Robust assay performance has been achieved with a Z' factor > 0.8 and signal-to-background (S/B) ratio > 15. The utilization of this uHTS TR-FRET assay for compound screening has been validated by a pilot screening of 2,036 FDA-approved and bioactive compounds library. Several primary hits have been identified from the pilot uHTS. One compound, hematoxylin, was confirmed to disrupt the SYK/FECR1G interaction in an orthogonal protein-protein interaction assay. Thus, our optimized and miniaturized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the SYK and FCER1G interaction.
Collapse
Affiliation(s)
- Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vittorio L. Katis
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Elizabeth L. Zoeller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Min Qui
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I. Levey
- Department of Neurology, Emory Goizueta Alzheimer’s Disease Research Center, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Opher Gileadi
- Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | | | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
14
|
Gouda MA, Shunyakova J, Naing A, Dumbrava E, Hong DS, Yuan Y, Yang P, Myers A, Liang Y, Peng J, Karp D, Tsimberidou AM, Rodon J, Yap TA, Piha-Paul SA, Meric-Bernstam F, Fu S. A phase I study of TAK-659 and paclitaxel in patients with taxane-refractory advanced solid tumors. ESMO Open 2024; 9:103486. [PMID: 38914452 PMCID: PMC11258623 DOI: 10.1016/j.esmoop.2024.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Paclitaxel resistance limits durability of response in patients with initial clinical benefit. Overexpression of spleen tyrosine kinase (SYK) has been proposed as a possible resistance mechanism. This phase I trial evaluated the safety and preliminary activity of the SYK inhibitor TAK-659 combined with paclitaxel in patients with advanced taxane-refractory solid tumors. PATIENTS AND METHODS Patients with advanced solid tumors and prior progression on taxane-based therapy received intravenous infusion of paclitaxel on days 1, 8, and 15 plus oral TAK-659 daily in 28-day cycles. The dose-escalation phase included six cohorts treated at different dose levels; the dose-expansion phase included patients with ovarian cancer treated at the highest dose level. Toxicity was graded using the National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. Efficacy was evaluated using Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS Our study included 49 patients. Maximum tolerated dose was not reached, but higher rates of adverse events were observed at higher dose levels. There were no treatment-related deaths. The most common treatment-related adverse events of any grade were increased aspartate aminotransferase (n = 31; 63%), increased alanine aminotransferase (n = 26; 53%), decreased neutrophil count (n = 26; 53%), and decreased white blood cell count (n = 26; 53%). Most adverse events were either grade 1 or 2. In the 44 patients with evaluable disease, 12 (27%) had stable disease as the best overall response, including three patients with prolonged stable disease, and 4 patients (9%) achieved a partial response. CONCLUSIONS The combination of paclitaxel and TAK-659 showed preliminary activity possibly overcoming resistance to taxane-based therapy as well as a tolerable safety profile in patients with advanced solid tumors.
Collapse
Affiliation(s)
- M A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Shunyakova
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - A Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - E Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - D S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Y Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - P Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - A Myers
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, USA
| | - Y Liang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Peng
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - D Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - A M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - J Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - T A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - S A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - S Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston.
| |
Collapse
|
15
|
Danishuddin, Malik MZ, Kashif M, Haque S, Kim JJ. Exploring chemical space, scaffold diversity, and activity landscape of spleen tyrosine kinase active inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:325-342. [PMID: 38690773 DOI: 10.1080/1062936x.2024.2345618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
This study aims to comprehensively characterize 576 inhibitors targeting Spleen Tyrosine Kinase (SYK), a non-receptor tyrosine kinase primarily found in haematopoietic cells, with significant relevance to B-cell receptor function. The objective is to gain insights into the structural requirements essential for potent activity, with implications for various therapeutic applications. Through chemoinformatic analyses, we focus on exploring the chemical space, scaffold diversity, and structure-activity relationships (SAR). By leveraging ECFP4 and MACCS fingerprints, we elucidate the relationship between chemical compounds and visualize the network using RDKit and NetworkX platforms. Additionally, compound clustering and visualization of the associated chemical space aid in understanding overall diversity. The outcomes include identifying consensus diversity patterns to assess global chemical space diversity. Furthermore, incorporating pairwise activity differences enhances the activity landscape visualization, revealing heterogeneous SAR patterns. The dataset analysed in this work has three activity cliff generators, CHEMBL3415598, CHEMBL4780257, and CHEMBL3265037, compounds with high affinity to SYK are very similar to compounds analogues with reasonable potency differences. Overall, this study provides a critical analysis of SYK inhibitors, uncovering potential scaffolds and chemical moieties crucial for their activity, thereby advancing the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - M Z Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - M Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - J J Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
16
|
Kaneko T, Ezra S, Abdo R, Voss C, Zhong S, Liu X, Hovey O, Slessarev M, Van Nynatten LR, Ye M, Fraser DD, Li SSC. Kinome and phosphoproteome reprogramming underlies the aberrant immune responses in critically ill COVID-19 patients. Clin Proteomics 2024; 21:13. [PMID: 38389037 PMCID: PMC10882830 DOI: 10.1186/s12014-024-09457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Sally Ezra
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Rober Abdo
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Courtney Voss
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Shanshan Zhong
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Xuguang Liu
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Owen Hovey
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Marat Slessarev
- Departments of Medicine and Pediatrics, Western University, London, Canada
| | | | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Douglas D Fraser
- Departments of Medicine and Pediatrics, Western University, London, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON, N6C 2R5, Canada
| | - Shawn Shun-Cheng Li
- Departments of Biochemistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
17
|
Tan G, Zheng S, Zhou B, Mo Z, Zhang Q, Zhang D, Li A, Liu X. Spleen tyrosine kinase facilitates the progression of papillary thyroid cancer regulated by the hsa_circ_0006417/miR-377-3p axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:421-434. [PMID: 37792549 DOI: 10.1002/tox.23982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.
Collapse
Affiliation(s)
- Guangmou Tan
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
- Department of Head and Neck Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaohong Mo
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donghui Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang Z, Qu S, Yuan J, Tian W, Xu J, Tao R, Sun S, Lu T, Tang W, Zhu Y. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK). Bioorg Med Chem 2023; 96:117514. [PMID: 37984216 DOI: 10.1016/j.bmc.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase. The dysregulation of SYK is closely related to the occurrence and development of allergic diseases, autoimmune diseases and cancer. SYK has become an attractive target for drug discovery due to its important biological functions. This article reviews the biological function of SYK, the relationship between SYK and disease, and therapies targeting SYK. In addition, inspired by new technologies such as proteolysis targeting chimeras (PROTACs) and phosphatase recruiting chimeras (PHORCs), we propose the development of new therapeutic approaches for targeting SYK, such as SYK PROTACs and SYK PHORCs, which may overcome deficiencies of existing methods.
Collapse
Affiliation(s)
- Zhaozhao Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shu Qu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiahao Yuan
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Wen Tian
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jinglei Xu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Rui Tao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weifang Tang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
19
|
Zhu F, Jing D, Zhou H, Hu Z, Wang Y, Jin G, Yang Y, Zhou G. Blockade of Syk modulates neutrophil immune-responses via the mTOR/RUBCNL-dependent autophagy pathway to alleviate intestinal inflammation in ulcerative colitis. PRECISION CLINICAL MEDICINE 2023; 6:pbad025. [PMID: 37941642 PMCID: PMC10628969 DOI: 10.1093/pcmedi/pbad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
Background Ulcerative colitis (UC) is a progressive chronic inflammatory disorder. Neutrophils play a critical role in regulating intestinal mucosal homeostasis in UC. Spleen tyrosine kinase (Syk) is involved in several inflammatory diseases. Here, we evaluated the effects and underlying mechanisms of Syk on neutrophil immune-responses in UC. Methods Syk expression in the colonic tissues of patients with UC was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. Colonic biopsies from patients with UC were obtained for single-cell RNA-sequencing. Neutrophils isolated from peripheral blood were pre-treated with R788 (a Syk inhibitor) and gene differences were determined using RNA sequencing. Neutrophil functions were analyzed using qRT-PCR, flow cytometry, and Transwell assay. R788 was administered daily to mice with dextran sulfate sodium (DSS)-induced colitis to verify the effects of Syk on intestinal inflammation. Results Syk expression was increased in inflamed mucosa and neutrophils of patients with UC and positively correlated with disease activity. Pharmacological inhibition of Syk in neutrophils decreased the production of pro-inflammatory cytokines, chemokines, neutrophil extracellular traps, reactive oxygen species, and myeloperoxidase. Apoptosis and migration of neutrophils were suppressed by Syk blockade. Syk blockade ameliorated mucosal inflammation in DSS-induced murine colitis by inhibiting neutrophil-associated immune responses. Mechanistically, Syk regulated neutrophil immune-responses via the mammalian target of rapamycin kinase/rubicon-like autophagy enhancer-dependent autophagy pathway. Conclusions Our findings indicate that Syk facilitates specific neutrophil functional responses to mucosal inflammation in UC, and its inhibition ameliorates mucosal inflammation in DSS-induced murine colitis, suggesting its potential as a novel therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Huihui Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| |
Collapse
|
20
|
Anwar MM. The orchestrating role of deteriorating neurons and TREM-1 in crosstalk with SYK in Alzheimer's disease progression and neuroinflammation. Inflammopharmacology 2023; 31:2303-2310. [PMID: 37405587 DOI: 10.1007/s10787-023-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive type of neurodegenerative disease characterized by successive loss of the conventional structure and functions of neurons. In addition to dead neurons type detected within AD brain tissues, there are a predominantly varying number of deteriorating neurons (DTNs). As the number of deteriorating neurons increases, they exaggerate the release of inflammatory factors and oxidative stress that trigger the cascade of neuroinflammation. Triggering receptor expressed on myeloid cells 1 (TREM-1) which is a transmembrane immune receptor type regularly expressed by phagocytic cells, may act as a stimulating factor for neuroinflammation. Once TREM-1 is activated, it directly activates spleen tyrosine kinase (SYK) downstream signaling cascades, which can be considered an initiating phase for AD pathology and AD progression. Sequentially, SYK activates the pro-inflammatory microglia M1 phenotype which executes several inflammatory actions, leading to neurotoxicity. These released neurotoxins promote neuronal cell death, synaptic dysfunctions, and memory impairments. Thus, the current review outlines the direct etiological and pathologic features of Alzheimer's disease linked with deteriorating neurons, TREM-1, and SYK.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Cairo, Egypt.
| |
Collapse
|
21
|
Grimster NP, Gingipalli L, Balazs A, Barlaam B, Boiko S, Boyd S, Dry H, Goldberg FW, Ikeda T, Johnson T, Kawatkar S, Kemmitt P, Lamont S, Lorthioir O, Mfuh A, Patel J, Pike A, Read J, Romero R, Sarkar U, Sha L, Simpson I, Song K, Su Q, Wang H, Watson D, Wu A, Zehnder TE, Zheng X, Li S, Dong Z, Yang D, Song Y, Wang P, Liu X, Dowling JE, Edmondson SD. Optimization of a series of novel, potent and selective Macrocyclic SYK inhibitors. Bioorg Med Chem Lett 2023; 91:129352. [PMID: 37270074 DOI: 10.1016/j.bmcl.2023.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Boyd
- Oncology R & D, AstraZeneca, Cambridge, UK
| | - Hannah Dry
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | - Tim Ikeda
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | | | | | | | | | | | | | - Joe Patel
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | - Andy Pike
- Oncology R & D, AstraZeneca, Cambridge, UK
| | - Jon Read
- Discovery Sciences R & D, AstraZeneca, Cambridge, UK
| | | | | | - Li Sha
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | - Kun Song
- Oncology R & D, AstraZeneca, Waltham, USA
| | - Qibin Su
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | | | - Allan Wu
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | | | | | - Shaolu Li
- Oncology R & D, AstraZeneca, Waltham, USA
| | - Zhiqiang Dong
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Dejian Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Yanwei Song
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Peng Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Xuemei Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | | | | |
Collapse
|
22
|
Fragoso NM, Masson R, Gillenwater TJ, Shi VY, Hsiao JL. Emerging Treatments and the Clinical Trial Landscape for Hidradenitis Suppurativa Part I: Topical and Systemic Medical Therapies. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00956-6. [PMID: 37402031 PMCID: PMC10366071 DOI: 10.1007/s13555-023-00956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Hidradenitis suppurativa (HS) is an oftentimes debilitating condition that presents with painful nodules, abscesses, and sinus tracts. This condition is challenging to treat, in part because the pathogenesis of the condition is incompletely understood but also because there are limited therapeutic options. HS research is undergoing explosive growth with multiple new molecular pathways under study, which will hopefully lead to improved disease control for patients. Part I of this review will provide an overview of the emerging topical and systemic therapies under investigation for HS.
Collapse
Affiliation(s)
- Natalie M Fragoso
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Rahul Masson
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T Justin Gillenwater
- Division of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, CA, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer L Hsiao
- Department of Dermatology, University of Southern California, 1441 Eastlake Ave, Ezralow Tower, Suite 5301, Los Angeles, CA, 90089, USA.
| |
Collapse
|
23
|
Cui B, Wang Y, Zhao Z, Fan L, Jiao Y, Li H, Feng J, Tang W, Lu T, Chen Y. Discovery of 3-(1H-benzo[d]imidazole-2-yl)-1H-pyrazol-4 -amine derivatives as novel and potent syk inhibitors for the treatment of hematological malignancies. Eur J Med Chem 2023; 258:115597. [PMID: 37423126 DOI: 10.1016/j.ejmech.2023.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Spleen tyrosine kinase (Syk) is an important oncogene and signal transduction mediator that is mainly expressed in hematopoietic cells. Syk plays a key role in the B cell receptor (BCR) signaling pathway. Abnormal activation of Syk is closely related to the occurrence and development of hematological malignancies. Therefore, Syk is a potential target for the treatment of various hematologic cancers. Starting from compound 6(Syk, IC50 = 15.8 μM), we performed fragment-based rational drug design for structural optimization based on the specific solvent-accessible region, hydrophobic region, and ribose region of Syk. This resulted in the discovery of a series of novel 3-(1H-benzo [d]imidazole-2-yl)-1H-pyrazol-4-amine Syk inhibitors, which led to the identification of 19q, a highly potent Syk inhibitor that exhibited excellent inhibitory activity on Syk enzyme (IC50 = 0.52 nM) and showed potency against several other kinases. In addition, compound 19q effectively reduced phosphorylation of downstream PLCγ2 level in Romos cells. And it also exhibited antiproliferative activity in multiple hematological tumour cells. More gratifyingly, 19q showed impressive efficacy at a low dosage (1 mg/kg/day) in the MV4-11 mouse xenograft model without affecting the body weight of the mice. These findings suggest that 19q is a promising new Syk inhibitor for treating blood cancers.
Collapse
Affiliation(s)
- Bingbing Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yong Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhipeng Zhao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Lu Fan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yu Jiao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jie Feng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
24
|
Németh T, Balogh L, Káposztás E, Szilveszter KP, Mócsai A. Neutrophil-Specific Syk Expression Is Crucial for Skin Disease in Experimental Epidermolysis Bullosa Acquisita. J Invest Dermatol 2023; 143:1147-1156. [PMID: 36641133 DOI: 10.1016/j.jid.2022.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Autoantibodies against the dermal-epidermal junction component type VII collagen (C7) trigger skin disease in the inflammatory form of epidermolysis bullosa acquisita. We have previously identified the Syk tyrosine kinase as a crucial participant in anti-C7 antibody-induced experimental epidermolysis bullosa acquisita. However, it is still unclear which cellular lineage needs to express Syk during the disease process. In this study, we show that the loss of Syk, specifically from neutrophils, results in complete protection from the anti-C7 antibody-initiated skin disease both macroscopically and microscopically. Mice with a neutrophil-specific Syk deletion had decreased neutrophil accumulation and abrogated CXCL2 and IL-1β levels in the skin upon anti-C7 treatment, whereas isolated Syk-deficient neutrophils had decreased superoxide release, cell spreading, and cytokine release on C7-anti-C7 immune complex surfaces. Entospletinib and lanraplenib, two second-generation Syk-specific inhibitors, effectively abrogated immune complex-induced responses of human neutrophils and decreased the anti-C7 antibody-initiated, neutrophil-mediated ex vivo dermal-epidermal separation in human skin samples. Taken together, these results point to a crucial role for Syk in neutrophils in the development and progression of epidermolysis bullosa acquisita and suggest Syk inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary; Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Lili Balogh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Eszter Káposztás
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" ("Momentum") Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
25
|
Zhou Y, Zhang Y, Yu W, Qin Y, He H, Dai F, Wang Y, Zhu F, Zhou G. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases. Immun Inflamm Dis 2023; 11:e934. [PMID: 37506139 PMCID: PMC10373573 DOI: 10.1002/iid3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
26
|
Hughes K, Evans K, Earley EJ, Smith CM, Erickson SW, Stearns T, Philip VM, Neuhauser SB, Chuang JH, Jocoy EL, Bult CJ, Teicher BA, Smith MA, Lock RB. In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts. Pediatr Blood Cancer 2023; 70:e30503. [PMID: 37339930 PMCID: PMC10730772 DOI: 10.1002/pbc.30503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.
Collapse
Affiliation(s)
- Keira Hughes
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Eric J Earley
- RTI International, Research Triangle Park, North Carolina, USA
| | - Christopher M Smith
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | | | - Tim Stearns
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | | | | | | | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Seo SU, Woo SM, Kwon TK. Cathepsin K inhibition induces Raptor destabilization and mitochondrial dysfunction via Syk/SHP2/Src/OTUB1 axis-mediated signaling. Cell Death Dis 2023; 14:366. [PMID: 37330581 PMCID: PMC10276854 DOI: 10.1038/s41419-023-05884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The Raptor signaling pathway is a critical point of intervention in the invasion and progression of cancer. The non-receptor tyrosine kinase Src-mediated phosphorylation of OTUB1-Y26 plays a critical role in Raptor stabilization, whereas cathepsin K inhibitor (odanacatib; ODN) and knockdown (siRNA) induce Raptor destabilization. However, the mechanisms involved in cathepsin K inhibition-induced OTUB1-Y26 phosphorylation in Raptor stabilization have not been yet elucidated. This study showed that cathepsin K inhibition activates SHP2, a tyrosine phosphatase, that dephosphorylates OTUB1 and destabilizes Raptor, whereas SHP2 deletion and pharmacological inhibition increase OTUB1-Y26 phosphorylation and Raptor expression. SHP2 deletion also led to the inhibition of ODN-induced mitochondrial ROS, fusion, and dysfunction. Furthermore, cathepsin K inhibition phosphorylated spleen tyrosine kinase (Syk) at Y525 and Y526, resulting in the SHP2-mediated dephosphorylation of OTUB1-Y26. Collectively, our findings identified Syk not only as an upstream tyrosine kinase required for SHP2 activation but also showed a critical mechanism that regulates ODN-induced Raptor downregulation and mitochondrial dysfunction. In conclusion, Syk/SHP2/Src/OTUB1 axis-mediated signaling can act as a therapeutic target in cancer management.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
28
|
Rohila D, Park IH, Pham TV, Jones R, Tapia E, Liu KX, Tamayo P, Yu A, Sharabi AB, Joshi S. Targeting macrophage Syk enhances responses to immune checkpoint blockade and radiotherapy in high-risk neuroblastoma. Front Immunol 2023; 14:1148317. [PMID: 37350973 PMCID: PMC10283071 DOI: 10.3389/fimmu.2023.1148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Background Neuroblastoma (NB) is considered an immunologically cold tumor and is usually less responsive to immune checkpoint blockade (ICB). Tumor-associated macrophages (TAMs) are highly infiltrated in NB tumors and promote immune escape and resistance to ICB. Hence therapeutic strategies targeting immunosuppressive TAMs can improve responses to ICB in NB. We recently discovered that spleen tyrosine kinase (Syk) reprograms TAMs toward an immunostimulatory phenotype and enhances T-cell responses in the lung adenocarcinoma model. Here we investigated if Syk is an immune-oncology target in NB and tested whether a novel immunotherapeutic approach utilizing Syk inhibitor together with radiation and ICB could provide a durable anti-tumor immune response in an MYCN amplified murine model of NB. Methods Myeloid Syk KO mice and syngeneic MYCN-amplified cell lines were used to elucidate the effect of myeloid Syk on the NB tumor microenvironment (TME). In addition, the effect of Syk inhibitor, R788, on anti-tumor immunity alone or in combination with anti-PDL1 mAb and radiation was also determined in murine NB models. The underlying mechanism of action of this novel therapeutic combination was also investigated. Results Herein, we report that Syk is a marker of NB-associated macrophages and plays a crucial role in promoting immunosuppression in the NB TME. We found that the blockade of Syk in NB-bearing mice markedly impairs tumor growth. This effect is facilitated by macrophages that become immunogenic in the absence of Syk, skewing the suppressive TME towards immunostimulation and activating anti-tumor immune responses. Moreover, combining FDA-approved Syk inhibitor, R788 (fostamatinib) along with anti-PDL1 mAb provides a synergistic effect leading to complete tumor regression and durable anti-tumor immunity in mice bearing small tumors (50 mm3) but not larger tumors (250 mm3). However, combining radiation to R788 and anti-PDL1 mAb prolongs the survival of mice bearing large NB9464 tumors. Conclusion Collectively, our findings demonstrate the central role of macrophage Syk in NB progression and demonstrate that Syk blockade can "reeducate" TAMs towards immunostimulatory phenotype, leading to enhanced T cell responses. These findings further support the clinical evaluation of fostamatinib alone or with radiation and ICB, as a novel therapeutic intervention in neuroblastoma.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Timothy V. Pham
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Riley Jones
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Kevin X. Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Alice Yu
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Andrew B. Sharabi
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Park SJ, Jang JW, Moon EY. Bisphenol A-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression by Syk activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115061. [PMID: 37257343 DOI: 10.1016/j.ecoenv.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
The widely used plasticizer bisphenol A (BPA) is known as an endocrine-disrupting chemical (EDC). Many studies have shown that BPA contributes to diseases involving immune system alterations, but the underlying mechanisms have yet to be elucidated. We previously reported that BPA at concentration of 100 μM caused human B cell death in accordance with an increase in nuclear factor (erythroid-derived 2)-like 2(Nrf2) expression. Autophagy is a cellular process that degraded and recycles cytoplasmic constituents. Here, we investigated whether BPA induces autophagy through Nrf2, which is associated with regulation of B cell death using human WiL2-NS lymphoblast B cells. Then, cell viability was assessed by various assays using trypan blue, MTT or Celltiter glo luminescent substrate and DAPI. When WiL2-NS cells were treated with BPA, cell viability was decreased and LC3 autophagy cargo protein/puncta was increased. BPA-induced autophagy was confirmed by the modification of LC3 puncta formation or autophagy flux turnover with the treatment of hydroxychloroquine(HCQ), NH4Cl and PI3K inhibitors including 3-methyladenine(3-MA), LY294002 and wortmannin. BPA treatment increased the expression of autophagy-related gene(Atg)7 and Beclin1 as well as Nrf2 induced by the production of reactive oxygen species (ROS). The inhibition of autophagy with siAtg7 or siBeclin1 and Nrf2 depletion aggravated BPA-induced cell death. BPA enhanced the bound of Nrf2 to the specific region on Beclin1 and Atg7 promoter. Spleen tyrosine kinase(Syk) activity was enhanced in response to BPA treatment. Bay61-3606, Syk inhibitor, decreased LC3 and the expression of Atg7 and Beclin1, leading to the increase of BPA-induced B cell death. The results suggest that BPA-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression.
Collapse
Affiliation(s)
- So-Jeong Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Ju-Won Jang
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Eun-Yi Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea.
| |
Collapse
|
30
|
Zhou J, Zhang XC, Xue S, Dai M, Wang Y, Peng X, Chen J, Wang X, Shen Y, Qin H, Chen B, Zheng Y, Gao X, Xie Z, Ding J, Jiang H, Wu YL, Geng M, Ai J. SYK-mediated epithelial cell state is associated with response to c-Met inhibitors in c-Met-overexpressing lung cancer. Signal Transduct Target Ther 2023; 8:185. [PMID: 37183231 PMCID: PMC10183461 DOI: 10.1038/s41392-023-01403-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/16/2023] Open
Abstract
Genomic MET amplification and exon 14 skipping are currently clinically recognized biomarkers for stratifying subsets of non-small cell lung cancer (NSCLC) patients according to the predicted response to c-Met inhibitors (c-Metis), yet the overall clinical benefit of this strategy is quite limited. Notably, c-Met protein overexpression, which occurs in approximately 20-25% of NSCLC patients, has not yet been clearly defined as a clinically useful biomarker. An optimized strategy for accurately classifying patients with c-Met overexpression for decision-making regarding c-Meti treatment is lacking. Herein, we found that SYK regulates the plasticity of cells in an epithelial state and is associated with their sensitivity to c-Metis both in vitro and in vivo in PDX models with c-Met overexpression regardless of MET gene status. Furthermore, TGF-β1 treatment resulted in SYK transcriptional downregulation, increased Sp1-mediated transcription of FRA1, and restored the mesenchymal state, which conferred resistance to c-Metis. Clinically, a subpopulation of NSCLC patients with c-Met overexpression coupled with SYK overexpression exhibited a high response rate of 73.3% and longer progression-free survival with c-Meti treatment than other patients. SYK negativity coupled with TGF-β1 positivity conferred de novo and acquired resistance. In summary, SYK regulates cell plasticity toward a therapy-sensitive epithelial cell state. Furthermore, our findings showed that SYK overexpression can aid in precisely stratifying NSCLC patients with c-Met overexpression regardless of MET alterations and expand the population predicted to benefit from c-Met-targeted therapy.
Collapse
Affiliation(s)
- Ji Zhou
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xu-Chao Zhang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Shan Xue
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengdi Dai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yueliang Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianjiao Chen
- Department of Neurobiology, Brain Institute, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Xinyi Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qin
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bi Chen
- Department of Respiratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yu Zheng
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiwen Gao
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zuoquan Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Handong Jiang
- Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yi-Long Wu
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, China.
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
| |
Collapse
|
31
|
Kola-Mustapha AT, Raji MA, Adedeji O, Ambrose GO. Network Pharmacology and Molecular Modeling to Elucidate the Potential Mechanism of Neem Oil against Acne vulgaris. Molecules 2023; 28:molecules28062849. [PMID: 36985821 PMCID: PMC10056471 DOI: 10.3390/molecules28062849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Acne vulgaris is a common skin disorder with a complicated etiology. Papules, lesions, comedones, blackheads, and other skin lesions are common physical manifestations of Acne vulgaris, but the individual who has it also regularly has psychological repercussions. Natural oils are being utilized more and more to treat skin conditions since they have fewer negative effects and are expected to provide benefits. Using network pharmacology, this study aims to ascertain if neem oil has any anti-acne benefits and, if so, to speculate on probable mechanisms of action for such effects. The neem leaves (Azadirachta indica) were collected, verified, authenticated, and assigned a voucher number. After steam distillation was used to extract the neem oil, the phytochemical components of the oil were examined using gas chromatography-mass spectrometry (GC-MS). The components of the oil were computationally examined for drug-likeness using Lipinski's criteria. The Pharm Mapper service was used to anticipate the targets. Prior to pathway and protein-protein interaction investigations, molecular docking was performed to predict binding affinity. Neem oil was discovered to be a potential target for STAT1, CSK, CRABP2, and SYK genes in the treatment of Acne vulgaris. In conclusion, it was discovered that the neem oil components with PubChem IDs: ID_610088 (2-(1-adamantyl)-N-methylacetamide), ID_600826 (N-benzyl-2-(2-methyl-5-phenyl-3H-1,3,4-thiadiazol-2-yl)acetamide), and ID_16451547 (N-(3-methoxyphenyl)-2-(1-phenyltetrazol-5-yl)sulfanylpropanamide) have strong affinities for these drug targets and may thus be used as therapeutic agents in the treatment of acne.
Collapse
Affiliation(s)
- Adeola Tawakalitu Kola-Mustapha
- College of Pharmacy, Alfaisal University Riyadh, Riyadh 11461, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | - Muhabat Adeola Raji
- Department of Microbiology & Immunology, Alfaisal University, Riyadh 11461, Saudi Arabia
| | - Oluwakorede Adedeji
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240101, Nigeria
| | | |
Collapse
|
32
|
Kim KS, Moon KM, Min KW, Jung WY, Shin SJ, Lee SW, Kwon MJ, Kim DH, Oh S, Noh YK. Low gamma-butyrobetaine dioxygenase (BBOX1) expression as a prognostic biomarker in patients with clear cell renal cell carcinoma: a machine learning approach. J Pathol Clin Res 2023; 9:236-248. [PMID: 36864013 PMCID: PMC10073934 DOI: 10.1002/cjp2.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Gamma-butyrobetaine dioxygenase (BBOX1) is a catalyst for the conversion of gamma-butyrobetaine to l-carnitine, which is detected in normal renal tubules. The purpose of this study was to analyze the prognosis, immune response, and genetic alterations associated with low BBOX1 expression in patients with clear cell renal cell carcinoma (RCC). We analyzed the relative influence of BBOX1 on survival using machine learning and investigated drugs that can inhibit renal cancer cells with low BBOX1 expression. We analyzed clinicopathologic factors, survival rates, immune profiles, and gene sets according to BBOX1 expression in a total of 857 patients with kidney cancer from the Hanyang University Hospital cohort (247 cases) and The Cancer Genome Atlas (610 cases). We employed immunohistochemical staining, gene set enrichment analysis, in silico cytometry, pathway network analyses, in vitro drug screening, and gradient boosting machines. BBOX1 expression in RCC was decreased compared with that in normal tissues. Low BBOX1 expression was associated with poor prognosis, decreased CD8+ T cells, and increased neutrophils. In gene set enrichment analyses, low BBOX1 expression was related to gene sets with oncogenic activity and a weak immune response. In pathway network analysis, BBOX1 was linked to regulation of various T cells and programmed death-ligand 1. In vitro drug screening showed that midostaurin, BAY-61-3606, GSK690693, and linifanib inhibited the growth of RCC cells with low BBOX1 expression. Low BBOX1 expression in patients with RCC is related to short survival time and reduced CD8+ T cells; midostaurin, among other drugs, may have enhanced therapeutic effects in this context.
Collapse
Affiliation(s)
- Kyu-Shik Kim
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyoung Min Moon
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Lee
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sukjoong Oh
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
33
|
Scarpato S, Teta R, De Cicco P, Borrelli F, Pawlik JR, Costantino V, Mangoni A. Molecular Networking Revealed Unique UV-Absorbing Phospholipids: Favilipids from the Marine Sponge Clathria faviformis. Mar Drugs 2023; 21:md21020058. [PMID: 36827099 PMCID: PMC9965855 DOI: 10.3390/md21020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Analysis of extracts of the marine sponge Clathria faviformis by high-resolution LC-MS2 and molecular networking resulted in the discovery of a new family of potentially UV-protecting phospholipids, the favilipids. One of them, favilipid A (1), was isolated and its structure determined by mass and tandem mass spectrometry, NMR, electronic circular dichroism (ECD), and computational studies. Favilipid A, which has no close analogues among natural products, possesses an unprecedented structure characterized by a 4-aminodihydropiridinium core, resulting in UV-absorbing properties that are very unusual for a phospholipid. Consequently, favilipid A could inspire the development of a new class of molecules to be used as sunscreen ingredients. In addition, favilipid A inhibited by 58-48% three kinases (JAK3, IKKβ, and SYK) involved in the regulation of the immune system, suggesting a potential use for treatment of autoimmune diseases, hematologic cancers, and other inflammatory states.
Collapse
Affiliation(s)
- Silvia Scarpato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Roberta Teta
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Paola De Cicco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Via F. Delpino, 80137 Napoli, Italy
| | - Francesca Borrelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Joseph R. Pawlik
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Valeria Costantino
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
- Correspondence:
| |
Collapse
|
34
|
Cooper N, Ghanima W, Hill QA, Nicolson PLR, Markovtsov V, Kessler C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets 2022; 34:2131751. [DOI: 10.1080/09537104.2022.2131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nichola Cooper
- Clinical Reader in Immune Haematology and Honorary Consultant, Faculty of Medicine, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Waleed Ghanima
- Head of Research and Consultant Haematologist, Department of Hemato-oncology, Østfold Hospital, and Department of Hematology, Institute of Clinical Medicine, Oslo University, Oslo, Norway
| | - Quentin A Hill
- Consultant Haematologist, Department of Haematology, Leeds Teaching Hospitals, Leeds, UK
| | - Phillip LR Nicolson
- Clinical Lecturer in Haematology, Institute of Cardiovascular Sciences, University of Birmingham, and Department of Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Vadim Markovtsov
- Translational Biology, Rigel Pharmaceuticals, South San Francisco, CA, USA
| | - Craig Kessler
- Medicine and Pathology, Director, Division of Coagulation, Director, Cellular and Therapeutic Apheresis and Cellular Collection, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
35
|
Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep 2022; 41:111441. [PMID: 36179680 PMCID: PMC9474420 DOI: 10.1016/j.celrep.2022.111441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits β-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for β-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.
Collapse
|
36
|
Denis V, Cassagnard N, Del Rio M, Cornillot E, Bec N, Larroque C, Jeanson L, Jarlier M, Combès E, Robert B, Gongora C, Martineau P, Dariavach P. Targeting the splicing isoforms of spleen tyrosine kinase affects the viability of colorectal cancer cells. PLoS One 2022; 17:e0274390. [PMID: 36103569 PMCID: PMC9473616 DOI: 10.1371/journal.pone.0274390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Spleen tyrosine kinase (Syk) expression have been both positively and negatively associated with tumorigenesis. Our goal was to evaluate the contribution of Syk and its two splice variants, full length Syk (L) and short isoform Syk (S), in the tumor biology of colorectal cancer cells (CRC). The analysis of Syk expression in primary human colorectal tumors, as well as the analysis of TCGA database, revealed a high Syk mRNA expression score in colorectal cancer tumors, suggesting a tumor promotor role of Syk in CRC. Our analysis showed that Syk (L) isoform is highly expressed in the majority of the tumor tissues and that it remains expressed in tumors in which global Syk expression is downregulated, suggesting the dependence of tumors to Syk (L) isoform. We also identified a small cluster of tumor tissues, which express a high proportion of Syk (S) isoform. This specific cluster is associated with overexpressed genes related to translation and mitochondria, and down regulated genes implicated in the progression of mitosis. For our functional studies, we used short hairpin RNA tools to target the expression of Syk in CRC cells bearing the activating K-Ras (G13D) mutation. Our results showed that while global Syk knock down increases cell proliferation and cell motility, Syk (L) expression silencing affects the viability and induces the apoptosis of the cells, confirming the dependence of cells on Syk (L) isoform for their survival. Finally, we report the promising potential of compound C-13, an original non-enzymatic inhibitor of Syk isolated in our group. In vitro studies showed that C-13 exerts cytotoxic effects on Syk-positive CRC cells by inhibiting their proliferation and their motility, and by inducing their apoptosis, while Syk-negative cell lines viability was not affected. Moreover, the oral and intraperitoneal administration of C-13 reduced the tumor growth of CRC DLD-1 cells xenografts in Nude mice in vivo.
Collapse
Affiliation(s)
- Vincent Denis
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Maguy Del Rio
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Nicole Bec
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Laura Jeanson
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Marta Jarlier
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Eve Combès
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Bruno Robert
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Pierre Martineau
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- * E-mail: (PD); (PM)
| | - Piona Dariavach
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- * E-mail: (PD); (PM)
| |
Collapse
|
37
|
Matsukane R, Suetsugu K, Hirota T, Ieiri I. Clinical Pharmacokinetics and Pharmacodynamics of Fostamatinib and Its Active Moiety R406. Clin Pharmacokinet 2022; 61:955-972. [PMID: 35781630 PMCID: PMC9250994 DOI: 10.1007/s40262-022-01135-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Fostamatinib is the first approved spleen tyrosine kinase inhibitor for chronic immune thrombocytopenia. This review summarizes the clinical development, pharmacokinetics, pharmacodynamics, drug-drug interactions, adverse events, and comprehensive analyses of fostamatinib. While integrating these findings, we discuss the fostering and improvement of fostamatinib for further clinical applications. Fostamatinib is designed as a prodrug and cleavage of its active moiety R406 in the intestine. As R406 is the major product in the blood, this review mainly discusses the pharmacokinetics and pharmacodynamics of R406. It is metabolized by cytochrome 3A4 and UGT1A9 in the liver and is dominantly excreted in feces after anaerobic modification by the gut microbiota. As fostamatinib and R406 strongly inhibit the breast cancer resistance protein, the interaction with those substrates, particularly statins, should be carefully monitored. In patients with immune thrombocytopenia, fostamatinib administration started at 100 mg twice daily, and most patients increased to 150 mg twice daily in the clinical trial. Although responders showed a higher R406 concentration than non-responders, the correlation between R406 exposure and achievement of the platelet count as a pharmacodynamic marker was uncertain in the pharmacokinetic/pharmacodynamic analysis. Additionally, R406 concentration was almost halved in patients with a heavy body weight; hence, the exposure-efficacy study for suitable dosing should be continued with post-marketing data. In contrast, the pharmacokinetic/pharmacodynamic analysis for exposure safety revealed that R406 exposure significantly correlated with the incidence of hypertension. Even though the influence of elevated exposure on other toxicities, including diarrhea and neutropenia, is still unclear, careful management is required with dose escalation to avoid toxicity-related discontinuation.
Collapse
Affiliation(s)
| | | | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
38
|
Liu Q, Hua L, Bao C, Kong L, Hu J, Liu C, Li Z, Xu S, Liu X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front Pharmacol 2022; 13:885053. [PMID: 35600871 PMCID: PMC9117698 DOI: 10.3389/fphar.2022.885053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regulation or restoration of therapeutic sensitivity to glucocorticoids is important in patients with steroid-resistant asthma. Spleen tyrosine kinase (Syk) is activated at high levels in asthma patients and mouse models, and small-molecule Syk inhibitors such as R406 show potent anti-inflammatory effects in the treatment of immune inflammatory diseases. Several downstream signaling molecules of Syk are involved in the glucocorticoid response, so we hypothesized that R406 could restore sensitivity to dexamethasone in severe steroid-resistant asthma. Objective: To discover the role of the Syk inhibitor R406 in glucocorticoid resistance in severe asthma. Methods: Steroid-resistant asthma models were induced by exposure of C57BL/6 mice to house dust mite (HDM) and β-glucan and by TNF-α administration to the bronchial epithelial cell line BEAS-2B. We evaluated the role of the Syk inhibitor R406 in dexamethasone (Dex)-insensitive airway inflammation. Pathological alterations and cytokines in the lung tissues and inflammatory cells in BALF were assessed. We examined the effects of Dex or R406 alone and in combination on the phosphorylation of MAPKs, glucocorticoid receptor (GR) and Syk, as well as the transactivation and transrepression induced by Dex in mouse lung tissues and BEAS-2B cells. Results: Exposure to HDM and β-glucan induced steroid-resistant airway inflammation. The Syk inhibitor R406 plus Dex significantly reduced airway inflammation compared with Dex alone. Additionally, TNF-α-induced IL-8 production in BEAS-2B cells was not completely inhibited by Dex, while R406 markedly promoted the anti-inflammatory effect of Dex. Compared with Dex alone, R406 enhanced Dex-mediated inhibition of the phosphorylation of MAPKs and GR-Ser226 induced by allergens or TNF-α in vivo and in vitro. Moreover, R406 also restored the impaired expression and nuclear translocation of GRα induced by TNF-α. Then, the activation of NF-κB and decreased HDAC2 activity in the asthmatic model were further regulated by R406, as well as the expression of GILZ. Conclusions: The Syk inhibitor R406 improves sensitivity to dexamethasone by modulating GR. This study provides a reference for the development of drugs to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Hua
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Kong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziling Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Jiang L, Han X, Qiu W, Yu T, Feng R, Wang X, Duan X, Deng GM. Amelioration of Lupus Serum-Induced Skin Inflammation in CD64-Deficient Mice. Front Immunol 2022; 13:824008. [PMID: 35273604 PMCID: PMC8901504 DOI: 10.3389/fimmu.2022.824008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by high autoantibodies levels and multiorgan tissue damage. The current study investigated the role of CD64 in SLE patients and animal models. According to a flow cytometry study, SLE patients showed an increase in CD64 expression in circulating monocytes. There was a correlation between CD64 and SLEDAI, blood urea nitrogen levels, and anti-Sm antibodies. In skin lesions of lupus MRL/lpr mice, there was high IgG deposition and CD64 expression. In vitro, cytokines IL-10 and IFN-γ upregulated CD64 expression in monocytes/macrophages that was inhibited by glucocorticoids. In CD64-deficient mice, skin inflammation induced by lupus serum was reduced. Furthermore, activation of spleen tyrosine kinase (Syk), Akt, and extracellular signal-regulated kinase (Erk) was inhibited in CD64-deficient monocytes. The results suggest that CD64 could be a biomarker for observing SLE progression, as well as a mechanistic checkpoint in lupus pathogenesis.
Collapse
Affiliation(s)
- Lijuan Jiang
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Han
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlin Qiu
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Yu
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Feng
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Wang
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Li Y, Liu S, Chen Y, Chen B, Xiao M, Yang B, Rai KR, Maarouf M, Guo G, Chen JL. Syk Facilitates Influenza A Virus Replication by Restraining Innate Immunity at the Late Stage of Viral Infection. J Virol 2022; 96:e0020022. [PMID: 35293768 PMCID: PMC9006912 DOI: 10.1128/jvi.00200-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
41
|
Tang S, Yu Q, Ding C. Investigational spleen tyrosine kinase (SYK) inhibitors for the treatment of autoimmune diseases. Expert Opin Investig Drugs 2022; 31:291-303. [PMID: 35130124 DOI: 10.1080/13543784.2022.2040014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Autoimmune diseases (ADs) are disorders induced by multiple inflammatory mediators, in which immune system attacks healthy tissues and triggers tissue injury. Targeted regulation of the activity of kinases that influence inflammation is one of the major therapies for ADs. Recently, investigational spleen tyrosine kinase (SYK) inhibitors have shown encouraging results in the ADs therapy. AREAS COVERED This article provides a background on autoimmune diseases and provides an update on investigational SYK inhibitors. This literature review was conducted by searching publications about investigational Spleen tyrosine kinase inhibitors in the treatment of ADs from experimental to clinical studies. The search terms used were SYK inhibitors, R406, fostamatinib (R788), P505-15 (PRT062607), entospletinib (GS-9973), R112, lanraplenib (GS-9876), cerdulatinib, R343, BAY-61-3606, GSK compound 143 (GSK143), R211, SKI-G-618, SKI-O-85, ER-27319, YM193306, RO9021 in conjunction with autoimmune disease using electronic databases including PubMed, EMBASE, MEDLINE and Google Scholar. EXPERT OPINION SYK inhibitors are promising drugs with unique advantages and acceptable tolerability and safety for the treatment of ADs. However, the difficulties in developing highly selective SYK inhibitors and the unknown effects are challenges. Long term and real-world data are essential to determine the risk-benefit ratio and true role of SYK inhibitors in the therapy of ADs.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
42
|
Almotlak AA, Farooqui M, Soloff AC, Siegfried JM, Stabile LP. Targeting the ERβ/HER Oncogenic Network in KRAS Mutant Lung Cancer Modulates the Tumor Microenvironment and Is Synergistic with Sequential Immunotherapy. Int J Mol Sci 2021; 23:81. [PMID: 35008514 PMCID: PMC8745184 DOI: 10.3390/ijms23010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
High ERβ/HER oncogenic signaling defines lung tumors with an aggressive biology. We previously showed that combining the anti-estrogen fulvestrant with the pan-HER inhibitor dacomitinib reduced ER/HER crosstalk and produced synergistic anti-tumor effects in immunocompromised lung cancer models, including KRAS mutant adenocarcinoma. How this combination affects the tumor microenvironment (TME) is not known. We evaluated the effects of fulvestrant and dacomitinib on murine bone marrow-derived macrophages (BMDMs) and CD8+ T cells, and tested the efficacy of the combination in vivo, using the KRAS mutant syngeneic lung adenocarcinoma model, FVBW-17. While this combination synergistically inhibited proliferation of FVBW-17 cells, it had unwanted effects on immune cells, by reducing CD8+ T cell activity and phagocytosis in BMDMs and inducing PD-1. The effects were largely attributed to dacomitinib, which caused downregulation of Src family kinases and Syk in immune cells. In a subcutaneous flank model, the combination induced an inflamed TME with increased myeloid cells and CD8+ T cells and enhanced PD-1 expression in the splenic compartment. Concomitant administration of anti-PD-1 antibody with fulvestrant and dacomitinib was more efficacious than fulvestrant plus dacomitinib alone. Administering anti-PD-1 sequentially after fulvestrant plus dacomitinib was synergistic, with a two-fold greater tumor inhibitory effect compared to concomitant therapy, in both the flank model and in a lung metastasis model. Sequential triple therapy has potential for treating lung cancer that shows limited response to current therapies, such as KRAS mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Abdulaziz A. Almotlak
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Mariya Farooqui
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (M.F.); (J.M.S.)
| | - Adam C. Soloff
- Department of Cardiothoracic Surgery, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jill M. Siegfried
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (M.F.); (J.M.S.)
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laura P. Stabile
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
44
|
Inhibition of SYK and cSrc kinases can protect bone and cartilage in preclinical models of osteoarthritis and rheumatoid arthritis. Sci Rep 2021; 11:23120. [PMID: 34848799 PMCID: PMC8632988 DOI: 10.1038/s41598-021-02568-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
The pathophysiology of osteoarthritis (OA) includes the destruction of subchondral bone tissue and inflammation of the synovium. Thus, an effective disease-modifying treatment should act on both of these pathogenetic components. It is known that cSrc kinase is involved in bone and cartilage remodeling, and SYK kinase is associated with the inflammatory component. Thus the aim of this study was to characterize the mechanism of action and efficacy of a small molecule multikinase inhibitor MT-SYK-03 targeting SYK and cSrc kinases among others in different in vitro and in vivo arthritis models. The selectivity of MT-SYK-03 kinase inhibition was assayed on a panel of 341 kinases. The compound was evaluated in a set of in vitro models of OA and in vivo OA and RA models: surgically-induced arthritis (SIA), monosodium iodoacetate-induced arthritis (MIA), collagen-induced arthritis (CIA), adjuvant-induced arthritis (AIA). MT-SYK-03 inhibited cSrc and SYK with IC50 of 14.2 and 23 nM respectively. Only five kinases were inhibited > 90% at 500 nM of MT-SYK-03. In in vitro OA models MT-SYK-03 reduced hypertrophic changes of chondrocytes, bone resorption, and inhibited SYK-mediated inflammatory signaling. MT-SYK-03 showed preferential distribution to joint and bone tissue (in rats) and revealed disease-modifying activity in vivo by halving the depth of cartilage erosion in rat SIA model, and increasing the pain threshold in rat MIA model. Chondroprotective and antiresorptive effects were shown in a monotherapy regime and in combination with methotrexate (MTX) in murine and rat CIA models; an immune-mediated inflammation in rat AIA model was decreased. The obtained preclinical data support inhibition of cSrc and SYK as a viable strategy for disease-modifying treatment of OA. A Phase 2 clinical study of MT-SYK-03 is to be started.
Collapse
|
45
|
[Prospects of individualized diagnosis and treatment of primary immune thrombocytopenia in the era of new drugs]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:965-968. [PMID: 35045664 PMCID: PMC8763589 DOI: 10.3760/cma.j.issn.0253-2727.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Hu Q, Liu M, You Y, Zhou G, Chen Y, Yuan H, Xie L, Han S, Zhu K. Dual inhibition of reactive oxygen species and spleen tyrosine kinase as a therapeutic strategy in liver fibrosis. Free Radic Biol Med 2021; 175:193-205. [PMID: 34492311 DOI: 10.1016/j.freeradbiomed.2021.08.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSCs) play key roles in liver fibrosis (LF) and hepatocellular carcinoma (HCC). We previously reported that spleen tyrosine kinase (SYK) is critical for HSCs activation, however, the mechanisms are insufficiently understood. In the present study, we found that SYK facilitated autophagy to promote HSCs activation by enhancing reactive oxygen species (ROS) generation. However, SYK inhibitor GS-9973 could efficiently reduce HSCs ROS generation in vitro but not in vivo. Mechanistically, hepatocytes (HCs) would release ROS outside and then diffuse into HSCs to promote autophagy and activation in vitro in the context of inflammation. We then further examined the ROS contents in liver sections and primary liver cells of carbon tetrachloride (CCl4) induced mice treated with or without different doses of Silybin, a natural compound characterized by a well-established antioxidant and hepatoprotective properties, and found that ROS intensities in both liver sections and their deprived primary cells were efficiently inhibited in a dose-dependent fashion. Lastly, we evaluated the rational combination of Silybin and GS-9973 in the treatment of CCl4 induced mice and found that this combination is well tolerated and acts synergistically against HSCs activity, LF and HCC. The combinational use of Silybin and GS-9973 could be a promising therapeutic strategy in patients suffering from LF and even HCC.
Collapse
Affiliation(s)
- Qiaoting Hu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| | - Yundan You
- Department of Emergency Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Guo Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Shisong Han
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
47
|
Rivero-García I, Castresana-Aguirre M, Guglielmo L, Guala D, Sonnhammer ELL. Drug repurposing improves disease targeting 11-fold and can be augmented by network module targeting, applied to COVID-19. Sci Rep 2021; 11:20687. [PMID: 34667255 PMCID: PMC8526804 DOI: 10.1038/s41598-021-99721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.
Collapse
Affiliation(s)
- Inés Rivero-García
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Miguel Castresana-Aguirre
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Luca Guglielmo
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Dimitri Guala
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Erik L. L. Sonnhammer
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| |
Collapse
|
48
|
Gong W, Liu P, Zheng T, Wu X, Zhao Y, Ren J. The ubiquitous role of spleen tyrosine kinase (Syk) in gut diseases: From mucosal immunity to targeted therapy. Int Rev Immunol 2021; 41:552-563. [PMID: 34355656 DOI: 10.1080/08830185.2021.1962860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic non-receptor protein tyrosine kinase expressed in a variety of cells and play crucial roles in signal transduction. Syk mediates downstream signaling by recruiting to the dually phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the transmembrane adaptor molecule or the receptor chain itself. In gut diseases, Syk is observed to be expressed in intestinal epithelial cells, monocytes/macrophages, dendritic cells and mast cells. Activation of Syk in these cells can modulate intestinal mucosal immune response by promoting inflammatory cytokines and chemokines production, thus regulating gut homeostasis. Due to the restriction of specificity and selectivity for the development of Syk inhibitors, only a few such inhibitors are available in gut diseases, including intestinal ischemia/reperfusion damage, infectious disease, inflammatory bowel disease, etc. The promising outcomes of Syk inhibitors from both preclinical and clinical studies have shown to attenuate the progression of gut diseases thereby indicating a great potential in the development of Syk targeted therapy for treatment of gut diseases. This review depicts the characterization of Syk, summarizes the signal pathways of Syk, and discusses its potential targeted therapy for gut diseases.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jianan Ren
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China.,Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| |
Collapse
|
49
|
Abstract
Chronic spontaneous urticaria (CSU) is characterized by the presence of wheals, angioedema, or both for at least 6 weeks. It may persist for a long time-up to 50% of the patients have been reported to be symptomatic 5 years after the onset. Some patients can suffer more than one episode of CSU during their lifetime. Considering the recurrences, disabling symptoms, and significant impact on quality of life, proper and effective treatment of CSU is critical. The use of antihistamines (AHs) is still the mainstay of treatment. However, given the low rates of response to AHs (38.6% and 63.2% to standard doses and higher doses, respectively), the complete control of symptoms seems difficult to attain. The use of omalizumab for CSU has been a major breakthrough in the care of patients with CSU. However, the partial response and lack of response to omalizumab in a subgroup of patients, as high as 70% in some studies, make the development of alternative treatments desirable. Ever-increasing knowledge on the pathogenesis is making new target molecules available and enabling drug development for CSU. In addition to drug repurposing as in anti-IL-4/13, IL-5, and IL-17 antibodies, novel targeted therapy options such as ligelizumab and Bruton's tyrosine kinase inhibitors are currently undergoing clinical trials and will be available in the near future. This article reviews the current challenges in the treatment of CSU, the pathogenesis and potential target molecules, and the rationale for novel treatments and their rapidly developing status.
Collapse
|
50
|
Chen Y, Liu H, Huang Y, Lin S, Yin G, Xie Q. The Cardiovascular Risks of Fostamatinib in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:632551. [PMID: 34349639 PMCID: PMC8327174 DOI: 10.3389/fphar.2021.632551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: This systematic review and meta-analysis is aimed at assessing the risks of cardiovascular adverse events in patients with rheumatoid arthritis (RA) who have been treated with fostamatinib. Methods: The electronic databases of OVID Medline, OVID EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science were searched to identify studies that reported cardiovascular events or hypertension in RA patients treated with fostamatinib. Two reviewers separately and simultaneously screened the retrieved studies based on study selection criteria, collected data and performed methodological quality assessments. The effect size of meta-analysis was estimated by the Peto odds ratio (OR) or relative risk (RR) with 95% confidence intervals (95%CI). Funnel plot was used to estimate publication bias and sensitivity analysis was performed to test the robustness of the results. Results: A total of 12 trials composed of 5,618 participants with low to moderate risk of bias were included. In comparison to the placebo, the use of fostamatinib was found to elevate the risk of hypertension (RR=3.82, 95%CI 2.88–5.05) but was not associated with the risks of all-cause death (Peto OR=0.16, 95%CI 0.02–1.24), major adverse cardiovascular events (Peto OR=1.24, 95%CI 0.26–5.97), pulmonary heart disease and disease of pulmonary circulation (Peto OR=1.23, 95%CI 0.13–11.87), in addition to other forms of heart disease (Peto OR=1.96, 95%CI 0.72–5.38). Furthermore, sensitivity analysis showed no significant change in effective trends and no publication bias was found. Conclusion: Fostamatinib is associated with increased risk of hypertension; however, no increased risks of cardiovascular events were observed. Further well-planned cohort studies with large study populations and longer follow-up times are needed to elucidate the outcomes. Systematic Review Registration: [PROSPERO], identifier [CRD42020198217].
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yupeng Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Sang Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|