1
|
Choi YJ, Yang MK, Kim N, Khwarg SI, Choung H, Kim JE. Expression of nuclear receptors and glucose metabolic pathway proteins in sebaceous carcinoma: Androgen receptor and monocarboxylate transporter 1 have a key role in disease progression. Oncol Lett 2024; 28:593. [PMID: 39421321 PMCID: PMC11484244 DOI: 10.3892/ol.2024.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Standard systemic treatments are not consistently effective for treating unresectable or advanced sebaceous carcinoma (SC). The present study investigated the pathogenic roles of nuclear receptors (NRs), glucose metabolic dysregulation and immune checkpoint proteins in SC as prognostic markers or therapeutic targets. Patients with pathologically confirmed SC between January 2002 and December 2019 at three university hospitals in South Korea were included in the present study. Immunohistochemistry was performed on paraffin-embedded tumor tissues for glucocorticoid receptors (GR), androgen receptors (AR), estrogen receptors (ER), progesterone receptors (PR), glucose transporter 1 (GLUT1), monocarboxylate transporters (MCT1 and MCT4), CD147, phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and the immune checkpoint protein, programmed cell death-ligand 1 (PD-L1). The results were semi-quantitatively assessed and the associations of these proteins with various clinicopathological parameters were determined. A total of 39 cases of SC comprising 19 periocular and 20 extraocular tumors were enrolled. NRs were frequently detected in the tumor nuclei, with GR having the highest frequency (89.7%), followed by AR, ER (both 51.3%) and PR (41.0%). Regarding glucose metabolism, CD147, GLUT1 and MCT1 were highly expressed at 100, 89.7 and 87.2%, respectively, whereas MCT4 and pAMPK expression levels were relatively low at 38.5 and 35.9%, respectively. Membranous expression of PD-L1 was detected in five cases (12.8%), four of which were extraocular. In the multivariate analysis, advanced stage, low AR positivity and high MCT1 expression were independent poor prognostic factors for metastasis-free survival (all P<0.05). The present results suggested that hormonal and metabolic dysregulation may be associated with the pathogenesis of SC, and that AR and MCT1 in particular may serve as prognostic indicators and potential therapeutic targets. Additionally, ~10% of SC cases exhibited PD-L1 expression within the druggable range, and these patients are expected to benefit from treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Youn Joo Choi
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul 05355, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyu Yang
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul 05505, Republic of Korea
| | - Namju Kim
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sang In Khwarg
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hokyung Choung
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| |
Collapse
|
2
|
Vojnits K, Feng Z, Johnson P, Porras D, Manocha E, Vandersluis S, Pfammatter S, Thibault P, Bhatia M. Targeting of human cancer stem cells predicts efficacy and toxicity of FDA-approved oncology drugs. Cancer Lett 2024; 599:217108. [PMID: 38986735 DOI: 10.1016/j.canlet.2024.217108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Cancer remains the leading cause of death worldwide with approved oncology drugs continuing to have heterogenous patient responses and accompanied adverse effects (AEs) that limits effectiveness. Here, we examined >100 FDA-approved oncology drugs in the context of stemness using a surrogate model of transformed human pluripotent cancer stem cells (CSCs) vs. healthy stem cells (hSCs) capable of distinguishing abnormal self-renewal and differentiation. Although a proportion of these drugs had no effects (inactive), a larger portion affected CSCs (active), and a unique subset preferentially affected CSCs over hSCs (selective). Single cell gene expression and protein profiling of each drug's FDA recognized target provided a molecular correlation of responses in CSCs vs. hSCs. Uniquely, drugs selective for CSCs demonstrated clinical efficacy, measured by overall survival, and reduced AEs. Our findings reveal that while unintentional, half of anticancer drugs are active against CSCs and associated with improved clinical outcomes. Based on these findings, we suggest ability to target CSC targeting should be included as a property of early onco-therapeutic development.
Collapse
Affiliation(s)
- Kinga Vojnits
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Zhuohang Feng
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paige Johnson
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Deanna Porras
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ekta Manocha
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sean Vandersluis
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sibylle Pfammatter
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Pierre Thibault
- Department of Chemistry and Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - Mick Bhatia
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Jeon JH, Woo Kim S, Kim YJ, Park JW, Eun Moon J, Beom Lee Y, Yu H, Lee GH, Jin SH, Jeong JH. Synthesis and evaluation of antibody-drug conjugates with high drug-to-antibody ratio using dimaleimide-DM1 as a linker- payload. Bioorg Chem 2024; 149:107504. [PMID: 38850783 DOI: 10.1016/j.bioorg.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.
Collapse
Affiliation(s)
- Joo-Hyun Jeon
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Seo Woo Kim
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yoon-Jung Kim
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jang-Woo Park
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jee Eun Moon
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yong Beom Lee
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hana Yu
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Geon-Ho Lee
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sung-Ha Jin
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| | - Jin-Hyun Jeong
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
4
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Xiao J, Song Y, Gao R, You M, Deng C, Tan G, Li W. Changes of immune microenvironment in head and neck squamous cell carcinoma in 3D-4-culture compared to 2D-4-culture. J Transl Med 2023; 21:771. [PMID: 37907991 PMCID: PMC10617167 DOI: 10.1186/s12967-023-04650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The immune system plays a crucial role in initiating, progressing, and disseminating HNSCC. This study aims to investigate the differences in immune microenvironments between 2D-4-culture and 3D-4-culture models of head and neck squamous cell carcinoma (HNSCC) cells (FaDu), human fibroblasts (HF), human monocytes (THP-1), and human endothelial cells (HUVEC). METHODS For the 3D-4-culture model, FaDu:HF:THP-1 (2:1:1) were inoculated in an ultra-low attachment culture plate, while HUVECs were placed in a transwell chamber. The ordinary culture plate was used for the 2D-4-culture model. Tumor-associated macrophage markers (CD163), tumor-associated fibroblast markers (FAP), and epithelial-mesenchymal transition (EMT) were detected by western blot. Inflammatory cytokines (IL-4, IL-2, CXCL 10, IL-1 β, TNF-α, CCL 2, IL-17 A, IL-6, IL-10, IFN-γ, IL-12 p 70, CXCL 8, TGFβ1) in the supernatant were measured by flow cytometry. HUVEC migration was observed under a microscope. The 3D spheres were stained and observed with a confocal microscope. CCK8 assay was used to detect the resistance of mixed cells to cisplatin in both 2D-4-culture and 3D-4-culture. RESULTS After three days of co-culture, the 3D-4-culture model showed increased expression levels of CD163 and FAP proteins (both P < 0.001), increased expression of E-cadherin protein and N-cadherin protein expression (P < 0.001), decreased expression of vimentin (P < 0.01) and Twist protein (P < 0.001). HUVEC migration significantly increased (P < 0.001), as did the concentrations of IP-10, MCP-1, IL-6, and IL-8 (all P < 0.001). Confocal microscopy showed that 3D-4-culture formed loose cell clusters on day 1, which gradually became a dense sphere surrounded by FaDu cells invading the inside. After co-culturing for 24 h, 48 h, and 72 h, the resistance of mix cells to cisplatin in 3D-4-culture was significantly higher than in 2D-4-culture (P < 0.01 for all). CONCLUSION Compared to 2D-4-culture, 3D-4-culture better simulates the in vivo immune microenvironment of HNSCC by promoting fibroblast transformation into tumor-associated fibroblasts, monocyte transformation into tumor-associated macrophages, enhancing endothelial cell migration ability, partial EMT formation in HNSCC cells, and is more suitable for studying the immunosuppressive microenvironment of HNSCC.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yexun Song
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ru Gao
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mingyang You
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Changxin Deng
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Reddin IG, Fenton TR, Wass MN, Michaelis M. Large inherent variability in data derived from highly standardised cell culture experiments. Pharmacol Res 2023; 188:106671. [PMID: 36681368 DOI: 10.1016/j.phrs.2023.106671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Cancer drug development is hindered by high clinical attrition rates, which are blamed on weak predictive power by preclinical models and limited replicability of preclinical findings. However, the technically feasible level of replicability remains unknown. To fill this gap, we conducted an analysis of data from the NCI60 cancer cell line screen (2.8 million compound/cell line experiments), which is to our knowledge the largest depository of experiments that have been repeatedly performed over decades. The findings revealed profound intra-laboratory data variability, although all experiments were executed following highly standardised protocols that avoid all known confounders of data quality. All compound/ cell line combinations with > 100 independent biological replicates displayed maximum GI50 (50% growth inhibition) fold changes (highest/ lowest GI50) > 5% and 70.5% displayed maximum fold changes > 1000. The highest maximum fold change was 3.16 × 1010 (lowest GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM). FDA-approved drugs and experimental agents displayed similar variation. Variability remained high after outlier removal, when only considering experiments that tested drugs at the same concentration range, and when only considering NCI60-provided quality-controlled data. In conclusion, high variability is an intrinsic feature of anti-cancer drug testing, even among standardised experiments in a world-leading research environment. Awareness of this inherent variability will support realistic data interpretation and inspire research to improve data robustness. Further research will have to show whether the inclusion of a wider variety of model systems, such as animal and/ or patient-derived models, may improve data robustness.
Collapse
Affiliation(s)
- Ian G Reddin
- School of Biosciences, University of Kent, Canterbury, UK; Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, UK; Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, UK.
| | | |
Collapse
|
7
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J, Xiao W. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Front Cell Dev Biol 2023; 11:1166916. [PMID: 37152280 PMCID: PMC10154581 DOI: 10.3389/fcell.2023.1166916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Malignant melanoma (MM) is the most metastatic and aggressive form of skin cancer, and carries a high risk of death. Immune-checkpoint inhibitor therapy and molecular-targeted therapy can prolong the survival of patients with advanced MM significantly. However, the low response rate and inevitable drug resistance prevent further improvements in efficacy, which is closely related to the tumor microenvironment (TME). The TME refers to the tumor stroma, including fibroblasts, keratinocytes, immune cells, soluble molecules, and extracellular matrix (ECM). The dynamic interaction between the TME and tumor cells is very important for the growth, local invasion, and metastatic spread of tumor cells. A patient-derived organoid (PDO) model involves isolation of tumor tissue from patients with MM and culturing it in vitro in a three-dimensional pattern. Compared with traditional cultivation methods, the PDO model preserves the heterogeneity of the tissue structure of MM and demonstrates the interaction between MM cells and the TME. It can reproduce the characteristics of proliferation, migration, and invasion of MM cells, and better simulate the structural function of MM in vivo. This review explores the role of each TME component in development of the PDO model. This review will provide a reference for research on the drug screening and targeted treatment using PDOs, particularly for the immunotherapy of MM.
Collapse
|
8
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
9
|
Cirri D, Chiaverini L, Pratesi A, Marzo T. Is the Next Cisplatin Already in Our Laboratory? COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
10
|
Effects of microbiota on anticancer drugs: Current knowledge and potential applications. EBioMedicine 2022; 83:104197. [PMID: 35933808 PMCID: PMC9358415 DOI: 10.1016/j.ebiom.2022.104197] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, mounting evidence has revealed the key roles of gut microbiota in modulating the efficacy and toxicity of anticancer drugs, via mechanisms such as immunomodulation and microbial enzymatic degradation. As such, human microbiota presents as an exciting prospect for developing biomarkers for predicting treatment outcomes and interventional approaches for improving therapeutic effects. In this review, we analyze the current knowledge of the interplays among gut microorganisms, host responses and anticancer therapies (including cytotoxic chemotherapy and targeted therapy), with an emphasis on the immunomodulation function of microbiota which facilitates the efficacy of immune checkpoint inhibitors. Moreover, we propose several microbiota-modulating strategies including fecal microbiota transplantation and probiotics, which can be pursued to optimize the use and development of anticancer treatments. We anticipate that future clinical and preclinical studies will highlight the significance of human microbiome as a promising target towards precision medicine in cancer therapies. Funding National Key Research and Development Program of China (2020YFA0907800), Shenzhen Science and Technology Innovation Program (KQTD20200820145822023) and National Natural Science Foundation of China (31900056 and 32000096).
Collapse
|
11
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
13
|
Munnik C, Xaba MP, Malindisa ST, Russell BL, Sooklal SA. Drosophila melanogaster: A platform for anticancer drug discovery and personalized therapies. Front Genet 2022; 13:949241. [PMID: 36003330 PMCID: PMC9393232 DOI: 10.3389/fgene.2022.949241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex disease whereby multiple genetic aberrations, epigenetic modifications, metabolic reprogramming, and the microenvironment contribute to the development of a tumor. In the traditional anticancer drug discovery pipeline, drug candidates are usually screened in vitro using two-dimensional or three-dimensional cell culture. However, these methods fail to accurately mimic the human disease state. This has led to the poor success rate of anticancer drugs in the preclinical stages since many drugs are abandoned due to inefficacy or toxicity when transitioned to whole-organism models. The common fruit fly, Drosophila melanogaster, has emerged as a beneficial system for modeling human cancers. Decades of fundamental research have shown the evolutionary conservation of key genes and signaling pathways between flies and humans. Moreover, Drosophila has a lower genetic redundancy in comparison to mammals. These factors, in addition to the advancement of genetic toolkits for manipulating gene expression, allow for the generation of complex Drosophila genotypes and phenotypes. Numerous studies have successfully created Drosophila models for colorectal, lung, thyroid, and brain cancers. These models were utilized in the high-throughput screening of FDA-approved drugs which led to the identification of several compounds capable of reducing proliferation and rescuing phenotypes. More noteworthy, Drosophila has also unlocked the potential for personalized therapies. Drosophila ‘avatars’ presenting the same mutations as a patient are used to screen multiple therapeutic agents targeting multiple pathways to find the most appropriate combination of drugs. The outcomes of these studies have translated to significant responses in patients with adenoid cystic carcinoma and metastatic colorectal cancers. Despite not being widely utilized, the concept of in vivo screening of drugs in Drosophila is making significant contributions to the current drug discovery pipeline. In this review, we discuss the application of Drosophila as a platform in anticancer drug discovery; with special focus on the cancer models that have been generated, drug libraries that have been screened and the status of personalized therapies. In addition, we elaborate on the biological and technical limitations of this system.
Collapse
Affiliation(s)
- Chamoné Munnik
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Malungi P. Xaba
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Sibusiso T. Malindisa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| | - Bonnie L. Russell
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- Buboo (Pty) Ltd, The Innovation Hub, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- *Correspondence: Selisha A. Sooklal,
| |
Collapse
|
14
|
Fosse V, Oldoni E, Gerardi C, Banzi R, Fratelli M, Bietrix F, Ussi A, Andreu AL, McCormack E. Evaluating Translational Methods for Personalized Medicine—A Scoping Review. J Pers Med 2022; 12:jpm12071177. [PMID: 35887673 PMCID: PMC9324577 DOI: 10.3390/jpm12071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/09/2022] Open
Abstract
The introduction of personalized medicine, through the increasing multi-omics characterization of disease, brings new challenges to disease modeling. The scope of this review was a broad evaluation of the relevance, validity, and predictive value of the current preclinical methodologies applied in stratified medicine approaches. Two case models were chosen: oncology and brain disorders. We conducted a scoping review, following the Joanna Briggs Institute guidelines, and searched PubMed, EMBASE, and relevant databases for reports describing preclinical models applied in personalized medicine approaches. A total of 1292 and 1516 records were identified from the oncology and brain disorders search, respectively. Quantitative and qualitative synthesis was performed on a final total of 63 oncology and 94 brain disorder studies. The complexity of personalized approaches highlights the need for more sophisticated biological systems to assess the integrated mechanisms of response. Despite the progress in developing innovative and complex preclinical model systems, the currently available methods need to be further developed and validated before their potential in personalized medicine endeavors can be realized. More importantly, we identified underlying gaps in preclinical research relating to the relevance of experimental models, quality assessment practices, reporting, regulation, and a gap between preclinical and clinical research. To achieve a broad implementation of predictive translational models in personalized medicine, these fundamental deficits must be addressed.
Collapse
Affiliation(s)
- Vibeke Fosse
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- Correspondence:
| | - Emanuela Oldoni
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Chiara Gerardi
- Centre for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (R.B.)
| | - Rita Banzi
- Centre for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (R.B.)
| | - Maddalena Fratelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Florence Bietrix
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Anton Ussi
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Antonio L. Andreu
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Emmet McCormack
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, 5021 Bergen, Norway
| | | |
Collapse
|
15
|
Cao X, Wang Y, Zhang W, Zhong X, Gunes EG, Dang J, Wang J, Epstein AL, Querfeld C, Sun Z, Rosen ST, Feng M. Targeting macrophages for enhancing CD47 blockade-elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood 2022; 139:3290-3302. [PMID: 35134139 PMCID: PMC9164740 DOI: 10.1182/blood.2021013901] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are often the most abundant immune cells in the tumor microenvironment (TME). Strategies targeting TAMs to enable tumor cell killing through cellular phagocytosis have emerged as promising cancer immunotherapy. Although several phagocytosis checkpoints have been identified, the desired efficacy has not yet been achieved by blocking such checkpoints in preclinical models or clinical trials. Here, we showed that late-stage non-Hodgkin lymphoma (NHL) was resistant to therapy targeting phagocytosis checkpoint CD47 due to the compromised capacity of TAMs to phagocytose lymphoma cells. Via a high-throughput screening of the US Food and Drug Administration-approved anticancer small molecule compounds, we identified paclitaxel as a potentiator that promoted the clearance of lymphoma by directly evoking phagocytic capability of macrophages, independently of paclitaxel's chemotherapeutic cytotoxicity toward NHL cells. A combination with paclitaxel dramatically enhanced the anticancer efficacy of CD47-targeted therapy toward late-stage NHL. Analysis of TME by single-cell RNA sequencing identified paclitaxel-induced TAM populations with an upregulation of genes for tyrosine kinase signaling. The activation of Src family tyrosine kinases signaling in macrophages by paclitaxel promoted phagocytosis against NHL cells. In addition, we identified a role of paclitaxel in modifying the TME by preventing the accumulation of a TAM subpopulation that was only present in late-stage lymphoma resistant to CD47-targeted therapy. Our findings identify a novel and effective strategy for NHL treatment by remodeling TME to enable the tumoricidal roles of TAMs. Furthermore, we characterize TAM subgroups that determine the efficiency of lymphoma phagocytosis in the TME and can be potential therapeutic targets to unleash the antitumor activities of macrophages.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute
| | | | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - E Gulsen Gunes
- Department of Immuno-Oncology, Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, and
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA; and
| | - Christiane Querfeld
- Department of Immuno-Oncology, Beckman Research Institute
- Department of Hematology and Hematopoietic Cell Transplantation, and
- Division of Dermatology
- Department of Pathology, and
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, and
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute
| |
Collapse
|
16
|
Zhang X, Yang T, Jin X, Lin K, Dai X, Gao T, Huang G, Fan M, Ma L, Liu Z, Cao J. Synthesis and biological evaluation of cytotoxic activity of novel podophyllotoxin derivatives incorporating piperazinyl-cinnamic amide moieties. Bioorg Chem 2022; 123:105761. [DOI: 10.1016/j.bioorg.2022.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022]
|
17
|
New 1,3,4-Thiadiazole Derivatives with Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061814. [PMID: 35335177 PMCID: PMC8955053 DOI: 10.3390/molecules27061814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
We designed and synthesized the 1,3,4-thiadiazole derivatives differing in the structure of the substituents in C2 and C5 positions. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and normal cell line (fibroblasts). The results showed that in both breast cancer cell lines, the strongest anti-proliferative activity was exerted by 2-(2-trifluorometylophenylamino)-5-(3-methoxyphenyl)-1,3,4-thiadiazole. The IC50 values of this compound against MCF-7 and MDA-MB-231 breast cancer cells were 49.6 µM and 53.4 µM, respectively. Importantly, all new compounds had weaker cytotoxic activity on normal cell line than on breast cancer cell lines. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds. The most likely mechanism of action for the new compounds is connected with the activities of Caspase 3 and Caspase 8 and activation of BAX proteins.
Collapse
|
18
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Pang M, Xie X, Zhang Y, Laster KV, Liu K, Kim DJ. Ethyl Ferulate Suppresses Esophageal Squamous Cell Carcinoma Tumor Growth Through Inhibiting the mTOR Signaling Pathway. Front Oncol 2022; 11:780011. [PMID: 35155187 PMCID: PMC8833257 DOI: 10.3389/fonc.2021.780011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Ethyl ferulate is a phenylpropanoid compound isolated from the medicinal herb Ferula. Although ethyl ferulate has anti-inflammatory, antioxidant, and neuroprotective activities with potential use in the nutraceutical and pharmaceutical industry, its anticancer effects and underlying molecular mechanisms against esophageal squamous cell carcinoma (ESCC) have not been investigated. This study investigates the anticancer activity and molecular mechanism of ethyl ferulate in ESCC. MTT, focus formation, soft agar, and cell cycle analysis were used to determine the effect of ethyl ferulate on cell proliferation and cell cycle. Potential candidate proteins were screened and verified via Western blotting, in vitro kinase assay, and in vitro pull-down assay. Mammalian target of rapamycin (mTOR) knockdown cell lines were established by lentiviral infection with shmTOR. The effect of ethyl ferulate on tumor growth was assessed using ESCC patient-derived xenograft models. Ethyl ferulate significantly inhibited cell growth and induced G1 phase cell cycle arrest in ESCC cells. Ethyl ferulate reduced the activity of mTOR in vitro. The inhibition of ESCC cell growth by ethyl ferulate is dependent on mTOR expression. In addition, ethyl ferulate strongly reduced ESCC patient-derived xenograft tumor growth in an in vivo mouse model. Ethyl ferulate is an mTOR inhibitor that can suppress ESCC progression and may be a novel candidate compound for esophageal cancer chemoprevention.
Collapse
Affiliation(s)
- Mengjun Pang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | | | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
20
|
Dogra AK, Prakash A, Gupta S, Gupta M, Bhat SA. Genetic variations of vitamin D receptor gene and steroid receptors status in breast cancer risk: An updated review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022. [DOI: 10.1016/j.abst.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Chen X, Roberts R, Tong W, Liu Z. Tox-GAN: An AI Approach Alternative to Animal Studies-a Case Study with Toxicogenomics. Toxicol Sci 2021; 186:242-259. [PMID: 34971401 DOI: 10.1093/toxsci/kfab157] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal studies are a critical component in biomedical research, pharmaceutical product development, and regulatory submissions. There is a worldwide effort in toxicology towards "reducing, refining and replacing" (3Rs) animal use. Here, we proposed a deep generative adversarial network (GAN)-based framework capable of deriving new animal results from existing animal studies without additional experiments. To prove the concept, we employed this Tox-GAN framework to generate both gene activities and expression profiles for multiple doses and treatment durations in toxicogenomics (TGx). Using the pre-existing rat liver TGx data from the Open TG-GATEs, we generated Tox-GAN transcriptomic profiles with high similarity (0.997 ± 0.002 in intensity and 0.740 ± 0.082 in fold change) to the corresponding real gene expression profiles. Consequently, Tox-GAN showed an outstanding performance in two critical TGx applications, gaining a molecular understanding of underlying toxicological mechanisms and gene expression-based biomarker development. For the former, over 87% agreement in Gene Ontology was found between Tox-GAN results and real gene expression data. For the latter, the concordance of biomarkers between real and generated data was high in both predictive performance and biomarker genes. We also demonstrated that the Tox-GAN models constructed with TG-GATEs data were capable of generating transcriptomic profiles reported in DrugMatrix. Finally, we demonstrated potential utility for Tox-GAN in aiding chemical-based read-across. To the best of our knowledge, the proposed Tox-GAN model is novel in its ability to generate in vivo transcriptomic profiles at different treatment conditions from chemical structures. Overall, Tox-GAN holds great promise for generating high-quality toxicogenomic profiles without animal experimentation.
Collapse
Affiliation(s)
- Xi Chen
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Ruth Roberts
- ApconiX Ltd, Alderley Edge SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| |
Collapse
|
22
|
El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021; 94:120-142. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
23
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
24
|
Application of LDH assay for therapeutic efficacy evaluation of ex vivo tumor models. Sci Rep 2021; 11:18571. [PMID: 34535719 PMCID: PMC8448883 DOI: 10.1038/s41598-021-97894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
The current standard preclinical oncology models are not able to fully recapitulate therapeutic targets and clinically relevant disease biology, evidenced by the 90% attrition rate of new therapies in clinical trials. Three-dimensional (3D) culture systems have the potential to enhance the relevance of preclinical models. However, the limitations of currently available cellular assays to accurately evaluate therapeutic efficacy in these models are hindering their widespread adoption. We assessed the compatibility of the lactate dehydrogenase (LDH) assay in 3D spheroid cultures against other commercially available readout methods. We developed a standardized protocol to apply the LDH assay to ex vivo cultures, considering the impact of culture growth dynamics. We show that accounting for growth rates and background release levels of LDH are sufficient to make the LDH assay a suitable methodology for longitudinal monitoring and endpoint assessment of therapeutic efficacy in both cell line-derived xenografts (xenospheres) and patient-derived explant cultures. This method has the added value of being non-destructive and not dependent on reagent penetration or manipulation of the parent material. The establishment of reliable readout methods for complex 3D culture systems will further the utility of these tumor models in preclinical and co-clinical drug development studies.
Collapse
|
25
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
26
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
27
|
Lee HS, Park BS, Kang HM, Kim JH, Shin SH, Kim IR. Role of Luteolin-Induced Apoptosis and Autophagy in Human Glioblastoma Cell Lines. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:879. [PMID: 34577802 PMCID: PMC8470580 DOI: 10.3390/medicina57090879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/07/2023]
Abstract
Background and Objectives: Malignant glioblastoma (GBM) is caused by abnormal proliferation of glial cells, which are found in the brain. The therapeutic effects of surgical treatment, radiation therapy, and chemo-therapy against GBM are relatively poor compared with their effects against other tumors. Luteolin is abundant in peanut shells and is also found in herbs and other plants, such as thyme, green pepper, and celery. Luteolin is known to be effective against obesity and metabolic syndrome. The anti-inflammatory, and anti-cancer activities of luteolin have been investigated. Most studies have focused on the antioxidant and anti-inflammatory effects of luteolin, which is a natural flavonoid. However, the association between the induction of apoptosis by luteolin in GBM and autophagy has not yet been investigated. This study thus aimed to confirm the occurrence of luteolin-induced apoptosis and autophagy in GBM cells and to assess their relationship. Materials and Methods: A172 and U-373MG glioblastoma cell lines were used for this experiment. We confirmed the apoptosis effect of Luteolin on GBM cells using methods such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunofluorescence, Flow cytometry (FACS) western blot, and real-time quantitative PCR (qPCR). Results: In the luteolin-treated A172 and U-373MG cells, cell viability decreased in a concentration- and time-dependent manner. In addition, in A172 and U-373MG cells treated with luteolin at concentrations greater than 100 μM, nuclear fragmentation, which is a typical morphological change characterizing apoptosis, as well as fragmentation of caspase-3 and Poly (ADP-ribose) polymerase (PARP), which are apoptosis-related factors, were observed. Autophagy was induced after treatment with at least 50 μM luteolin. Inhibition of autophagy using 3MA allowed for a low concentration of luteolin to more effectively induce apoptosis in A172 and U-373MG cells. Conclusions: Results showed that luteolin induces apoptosis and autophagy and that the luteolin-induced autophagy promotes cell survival. Therefore, an appropriate combination therapy involving luteolin and an autophagy inhibitor is expected to improve the prognosis of GBM treatment.
Collapse
Affiliation(s)
- Hye-Sung Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea; (H.-S.L.); (S.-H.S.)
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
| | - Jung-Han Kim
- Medical Center, Department of Oral and Maxillofacial Surgery, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea;
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea; (H.-S.L.); (S.-H.S.)
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Korea
| |
Collapse
|
28
|
Sahu R, Mishra R, Kumar R, Salahuddin, Majee C, Mazumder A, Kumar A. Pyridine moiety: An insight into recent advances in treatment of cancer. Mini Rev Med Chem 2021; 22:248-272. [PMID: 34126914 DOI: 10.2174/1389557521666210614162031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The incidence of cancer is increasing worldwide, affecting a vast majority of the human population. As new different anticancer agents are being developed now, the requirement is to deal somehow with them and evaluate their safety. Among them, pyridine based drugs are contributing a lot, as it is one of the imperative pharmacophores occurring synthetically as well as naturally in heterocyclic compounds, and having a wide range of therapeutic applications in the area of drug discovery, thereby offering many chances for further improvement in antitumor agents via acting onto numerous receptors of extreme prominence. Many pyridine derivatives have been reported to inhibit enzymes, receptors and many other targets for controlling and curing the global health issue of cancer. Nowadays, in combination with other moieties, researchers are focusing on the development of pyridine-based new derivatives for cancer treatment. Therefore, this review sheds light on the recent therapeutic expansions of pyridine together with its molecular docking, structure-activity-relationship, availability in the market, and a summary of recently patented and published research works that shall jointly help the scientists to produce effective drugs with the desired pharmacological activity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida-201310, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| |
Collapse
|
29
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
30
|
The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci Rep 2021; 11:10791. [PMID: 34031441 PMCID: PMC8144399 DOI: 10.1038/s41598-021-89931-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Two ATP-binding cassette transporters, ABCB1/MDR1 and ABCG2/BCRP, are considered the most critical determinants for chemoresistance in hepatocellular carcinoma. However, their roles in the chemoresistance in liver cancer stem cells remain elusive. Here we explored the role of inhibition of MDR1 or ABCG2 in sensitizing liver cancer stem cells to doxorubicin, the most frequently used chemotherapeutic agent in treating liver cancer. We show that the inhibition of MDR1 or ABCG2 in Huh7 and PLC/PRF/5 cells using either pharmacological inhibitors or RNAi resulted in the elevated level of intracellular concentration of doxorubicin and the accompanied increased apoptosis as determined by confocal microscopy, high-performance liquid chromatography, flow cytometry, and annexin V assay. Notably, the inhibition of MDR1 or ABCG2 led to the reversal of the chemoresistance, as evident from the enhanced death of the chemoresistant liver cancer stem cells in tumorsphere-forming assays. Thus, the elevation of effective intracellular concentration of doxorubicin via the inhibition of MDR1 or ABCG2 represents a promising future strategy that transforms doxorubicin from a traditional chemotherapy agent into a robust killer of liver cancer stem cells for patients undergoing transarterial chemoembolization.
Collapse
|
31
|
Liu Z, Chen X, Roberts R, Huang R, Mikailov M, Tong W. Unraveling Gene Fusions for Drug Repositioning in High-Risk Neuroblastoma. Front Pharmacol 2021; 12:608778. [PMID: 33967751 PMCID: PMC8105087 DOI: 10.3389/fphar.2021.608778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
High-risk neuroblastoma (NB) remains a significant therapeutic challenge facing current pediatric oncology patients. Structural variants such as gene fusions have shown an initial promise in enhancing mechanistic understanding of NB and improving survival rates. In this study, we performed a comprehensive in silico investigation on the translational ability of gene fusions for patient stratification and treatment development for high-risk NB patients. Specifically, three state-of-the-art gene fusion detection algorithms, including ChimeraScan, SOAPfuse, and TopHat-Fusion, were employed to identify the fusion transcripts in a RNA-seq data set of 498 neuroblastoma patients. Then, the 176 high-risk patients were further stratified into four different subgroups based on gene fusion profiles. Furthermore, Kaplan-Meier survival analysis was performed, and differentially expressed genes (DEGs) for the redefined high-risk group were extracted and functionally analyzed. Finally, repositioning candidates were enriched in each patient subgroup with drug transcriptomic profiles from the LINCS L1000 Connectivity Map. We found the number of identified gene fusions was increased from clinical the low-risk stage to the high-risk stage. Although the technical concordance of fusion detection algorithms was suboptimal, they have a similar biological relevance concerning perturbed pathways and regulated DEGs. The gene fusion profiles could be utilized to redefine high-risk patient subgroups with significant onset age of NB, which yielded the improved survival curves (Log-rank p value ≤ 0.05). Out of 48 enriched repositioning candidates, 45 (93.8%) have antitumor potency, and 24 (50%) were confirmed with either on-going clinical trials or literature reports. The gene fusion profiles have a discrimination power for redefining patient subgroups in high-risk NB and facilitate precision medicine-based drug repositioning implementation.
Collapse
Affiliation(s)
- Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Xi Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge, United Kingdom.,University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Mike Mikailov
- Office of Science and Engineering Labs, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
32
|
Patel KR, Brahmbhatt JG, Pandya PA, Bhadresha K, Daraji DG, Patel HD, Rawal RM, Baran SK, Jayanthi S. Design, Synthesis and Biological Evaluation of Novel 5‐Phenyl‐5‐(thiophen‐2‐yl)‐4
H
‐1,2,4‐triazole‐3‐thiols as an Anticancer Agent. ChemistrySelect 2021. [DOI: 10.1002/slct.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krupa R. Patel
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Jpan G. Brahmbhatt
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Pranav A. Pandya
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Kinjal Bhadresha
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Drashti G. Daraji
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Hitesh D. Patel
- Department of Chemistry School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Rakesh M. Rawal
- Department of Life Science School of Sciences Gujarat University Ahmedabad 380009 Gujarat India
| | - Sujit K. Baran
- Department of Chemistry The M. S. University of Baroda Vadodara 390002 Gujarat India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab School of Bio Sciences and Technology Vellore Institute of Technology Vellore 632014 Tamil Nadu India
| |
Collapse
|
33
|
Sun L. Recent advances in the development of AHR antagonists in immuno-oncology. RSC Med Chem 2021; 12:902-914. [PMID: 34223158 DOI: 10.1039/d1md00015b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The arylhydrocarbon receptor (AHR) is a ligand activated transcription factor that controls the expression of a number of immunosuppressive signaling molecules, including the immune checkpoint proteins PD-1/L1 and cytokine IL-10. AHR activation also stimulates the formation and recruitment of tolerogenic dendritic cells, tumor associated macrophages, and regulatory T cells in the tumor microenvironment, which restrains antitumoral immune response. Overexpression of AHR has been observed in a number of different types of cancer and suggested to contribute to immune dysfunction and cancer progression. One prominent endogenous ligand of AHR is the oncometabolite kynurenine, a product of tryptophan metabolism catalyzed by the dioxygenases IDO1 and TDO that are often aberrantly activated in cancer. AHR has gained significant interest as a drug target for the development of novel small molecule cancer immunotherapies, as evidenced by the advancement of two clinical candidates into phase 1 clinical trials in patients with advanced cancer. Discussed in this Review is a brief background of AHR in immuno-oncology and the recent progress in the discovery and development of AHR antagonists.
Collapse
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
34
|
Hur W, Son SE, Kim SN, Seong GH. Cell-based electrochemical cytosensor for rapid and sensitive evaluation of the anticancer effects of saponin on human malignant melanoma cells. Bioelectrochemistry 2021; 140:107813. [PMID: 33848876 DOI: 10.1016/j.bioelechem.2021.107813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Discovering new anticancer agents and analyzing their activities is a vital part of drug development, but it requires a huge amount of time and resources, leading to the increasing demands for more-effective techniques. Herein, a novel and simple cell-based electrochemical biosensor, referred to as a cytosensor, was proposed to investigate the electrochemical behavior of human skin malignant melanoma (SK-MEL28) cells and the anticancer effect of saponin on cell viability. To enhance both electrocatalytic properties and biocompatibility, gold nanoparticles were electrochemically deposited onto a conductive substrate, and poly-L-lysine was further added to the electrode surface. Electric signals from SK-MEL28 cells on the electrodes were obtained from cyclic voltammetry and differential pulse voltammetry. The cathodic peak current was proportional to the cell viability and showed a detection range of 2,880-40,000 cells per device with an excellent linear cell number-intensity relationship (R2= 0.9952). Furthermore, the anticancer effect of saponin on SK-MEL28 cells was clearly established at concentrations higher than 20 μM, which was highly consistent with conventional assays. Moreover, the developed electrochemical cytosensor for evaluating anticancer effects enabled rapid (<2 min), sensitive (LOQ: 2,880cells/device), and non-invasive measurements, thus providing a new avenue for assessing the anticancer drugs in vitro.
Collapse
Affiliation(s)
- Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Nyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
35
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
36
|
Zeng J, Zhao W, Yue S. Coherent Raman Scattering Microscopy in Oncology Pharmacokinetic Research. Front Pharmacol 2021; 12:630167. [PMID: 33613294 PMCID: PMC7887381 DOI: 10.3389/fphar.2021.630167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.
Collapse
Affiliation(s)
- Junjie Zeng
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenying Zhao
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuhua Yue
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Akpe V, Murhekar S, Kim TH, Brown CL, Cock IE. Batch Effect Adjustment to Lower the Drug Attrition Rate of MCF-7 Breast Cancer Cells Exposed to Silica Nanomaterial-Derived Scaffolds. Assay Drug Dev Technol 2021; 19:46-61. [PMID: 33443468 DOI: 10.1089/adt.2020.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug attrition rate is the calculation or measure of the clinical efficacy of a candidate drug on a screen platform for a specific period. Determining the attrition rate of a prospective cancer drug is a reliable way of testing the clinical efficacy. A low attrition rate in the last phase of a preclinical trial increases the success of a drug discovery process. It has been reported that the attrition rates of antineoplastic drugs are much higher than for other therapeutic drugs. Among the factors identified for the high attrition rates in antineoplastic drugs are the nature of the screen-based platforms involving human-derived xenografts, extracellular matrix-derived scaffold systems, and the synthetic scaffolds, which all have propensity to proliferate tumor cells at faster rates than in vivo primary tumors. Other factors that affect the high attrition rates are induced scaffold toxicity and the use of assays that are irrelevant, yet affect data processing. These factors contribute to the wide variation in data and systematic errors. As a result, it becomes imperative to filter batch variations and to standardize the data. Importantly, understanding the interplay between the biological milieu and scaffold connections is also crucial. Here the cell viability of MCF-7 (breast cancer cell line) cells exposed to different scaffolds were screened before cisplatin dosing using the calculated p-values. The statistical significance (p-value) of data was calculated using the one-way analysis of variance, with the p-value set as: 0 < p < 0.06. In addition, the half-maximal inhibitory concentration (IC50) of the different scaffolds exposed to MCF-7 cells were calculated with the probit extension model and cumulative distribution (%) of the extension data. The chemotherapeutic dose (cisplatin, 56 mg/m2) reduced the cell viability of MCF-7 cells to 5% within 24 h on the scaffold developed from silica nanoparticles (SNPs) and polyethylene glycol (PEG) formulation (SNP:PEG) mixtures with a ratio of 1:10, respectively.
Collapse
Affiliation(s)
- Victor Akpe
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Shweta Murhekar
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Tak H Kim
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Nathan, Australia.,School of Environment and Science, Griffith University, Nathan Campus, Nathan, Australia
| |
Collapse
|
38
|
Mzurikwao D, Khan MU, Samuel OW, Cinatl J, Wass M, Michaelis M, Marcelli G, Ang CS. Towards image-based cancer cell lines authentication using deep neural networks. Sci Rep 2020; 10:19857. [PMID: 33199764 PMCID: PMC7670423 DOI: 10.1038/s41598-020-76670-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Although short tandem repeat (STR) analysis is available as a reliable method for the determination of the genetic origin of cell lines, the occurrence of misauthenticated cell lines remains an important issue. Reasons include the cost, effort and time associated with STR analysis. Moreover, there are currently no methods for the discrimination between isogenic cell lines (cell lines of the same genetic origin, e.g. different cell lines derived from the same organism, clonal sublines, sublines adapted to grow under certain conditions). Hence, additional complementary, ideally low-cost and low-effort methods are required that enable (1) the monitoring of cell line identity as part of the daily laboratory routine and 2) the authentication of isogenic cell lines. In this research, we automate the process of cell line identification by image-based analysis using deep convolutional neural networks. Two different convolutional neural networks models (MobileNet and InceptionResNet V2) were trained to automatically identify four parental cancer cell line (COLO 704, EFO-21, EFO-27 and UKF-NB-3) and their sublines adapted to the anti-cancer drugs cisplatin (COLO-704rCDDP1000, EFO-21rCDDP2000, EFO-27rCDDP2000) or oxaliplatin (UKF-NB-3rOXALI2000), hence resulting in an eight-class problem. Our best performing model, InceptionResNet V2, achieved an average of 0.91 F1-score on tenfold cross validation with an average area under the curve (AUC) of 0.95, for the 8-class problem. Our best model also achieved an average F1-score of 0.94 and 0.96 on the authentication through a classification process of the four parental cell lines and the respective drug-adapted cells, respectively, on a four-class problem separately. These findings provide the basis for further development of the application of deep learning for the automation of cell line authentication into a readily available easy-to-use methodology that enables routine monitoring of the identity of cell lines including isogenic cell lines. It should be noted that, this is just a proof of principal that, images can also be used as a method for authentication of cancer cell lines and not a replacement for the STR method.
Collapse
Affiliation(s)
| | - Muhammad Usman Khan
- Department of Computer Science, The National University of Computer and Emerging Sciences, B Block, Faisal Town, Lahore, Pakistan
| | | | - Jindrich Cinatl
- Institut Für Medizinische Virologie, Klinikum Der J.W. Goethe-Universität, Frankfurt am Main, Germany
| | - Mark Wass
- School of Biosciences, The University of Kent, Canterbury, UK
| | | | - Gianluca Marcelli
- School of Engineering and Digital Arts, University of Kent, Canterbury, UK
| | - Chee Siang Ang
- School of Engineering and Digital Arts, University of Kent, Canterbury, UK
| |
Collapse
|
39
|
Wen Y, Liu J, He H, Li SSC, Liu Z. Single-Cell Analysis of Signaling Proteins Provides Insights into Proapoptotic Properties of Anticancer Drugs. Anal Chem 2020; 92:12498-12508. [PMID: 32790289 DOI: 10.1021/acs.analchem.0c02344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Single-cell DNA analysis technology has provided unprecedented insights into many physiological and pathological processes. In contrast, technologies that allow protein analysis in single cells have lagged behind. Herein, a method called single-cell Plasmonic ImmunoSandwich Assay (scPISA) that is capable of measuring signaling proteins and protein complexes in single living cells is described. scPISA is straightforward, comprising specific in-cell extraction and ultrasensitive plasmonic detection. It is applied to evaluate the efficacy and kinetics of cytotoxic drugs. It reveals that different drugs exhibit distinct proapoptotic properties at the single-cell level. A set of new parameters is thus proposed for comprehensive and quantitative evaluation of the efficacy of anticancer drugs. It discloses that metformin can dramatically enhance the overall anticancer efficacy when combined with actinomycin D, although it itself is significantly less effective. Furthermore, scPISA reveals that survivin interacts with cytochrome C and caspase-3 in a dynamic fashion in single cells during continuous drug treatment. As compared with conventional assays, scPISA exhibits several significant advantages, such as ultrahigh sensitivity, single-cell resolution, fast speed, and so on. Therefore, this approach may provide a powerful tool for wide, important applications from basic research to clinical applications, particularly precision medicine.
Collapse
Affiliation(s)
- Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shawn S C Li
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Lee BI, Park MH, Choi J, Shin SH, Byeon JJ, Park Y, Shin YG. Liquid chromatography-high resolution mass spectrometric method for the quantification of monomethyl auristatin E (MMAE) and its preclinical pharmacokinetics. Biomed Chromatogr 2020; 34:e4855. [PMID: 32304111 DOI: 10.1002/bmc.4855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 01/29/2023]
Abstract
MMAE is a potent antimitotic drug used as payload of an antibody-drug conjugate which shows potent activity in preclinical and clinical studies against a range of lymphomas, leukemia and solid tumors. Liquid chromatography-high resolution mass spectrometric method was developed for the quantification of MMAE and its preclinical pharmacokinetics. The method consisted of protein precipitation using acetonitrile (ACN) for sample preparation and liquid chromatography - quadrupole - time-of-flight - tandem mass spectrometry (LC-qTOF-MS/MS) analysis in the positive ion mode. A quadratic regression (weighted 1/concentration2 ), with an equation y = ax2 + bx + c, was used to fit calibration curves over the concentration range of 1.01-2,200 ng/mL for MMAE. The qualification run met the acceptance criteria of ±25% accuracy and precision values for QC samples. Recovery was 42.84%. The dilution integrity was determined for 5-fold dilution and the accuracy and precision ranged within ±25%. The stability results indicated that MMAE was stable for the following conditions: short-term (4 h), long-term (4 weeks), freeze/thaw (3 cycles) and post-preparative stability (12 h). This qualified method was successfully applied to a pharmacokinetic study of MMAE in rat as a preclinical animal model. The PK results suggest that MMAE has moderate CL and low BA.Also, these results would be helpful in having a comprehensive understanding of the PK characteristics of MMAE and developing ADC in future.
Collapse
Affiliation(s)
- Byeong Ill Lee
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Min-Ho Park
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jangmi Choi
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Seok-Ho Shin
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Jin-Ju Byeon
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Yuri Park
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Young G Shin
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
41
|
Westbrook JD, Soskind R, Hudson BP, Burley SK. Impact of the Protein Data Bank on antineoplastic approvals. Drug Discov Today 2020; 25:837-850. [PMID: 32068073 PMCID: PMC7305983 DOI: 10.1016/j.drudis.2020.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Open access to 3D structure information from the Protein Data Bank (PDB) facilitated discovery and development of >90% of the 79 new antineoplastic agents (54 small molecules, 25 biologics) with known molecular targets approved by the FDA 2010-2018. Analyses of PDB holdings, the scientific literature and related documents for each drug-target combination revealed that the impact of public-domain 3D structure data was broad and substantial, ranging from understanding target biology (∼95% of all targets) to identifying a given target as probably druggable (∼95% of all targets) to structure-guided lead optimization (>70% of all small-molecule drugs). In addition to aggregate impact assessments, illustrative case studies are presented for three protein kinase inhibitors, an allosteric enzyme inhibitor and seven advanced-stage melanoma therapeutics.
Collapse
Affiliation(s)
- John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rose Soskind
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian P Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Liu Z, Zhu L, Thakkar S, Roberts R, Tong W. Can Transcriptomic Profiles from Cancer Cell Lines Be Used for Toxicity Assessment? Chem Res Toxicol 2019; 33:271-280. [DOI: 10.1021/acs.chemrestox.9b00288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Liyuan Zhu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Shraddha Thakkar
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge SK10 4TG, U.K
- University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
43
|
Biedulska M, Chylewska A, Nidzworski D. Comparative solution equilibria studies of complex formation between Ir(III) ion and antituberculosis drug analogues: Spectroscopic, potentiometric and conductometric approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Peter S, Aderibigbe BA. Ferrocene-Based Compounds with Antimalaria/Anticancer Activity. Molecules 2019; 24:molecules24193604. [PMID: 31591298 PMCID: PMC6804011 DOI: 10.3390/molecules24193604] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Malaria and cancer are chronic diseases. The challenge with drugs available for the treatment of these diseases is drug toxicity and resistance. Ferrocene is a potent organometallic which have been hybridized with other compounds resulting in compounds with enhanced biological activity such as antimalarial and anticancer. Drugs such as ferroquine were developed from ferrocene and chloroquine. It was tested in the 1990s as an antimalarial and is still an effective antimalarial. Many researchers have reported ferrocene compounds as potent compounds useful as anticancer and antimalarial agents when hybridized with other pharmaceutical scaffolds. This review will be focused on compounds with ferrocene moieties that exhibit either an anticancer or antimalarial activity.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, University of Fort Hare, Alice campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
45
|
11PS04 is a new chemical entity identified by microRNA-based biosensing with promising therapeutic potential against cancer stem cells. Sci Rep 2019; 9:11916. [PMID: 31417117 PMCID: PMC6695485 DOI: 10.1038/s41598-019-48359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.
Collapse
|
46
|
Pereira RB, Evdokimov NM, Lefranc F, Valentão P, Kornienko A, Pereira DM, Andrade PB, Gomes NGM. Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Mar Drugs 2019; 17:E329. [PMID: 31159480 PMCID: PMC6627313 DOI: 10.3390/md17060329] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/13/2023] Open
Abstract
The role of the marine environment in the development of anticancer drugs has been widely reviewed, particularly in recent years. However, the innovation in terms of clinical benefits has not been duly emphasized, although there are important breakthroughs associated with the use of marine-derived anticancer agents that have altered the current paradigm in chemotherapy. In addition, the discovery and development of marine drugs has been extremely rewarding with significant scientific gains, such as the discovery of new anticancer mechanisms of action as well as novel molecular targets. Approximately 50 years since the approval of cytarabine, the marine-derived anticancer pharmaceutical pipeline includes four approved drugs and eighteen agents in clinical trials, six of which are in late development. Thus, the dynamic pharmaceutical pipeline consisting of approved and developmental marine-derived anticancer agents offers new hopes and new tools in the treatment of patients afflicted with previously intractable types of cancer.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
47
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Vizirianakis IS, Miliotou AN, Mystridis GA, Andriotis EG, Andreadis II, Papadopoulou LC, Fatouros DG. Tackling pharmacological response heterogeneity by PBPK modeling to advance precision medicine productivity of nanotechnology and genomics therapeutics. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1605828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Androulla N. Miliotou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George A. Mystridis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios G. Andriotis
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis I. Andreadis
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lefkothea C. Papadopoulou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G. Fatouros
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
49
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
50
|
DuRoss AN, Neufeld MJ, Rana S, Thomas CR, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144:35-56. [PMID: 31279729 PMCID: PMC6745263 DOI: 10.1016/j.addr.2019.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Shushan Rana
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|