1
|
Mishra NM, Spitznagel BD, Du Y, Mohamed YK, Qin Y, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of 2-Aryloxy- N-(pyrimidin-5-yl)acetamide Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:5494. [PMID: 39683653 DOI: 10.3390/molecules29235494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling approach to the treatment of EIMFS and other epilepsies associated with KCNT1 mutations. In this manuscript, we describe a hit optimization effort executed within a series of 2-aryloxy-N-(pyrimidin-5-yl)acetamides that were identified via a high-throughput screen. We systematically prepared analogs in four distinct regions of the scaffold and evaluated their functional activity in a whole-cell, automated patch clamp (APC) assay to establish structure-activity relationships for wild-type (WT) SLACK inhibition. Two selected analogs were also profiled for selectivity versus other members of the Slo family of potassium channels, of which SLACK is a member, and versus a panel of structurally diverse ion channels. The same two analogs were evaluated for activity versus the WT mouse channel as well as two clinically relevant mutant human channels.
Collapse
Affiliation(s)
- Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmeen K Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Qin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Zheng R, Li Z, Wang Q, Liu S, Liu N, Li Y, Zhu G, Liu Z, Huang Z, Zhang L. Discovery of Potent and Selective Blockers Targeting the Epilepsy-Associated K Na1.1 Channel. J Med Chem 2024; 67:19519-19545. [PMID: 39445572 DOI: 10.1021/acs.jmedchem.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Gain-of-function (GOF) mutations of the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2, or KCa4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new KNa1.1 channel inhibitors. In this study, we developed a novel class of KNa1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound Z05 was identified as a selective potential KNa1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that Z05 had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Qiufeng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Sun F, Wang H, Wu J, Quraishi IH, Zhang Y, Pedram M, Gao B, Jonas EA, Nguyen V, Wu S, Mabrouk OS, Jafar-nejad P, Kaczmarek LK. Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment. Biomolecules 2024; 14:1397. [PMID: 39595574 PMCID: PMC11591899 DOI: 10.3390/biom14111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The potassium sodium-activated channel subtype T member 1 (KCNT1) gene encodes the Slack channel KNa1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in KCNT1 are associated with a spectrum of epilepsy syndromes, and mice carrying those variants exhibit a robust phenotype similar to that observed in patients. Kcnt1 knockout (KO) mice, however, have a normal lifespan without any epileptic phenotype. To understand the molecular differences between these two models, we conducted a comprehensive proteomic analysis of the cerebral cortices of Kcnt1 KO and Kcnt1R455H/+ mice, an animal model bearing a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. The greatest change observed in Kcnt1 KO mice compared to the wild-type mice was the increased expression of multiple proteins of the inner mitochondrial membrane. Electron microscopy studies of cortical mitochondria from Kcnt1 KO mice further confirmed a significant increase in the density of mitochondrial cristae compared to that in wild-type mice. Kcnt1 reduction by a murine-specific Kcnt1 antisense oligonucleotide (ASO) in Kcnt1R455H/+ mice partially corrected the proteomic dysregulations in the disease model. The results support the hypothesis that ASO-mediated KCNT1 reduction could be therapeutically useful in the treatment of KCNT1 epilepsies.
Collapse
Affiliation(s)
- Fangxu Sun
- Biogen Inc., Cambridge, MA 02142, USA (O.S.M.)
| | - Huafeng Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Imran H. Quraishi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maysam Pedram
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benbo Gao
- Biogen Inc., Cambridge, MA 02142, USA (O.S.M.)
| | - Elizabeth A. Jonas
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Viet Nguyen
- Biogen Inc., Cambridge, MA 02142, USA (O.S.M.)
| | - Sijia Wu
- Biogen Inc., Cambridge, MA 02142, USA (O.S.M.)
| | | | | | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Debanne D, Mylonaki K, Musella ML, Russier M. Voltage-gated ion channels in epilepsies: circuit dysfunctions and treatments. Trends Pharmacol Sci 2024; 45:1018-1032. [PMID: 39406591 DOI: 10.1016/j.tips.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Epileptic encephalopathies are generally considered to be functional disruptions in the balance between neural excitation and inhibition. Excitatory and inhibitory voltage-gated ion channels are key targets of antiepileptic drugs, playing a critical role in regulating neuronal excitation and synaptic transmission. Recent research has highlighted the significance of ion channels in various aspects of epilepsy, including presynaptic neurotransmitter release, intrinsic neuronal excitability, and neural synchrony. Genetic alterations in excitatory and inhibitory ion channels within principal neurons and in inhibitory interneurons have also been identified as key contributors to the development of epilepsies. We review these recent studies and shed light on the bidirectional relationship between epilepsy and neuronal excitability and the latest advancements in pharmacological therapeutics targeting ion channels for epilepsy treatment.
Collapse
|
5
|
Specchio N, Trivisano M, Aronica E, Balestrini S, Arzimanoglou A, Colasante G, Cross JH, Jozwiak S, Wilmshurst JM, Vigevano F, Auvin S, Nabbout R, Curatolo P. The expanding field of genetic developmental and epileptic encephalopathies: current understanding and future perspectives. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:821-834. [PMID: 39419567 DOI: 10.1016/s2352-4642(24)00196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Recent advances in genetic testing technologies have revolutionised the identification of genetic abnormalities in early onset developmental and epileptic encephalopathies (DEEs). In this Review, we provide an update on the expanding landscape of genetic factors contributing to DEEs, encompassing over 800 reported genes. We focus on the cellular and molecular mechanisms driving epileptogenesis, with an emphasis on emerging therapeutic strategies and effective treatment options. We explore noteworthy, novel genes linked to DEE phenotypes, such as gBRAT-1 and GNAO1, and gene families such as GRIN and HCN. Understanding the network-level effects of gene variants will pave the way for potential gene therapy applications. Given the diverse comorbidities associated with DEEs, a multidisciplinary team approach is essential. Despite ongoing efforts and improved genetic testing, DEEs lack a cure, and treatment complexities persist. This Review underscores the necessity for larger international prospective studies focusing on both seizure outcomes and developmental trajectories.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy.
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Florence, Italy; Neuroscience Department, University of Florence, Florence, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alexis Arzimanoglou
- Paediatric Epilepsy and Neurophysiology Department, Hospital San Juan de Dios, Coordinating member of the European Reference Network on Rare and Complex Epilepsies, EpiCARE, Barcelona, Spain
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Sergiusz Jozwiak
- Research Department, Children's Memorial Health Institute, EpicARE Member, Warsaw, Poland
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Federico Vigevano
- Pediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy
| | - Stéphane Auvin
- AP-HP, Service de Neurologie Pédiatrique, Centre de référence Epilepsies Rares, Member of European Reference Network EpiCARE, Hôpital Universitaire Robert-Debré, Paris, France; Université Paris-Cité, INSERM Neuro Diderot, Paris, France; Institut Universitaire de France, Paris, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris Cité, Paris, France
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
6
|
Peng W, Wang P, Tan C, Zhao H, Chen K, Si H, Tian Y, Lou A, Zhu Z, Yuan Y, Wu K, Chang C, Wu Y, Chen T. High-frequency terahertz stimulation alleviates neuropathic pain by inhibiting the pyramidal neuron activity in the anterior cingulate cortex of mice. eLife 2024; 13:RP97444. [PMID: 39331514 PMCID: PMC11434610 DOI: 10.7554/elife.97444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7-10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.
Collapse
Affiliation(s)
- Wenyu Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Pan Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Chaoyang Tan
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Han Zhao
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Huaxing Si
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Yuchen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Anxin Lou
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| | - Zhi Zhu
- Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Yifang Yuan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Kaijie Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui UniversityHefeiChina
- School of Electronic and Information Engineering, Anhui UniversityHefeiChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical UniversityXi'anChina
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’anChina
| |
Collapse
|
7
|
Iraci N, Carotenuto L, Ciaglia T, Belperio G, Di Matteo F, Mosca I, Carleo G, Giovanna Basilicata M, Ambrosino P, Turcio R, Puzo D, Pepe G, Gomez-Monterrey I, Soldovieri MV, Di Sarno V, Campiglia P, Miceli F, Bertamino A, Ostacolo C, Taglialatela M. In Silico Assisted Identification, Synthesis, and In Vitro Pharmacological Characterization of Potent and Selective Blockers of the Epilepsy-Associated KCNT1 Channel. J Med Chem 2024; 67:9124-9149. [PMID: 38782404 PMCID: PMC11181338 DOI: 10.1021/acs.jmedchem.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Lidia Carotenuto
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Tania Ciaglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giorgio Belperio
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Francesca Di Matteo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Ilaria Mosca
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giusy Carleo
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Manuela Giovanna Basilicata
- Department
of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Paolo Ambrosino
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Rita Turcio
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Deborah Puzo
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giacomo Pepe
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Isabel Gomez-Monterrey
- Department
of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Virginia Soldovieri
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Veronica Di Sarno
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco Miceli
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Alessia Bertamino
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Taglialatela
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
8
|
Qunies AM, Spitznagel BD, Du Y, Peprah PK, Mohamed YK, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of Xanthine Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:2437. [PMID: 38893312 PMCID: PMC11173529 DOI: 10.3390/molecules29112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Collapse
Affiliation(s)
- Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul K. Peprah
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yasmeen K. Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Balzulat A, Zhu WF, Flauaus C, Hernandez‐Olmos V, Heering J, Sethumadhavan S, Dubiel M, Frank A, Menge A, Hebchen M, Metzner K, Lu R, Lukowski R, Ruth P, Knapp S, Müller S, Steinhilber D, Hänelt I, Stark H, Proschak E, Schmidtko A. Discovery of a Small Molecule Activator of Slack (Kcnt1) Potassium Channels That Significantly Reduces Scratching in Mouse Models of Histamine-Independent and Chronic Itch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307237. [PMID: 38350720 PMCID: PMC11022729 DOI: 10.1002/advs.202307237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.
Collapse
Affiliation(s)
- Annika Balzulat
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - W. Felix Zhu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Victor Hernandez‐Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Sunesh Sethumadhavan
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Amelie Menge
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Maureen Hebchen
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Robert Lukowski
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Peter Ruth
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Stefan Knapp
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Susanne Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Inga Hänelt
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| |
Collapse
|
10
|
Yuan T, Wang Y, Jin Y, Yang H, Xu S, Zhang H, Chen Q, Li N, Ma X, Song H, Peng C, Geng Z, Dong J, Duan G, Sun Q, Yang Y, Yang F, Huang Z. Coupling of Slack and Na V1.6 sensitizes Slack to quinidine blockade and guides anti-seizure strategy development. eLife 2024; 12:RP87559. [PMID: 38289338 PMCID: PMC10942592 DOI: 10.7554/elife.87559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yifan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yuchen Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Heng Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest LafayetteUnited States
| | - Fan Yang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, HangzhouZhejiangChina
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| |
Collapse
|
11
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
12
|
Qunies AM, Spitznagel BD, Du Y, David Weaver C, Emmitte KA. Design, synthesis, and biological evaluation of a novel series of 1,2,4-oxadiazole inhibitors of SLACK potassium channels: Identification of in vitro tool VU0935685. Bioorg Med Chem 2023; 95:117487. [PMID: 37812884 PMCID: PMC10842602 DOI: 10.1016/j.bmc.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
13
|
Hill SF, Jafar-Nejad P, Rigo F, Meisler MH. Reduction of Kcnt1 is therapeutic in mouse models of SCN1A and SCN8A epilepsy. Front Neurosci 2023; 17:1282201. [PMID: 37901435 PMCID: PMC10603267 DOI: 10.3389/fnins.2023.1282201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe seizure disorders with inadequate treatment options. Gain- or loss-of-function mutations of neuronal ion channel genes, including potassium channels and voltage-gated sodium channels, are common causes of DEE. We previously demonstrated that reduced expression of the sodium channel gene Scn8a is therapeutic in mouse models of sodium and potassium channel mutations. In the current study, we tested whether reducing expression of the potassium channel gene Kcnt1 would be therapeutic in mice with mutation of the sodium channel genes Scn1a or Scn8a. A Kcnt1 antisense oligonucleotide (ASO) prolonged survival of both Scn1a and Scn8a mutant mice, suggesting a modulatory effect for KCNT1 on the balance between excitation and inhibition. The cation channel blocker quinidine was not effective in prolonging survival of the Scn8a mutant. Our results implicate KCNT1 as a therapeutic target for treatment of SCN1A and SCN8A epilepsy.
Collapse
Affiliation(s)
- Sophie F. Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Miriam H. Meisler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Liu R, Sun L, Wang Y, Wang Q, Wu J. New use for an old drug: quinidine in KCNT1-related epilepsy therapy. Neurol Sci 2023; 44:1201-1206. [PMID: 36437393 DOI: 10.1007/s10072-022-06521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
KCNT1 has been known to encode a subunit of the tetrameric sodium activated potassium channel (KNa1.1). Pathogenic variants of KCNT1, especially gain-of-function (GOF) variants, are associated with multiple epileptic disorders which are often refractory to conventional anti-seizure medications and summarized as KCNT1-related epilepsy. Although the detailed pathogenic mechanisms of KCNT1-related epilepsy remain unknown, increasing studies attempt to find effective medications for those patients by utilizing quinidine to inhibit hyperexcitable KNa1.1. However, it has been shown that controversial outcomes among studies and partial success in some individuals may be due to multiple factors, such as poor blood-brain barrier (BBB) penetration, mutation-dependent manner, phenotype-genotype associations, and rational therapeutic schedule. In recent years, with higher resolution of KNa1.1 structure in different activation states and advanced synthetic techniques, it improves the process performance of therapy targeting at KNa1.1 channel to achieve more effective outcomes. Here, we systematically reviewed the study history of quinidine on KCNT1-related epilepsy and its corresponding therapeutic effects. Then, we analyzed and summarized the possible causes behind the different outcomes of the application of quinidine. Finally, we outlooked the recent advances in precision medicine treatment for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Lei Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450008, Henan, China
| | - Yunfu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
15
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
16
|
Wang M, Geng G, Meng Y, Zhang H, Gao Z, Shi J. Long-term follow-up of vagus nerve stimulation in drug-resistant KCNT1-related epilepsy: a case presentation. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background
The KCNT1 gene encodes a Na+-activated K+ channel. Gain-of-function mutations of KCNT1 lead to autosomal dominant sleep-related hypermotor epilepsy, early-onset epileptic encephalopathy, focal epilepsy and other epileptic encephalopathies. In this paper, we report a boy carrying a KCNT1 gene mutation, who presented with drug-resistant focal-onset seizures. He had decreased seizure frequency and improvement of background changes in electroencephalography (EEG) after vagus nerve stimulation (VNS).
Case presentation
The case was a nonverbal 9-year-old male who presented with drug-resistant focal-onset seizures since age 3 and had underwent VNS therapy for 2 years. He had hypermotor symptoms, automatism and bilateral asymmetric tonic seizures with cognitive decline and aphasis from age 3. The patient had a variety of seizure types that only occurred at night. The most common seizure type was automatisms, and ictal video EEG showed high-amplitude delta waves, followed by a fast rhythmic sharp activity in the mesial frontal and bitemporal regions. The patient was diagnosed with KCNT1-related epilepsy, epileptic encephalopathy and cognitive disorder. He was refractory to multiple anti-seizure medicines (ASM) and ketogenic diet. After VNS treatment at age 7, the frequency of seizures was reduced significantly and EEG was improved in background slowing.
Conclusions
Children with KCNT1-related epilepsy usually have early onset of disease, are nonverbal, and are refractory to ASM. This boy with drug-resistant KCNT1-related epilepsy showed significantly reduced seizure frequency after VNS. This report may provide reference for management of cases of KCNT1-related epilepsy.
Collapse
|
17
|
Neuroblastoma SH-SY5Y Cell Differentiation to Mature Neuron by AM580 Treatment. Neurochem Res 2022; 47:3723-3732. [PMID: 36066699 DOI: 10.1007/s11064-022-03730-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Neuroblastoma is a type of developmental childhood cancer that arises from the neural crest. It is the most common pediatric solid tumor in the world. AM580 is a powerful cyto-differentiating molecule on acute promyelocytic leukemia cells and induced pluripotent stem cells, but its effect on neuroblastoma is still unknown. In this study, the neuronal differentiation impact of AM580 was investigated using the human neuroblastoma cell line SH-SY5Y as a model. AM580 successfully stimulated the SH-SY5Y cells to develop into neuron-like cells. Functional enrichment analysis of RNAseq data revealed that differentially expressed genes (DEGs) were substantially enriched for GO keywords and KEGG pathways linked to neuron development. Some potassium ion channel genes associated with neuronal excitation, such as KCNT1, were shown to be upregulated. Through the MEA tests, we found the AM580-induced neurons possessed electrical spikes as mature neurons. AM580 also induced the neuronal marker β-tubulin III and mature neurons marker Neurofilament H. Our study proved that AM580 can promote the differentiation of neurons and has the potential to treat neuroblastoma, neurodevelopmental and neurodegenerative diseases.
Collapse
|
18
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
19
|
Small-molecule inhibitors of Slack potassium channels as potential therapeutics for childhood epilepsies. Pharm Pat Anal 2022; 11:45-56. [PMID: 35369761 PMCID: PMC9260495 DOI: 10.4155/ppa-2022-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Slack channels are sodium-activated potassium channels that are encoded by the KCNT1 gene. Several KCNT1 gain of function mutations have been linked to malignant migrating partial seizures of infancy. Quinidine is an anti-arrhythmic drug that functions as a moderately potent inhibitor of Slack channels; however, quinidine use is limited by its poor selectivity, safety and pharmacokinetic profile. Slack channels represent an interesting target for developing novel therapeutics for the treatment of malignant migrating partial seizures of infancy and other childhood epilepsies; thus, ongoing efforts are directed toward the discovery of small-molecules that inhibit Slack currents. This review summarizes patent applications published in 2020-2021 that describe the discovery of novel small-molecule Slack inhibitors.
Collapse
|