1
|
Al-Noshokaty TM, Abdelhamid R, Reda T, Alaaeldien A, Abdellatif N, Mansour A, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Sobhy MH, Mohammed OA, Abulsoud AI. Exploring the clinical potential of circulating LncRNAs in breast cancer: insights into primary signaling pathways and therapeutic interventions. Funct Integr Genomics 2024; 24:209. [PMID: 39508907 DOI: 10.1007/s10142-024-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer (BC) occupies the top spot among women on a global scale. The tumor has a significant degree of heterogeneity, displaying a notable prevalence of medication resistance, recurrence, and metastasis, rendering it one of the most lethal forms of malignant neoplasms. The timely identification, ongoing evaluation of therapeutic interventions, and accurate prediction of outcomes play crucial roles in determining the overall survival rates of women with BC. Nevertheless, the absence of precise biomarkers remains a significant determinant impacting the overall well-being and both the physical and emotional health of BC patients. Long noncoding RNA (lncRNA) exerts regulatory control over several genes and signaling pathways, hence assuming crucial roles in the development of neoplastic growth. Recently, research has indicated that the atypical expression of circulating lncRNAs in various biological bodily fluids has a noteworthy impact on the early detection, pathological categorization, staging, monitoring of therapy outcomes, and evaluation of prognosis in cases of BC. This article aims to assess the potential clinical utility of circulating lncRNAs in the context of BC focusing on specific primary signaling pathways; Wnt/β-catenin, Notch, TGF-β, and hedgehog (Hh), in addition to some therapeutic interventions.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mohamed Hossam Sobhy
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
2
|
Liu X, Ma Y, Zong D, Chen Y. LncRNA MALAT1 regulates cigarette smoke induced airway inflammation by modulating miR-30a-5p/JNK signaling pathway. Int Immunopharmacol 2024; 140:112826. [PMID: 39128416 DOI: 10.1016/j.intimp.2024.112826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Chronic airway inflammation induced by cigarette smoke (CS) plays an essential role in the pathogenesis of chronic obstructive pulmonary disease (COPD). MALAT1 is involved in a variety of inflammatory disorders. However, studies focusing on the interaction between MALAT1 and CS-induced airway inflammation remain unknown. The present study investigated the effects and mechanisms of MALAT1 in CS-induced airway inflammation in the pathogenesis of COPD. RT-qPCR was employed to determine the mRNA levels of MALAT1, miR-30a-5p and inflammatory cytokines. Protein concentrations of IL-1β and IL-6 in cell culture supernatant and mouse bronchoalveolar lavage fluid (BALF) were assessed by ELISA assay kits. Dual-luciferase reporter assay was conducted to verify the interaction between MALAT1 and miR-30a-5p. The protein expression of JNK and p-JNK was determined by western blot (WB). MALAT1 was highly expressed in cigarette smoke extract (CSE)-treated human bronchial epithelial cells (HBECs) and COPD mice lung tissues. Knockdown of MALAT1 significantly alleviate CS-induced inflammatory response. MALAT1 directly interacted with miR-30a-5p and knockdown of miR-30a-5p significantly inhibit the protective effects of MALAT1 silencing after CS exposure. Additionally, our results showed that miR-30a-5p could regulate inflammation via modulating the activation of JNK signaling pathway. Moreover, our results demonstrated MALAT1 could activate JNK signaling pathway by sponging miR-30a-5p. Our results demonstrated MALAT1 promotes CS-induced airway inflammation by inhibiting the activation of JNK signaling pathway via sponging miR-30a-5p.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Cao C, Li A, Xu C, Wu B, Yao L, Liu Y. Engineering artificial non-coding RNAs for targeted protein degradation. Nat Chem Biol 2024:10.1038/s41589-024-01719-w. [PMID: 39215101 DOI: 10.1038/s41589-024-01719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.
Collapse
Affiliation(s)
- Congcong Cao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China
| | - Aolin Li
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Baorui Wu
- Department of Urology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Synthetic Biology Research Center, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Black CM, Braden AA, Nasim S, Tripathi M, Xiao J, Khan MM. The Association between Long Non-Coding RNAs and Alzheimer's Disease. Brain Sci 2024; 14:818. [PMID: 39199508 PMCID: PMC11353078 DOI: 10.3390/brainsci14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Neurodegeneration occurs naturally as humans age, but the presence of additional pathogenic mechanisms yields harmful and consequential effects on the brain. Alzheimer's disease (AD), the most common form of dementia, is a composite of such factors. Despite extensive research to identify the exact causes of AD, therapeutic approaches for treating the disease continue to be ineffective, indicating important gaps in our understanding of disease mechanisms. Long non-coding RNAs (lncRNAs) are an endogenous class of regulatory RNA transcripts longer than 200 nucleotides, involved in various regulatory networks, whose dysregulation is evident in several neural and extraneural diseases. LncRNAs are ubiquitously expressed across all tissues with a wide range of functions, including controlling cell differentiation and development, responding to environmental stimuli, and other physiological processes. Several lncRNAs have been identified as potential contributors in worsening neurodegeneration due to altered regulation during abnormal pathological conditions. Within neurological disease, lncRNAs are prime candidates for use as biomarkers and pharmacological targets. Gender-associated lncRNA expression is altered in a gender-dependent manner for AD, suggesting more research needs to be focused on this relationship. Overall, research on lncRNAs and their connection to neurodegenerative disease is growing exponentially, as commercial enterprises are already designing and employing RNA therapeutics. In this review we offer a comprehensive overview of the current state of knowledge on the role of lncRNAs in AD and discuss the potential implications of lncRNA as potential therapeutic targets and diagnostic biomarkers in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Carson M. Black
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Anneliesse A. Braden
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samia Nasim
- Departments of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Manish Tripathi
- Medicine and Oncology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Jianfeng Xiao
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Mohammad Moshahid Khan
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Habib AM, Cox JJ, Okorokov AL. Out of the dark: the emerging roles of lncRNAs in pain. Trends Genet 2024; 40:694-705. [PMID: 38926010 DOI: 10.1016/j.tig.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.
Collapse
Affiliation(s)
- Abdella M Habib
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - James J Cox
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Fasano M, Pirozzi M, Miceli CC, Cocule M, Caraglia M, Boccellino M, Vitale P, De Falco V, Farese S, Zotta A, Ciardiello F, Addeo R. TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. Int J Mol Sci 2024; 25:7400. [PMID: 39000507 PMCID: PMC11242595 DOI: 10.3390/ijms25137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with 20% of patients presenting with metastatic disease at diagnosis. TGF-β signaling plays a crucial role in various cellular processes, including growth, differentiation, apoptosis, epithelial-mesenchymal transition (EMT), regulation of the extracellular matrix, angiogenesis, and immune responses. TGF-β signals through SMAD proteins, which are intracellular molecules that transmit TGF-β signals from the cell membrane to the nucleus. Alterations in the TGF-β pathway and mutations in SMAD proteins are common in metastatic CRC (mCRC), making them critical factors in CRC tumorigenesis. This review first analyzes normal TGF-β signaling and then investigates its role in CRC pathogenesis, highlighting the mechanisms through which TGF-β influences metastasis development. TGF-β promotes neoangiogenesis via VEGF overexpression, pericyte differentiation, and other mechanisms. Additionally, TGF-β affects various elements of the tumor microenvironment, including T cells, fibroblasts, and macrophages, promoting immunosuppression and metastasis. Given its strategic role in multiple processes, we explored different strategies to target TGF-β in mCRC patients, aiming to identify new therapeutic options.
Collapse
Affiliation(s)
- Morena Fasano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mario Pirozzi
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Chiara Carmen Miceli
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Mariateresa Cocule
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| | - Stefano Farese
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Alessia Zotta
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.F.); (M.P.); (C.C.M.); (M.C.); (S.F.); (A.Z.); (F.C.)
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA2NORD, Frattamaggiore, 80027 Naples, Italy; (P.V.); (V.D.F.); (R.A.)
| |
Collapse
|
8
|
Fu W, Ye Y, Hu F. LncRNA XIST promotes neovascularization in diabetic retinopathy by regulating miR-101-3p/VEGFA. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230097. [PMID: 38739522 PMCID: PMC11156180 DOI: 10.20945/2359-4292-2023-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/04/2023] [Indexed: 05/16/2024]
Abstract
Objective This study sought to investigate the regulation of long noncoding RNA (lncRNA) XIST on the microRNA (miR)-101-3p/vascular endothelial growth factor A (VEGFA) axis in neovascularization in diabetic retinopathy (DR). Materials and methods Serum of patients with DR was extracted for the analysis of XIST, miR-101-3p, and VEGFA expression levels. High glucose (HG)-insulted HRMECs and DR model rats were treated with lentiviral vectors. MTT, transwell, and tube formation assays were performed to evaluate cell viability, migration, and angiogenesis, and ELISA was conducted to detect the levels of inflammatory cytokines. Dual-luciferase reporter, RIP, and RNA pull-down experiments were used to validate the relationships among XIST, miR-101-3p, and VEGFA. Results XIST and VEGFA were upregulated and miR-101-3p was downregulated in serum from patients with DR. XIST knockdown inhibited proliferation, migration, vessel tube formation, and inflammatory responsein HG-treated HRMECs, whereas the above effects were nullified by miR-101-3p inhibition or VEGFA overexpression. miR-101-3p could bind to XIST and VEGFA. XIST promoted DR development in rats by regulating the miR-101-3p/VEGFA axis. Conclusion LncRNA XIST promotes VEGFA expression by downregulating miR-101-3p, thereby stimulating angiogenesis and inflammatory response in DR.
Collapse
Affiliation(s)
- Weina Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China,
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| | - Feng Hu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
9
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Olazagoitia‐Garmendia A, Rojas‐Márquez H, Sebastian‐delaCruz M, Agirre‐Lizaso A, Ochoa A, Mendoza‐Gomez LM, Perugorria MJ, Bujanda L, Madrigal AH, Santin I, Castellanos‐Rubio A. m 6A Methylated Long Noncoding RNA LOC339803 Regulates Intestinal Inflammatory Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307928. [PMID: 38273714 PMCID: PMC10987157 DOI: 10.1002/advs.202307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Cytokine mediated sustained inflammation increases the risk to develop different complex chronic inflammatory diseases, but the implicated mechanisms remain unclear. Increasing evidence shows that long noncoding RNAs (lncRNAs) play key roles in the pathogenesis of inflammatory disorders, while inflammation associated variants are described to affect their function or essential RNA modifications as N6-methyladenosine (m6A) methylation, increasing predisposition to inflammatory diseases. Here, the functional implication of the intestinal inflammation associated lncRNA LOC339803 in the production of cytokines by intestinal epithelial cells is described. Allele-specific m6A methylation is found to affect YTHDC1 mediated protein binding affinity. LOC339803-YTHDC1 interaction dictates chromatin localization of LOC339803 ultimately inducing the expression of NFκB mediated proinflammatory cytokines and contributing to the development of intestinal inflammation. These findings are confirmed using human intestinal biopsy samples from different intestinal inflammatory conditions and controls. Additionally, it is demonstrated that LOC339803 targeting can be a useful strategy for the amelioration of intestinal inflammation in vitro and ex vivo. Overall, the results support the importance of the methylated LOC339803 lncRNA as a mediator of intestinal inflammation, explaining genetic susceptibility and presenting this lncRNA as a potential novel therapeutic target for the treatment of inflammatory intestinal disorders.
Collapse
Affiliation(s)
- Ane Olazagoitia‐Garmendia
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Henar Rojas‐Márquez
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Maialen Sebastian‐delaCruz
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Aloña Agirre‐Lizaso
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
| | - Anne Ochoa
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
| | - Luis Manuel Mendoza‐Gomez
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
- Department of MedicineFaculty of Medicine and NursingUniversity of the Basque CountryUPV/EHUDonostia‐San Sebastián20014Spain
- CIBERehdInstituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiogipuzkoa Health Research InstituteDonostia University HospitalDonostia‐San Sebastian20014Spain
- Department of MedicineFaculty of Medicine and NursingUniversity of the Basque CountryUPV/EHUDonostia‐San Sebastián20014Spain
- CIBERehdInstituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Alain Huerta Madrigal
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of MedicineMedicine FacultyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Gastroenterology DepartmentHospital Universitario de GaldakaoGaldakao48960Spain
| | - Izortze Santin
- Department of Biochemistry and Molecular BiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMInstituto de Salud Carlos IIIMadrid28029Spain
| | - Ainara Castellanos‐Rubio
- Biobizkaia Health Research InstituteBarakaldo48903Spain
- Department of GeneticsPhysical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioa48940Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMInstituto de Salud Carlos IIIMadrid28029Spain
- IkerbasqueBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
11
|
Ball P. Special delivery. NATURE MATERIALS 2024; 23:442. [PMID: 38570639 DOI: 10.1038/s41563-024-01859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
12
|
Pandini C, Pagani G, Tassinari M, Vitale E, Bezzecchi E, Saadeldin MK, Doldi V, Giannuzzi G, Mantovani R, Chiara M, Ciarrocchi A, Gandellini P. The pancancer overexpressed NFYC Antisense 1 controls cell cycle mitotic progression through in cis and in trans modes of action. Cell Death Dis 2024; 15:206. [PMID: 38467619 PMCID: PMC10928104 DOI: 10.1038/s41419-024-06576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Antisense RNAs (asRNAs) represent an underappreciated yet crucial layer of gene expression regulation. Generally thought to modulate their sense genes in cis through sequence complementarity or their act of transcription, asRNAs can also regulate different molecular targets in trans, in the nucleus or in the cytoplasm. Here, we performed an in-depth molecular characterization of NFYC Antisense 1 (NFYC-AS1), the asRNA transcribed head-to-head to NFYC subunit of the proliferation-associated NF-Y transcription factor. Our results show that NFYC-AS1 is a prevalently nuclear asRNA peaking early in the cell cycle. Comparative genomics suggests a narrow phylogenetic distribution, with a probable origin in the common ancestor of mammalian lineages. NFYC-AS1 is overexpressed pancancer, preferentially in association with RB1 mutations. Knockdown of NFYC-AS1 by antisense oligonucleotides impairs cell growth in lung squamous cell carcinoma and small cell lung cancer cells, a phenotype recapitulated by CRISPR/Cas9-deletion of its transcription start site. Surprisingly, expression of the sense gene is affected only when endogenous transcription of NFYC-AS1 is manipulated. This suggests that regulation of cell proliferation is at least in part independent of the in cis transcription-mediated effect on NFYC and is possibly exerted by RNA-dependent in trans effects converging on the regulation of G2/M cell cycle phase genes. Accordingly, NFYC-AS1-depleted cells are stuck in mitosis, indicating defects in mitotic progression. Overall, NFYC-AS1 emerged as a cell cycle-regulating asRNA with dual action, holding therapeutic potential in different cancer types, including the very aggressive RB1-mutated tumors.
Collapse
Affiliation(s)
- Cecilia Pandini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Martina Tassinari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Via Università 4, 41121, Modena, Italy
| | - Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Mona Kamal Saadeldin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Valentina Doldi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Giannuzzi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
13
|
Wang Y, Zhang YR, Ding ZQ, Zhang YC, Sun RX, Zhu HJ, Wang JN, Xu B, Zhang P, Ji JD, Liu QH, Chen X. m6A-Mediated Upregulation of Imprinted in Prader-Willi Syndrome Induces Aberrant Apical-Basal Polarization and Oxidative Damage in RPE Cells. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38315495 PMCID: PMC10851782 DOI: 10.1167/iovs.65.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zi-Qin Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
15
|
Zhan K, Pan H, Zhou Z, Tang W, Ye Z, Huang S, Luo L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed Pharmacother 2023; 169:115876. [PMID: 37976888 DOI: 10.1016/j.biopha.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of RNAs that are more than 200 nucleotides without protein-coding potential. In recent years, more and more attention has been paid to the role of lncRNAs in cancer pathogenesis. LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is located on chromosome 11p15.5 with a total length of 91 kb and is highly expressed in various malignancies, which is closely related to tumor growth, lymph node metastasis, survival cycle and recurrence rate. In addition, KCNQ1OT1 is involved in the regulation of PI3K/AKT and Wnt/β-catenin signaling pathways. In this review, the mechanism and related progress of KCNQ1OT1 in different cancers were reviewed. It was found that KCNQ1OT1 can stabilize mRNA expression through sponging miRNA, which not only induced tumor cell proliferation, migration, invasion, drug resistance, epithelial-mesenchymal transition (EMT) and inhibited cell apoptosis in vitro, but also promoted tumor growth and metastasis in vivo. Therefore, as a new biomarker and therapeutic target, KCNQ1OT1 has broad prospects for the diagnosis and treatment of different cancers.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhang Zhou
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan 430000, China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China.
| |
Collapse
|
16
|
Wang S, Qiao C, Fang R, Yang S, Zhao G, Liu S, Li P. LncRNA CASC19: a novel oncogene involved in human cancer. Clin Transl Oncol 2023; 25:2841-2851. [PMID: 37029242 DOI: 10.1007/s12094-023-03165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Multiple studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of diverse cancers. Cancer susceptibility candidate 19 (CASC19), encoded by chromosome 8q24.21, is a newly discovered lncRNA that contains 324 nucleotides. CASC19 has been found to be significantly overexpressed in different human cancers, such as non-small cell lung carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, clear cell renal cell carcinoma, glioma, cervical cancer, and nasopharyngeal carcinoma. Moreover, dysregulation of CASC19 was closely associated with clinicopathological parameters and cancer progression. CASC19 regulates a variety of cell phenotypes, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial-mesenchymal transition, autophagy, and therapeutic resistance. In this study, we review recent studies on the characteristics and biological function of CASC19, as well as its role in human cancers. These findings suggest that CASC19 may be both a reliable biomarker and a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Shidong Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Chen Qiao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Rui Fang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China.
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, 100050, China.
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
17
|
GÜZEL TANOĞLU E, ADIGÜZEL S, TANOĞLU A, AYDIN ZB, HOCAOĞLU G, EBİNÇ S. Long noncoding RNAs in pancreas cancer: from biomarkers to therapeutic targets. Turk J Med Sci 2023; 53:1552-1564. [PMID: 38813489 PMCID: PMC10760575 DOI: 10.55730/1300-0144.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/12/2023] [Accepted: 09/09/2023] [Indexed: 05/31/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNA molecules with a heterogeneous structure consisting of 200 or more nucleotides. Because these noncoding RNAs are transcribed by RNA polymerase II, they have properties similar to messenger RNA (mRNA). Contrary to popular belief, the term "ncRNA" originated before the discovery of microRNAs. LncRNA genes are more numerous than protein-coding genes. They are the focus of current molecular research because of their pivotal roles in cancer-related processes such as cell proliferation, differentiation, and migration. The incidence of pancreatic cancer (PC) is increasing around the world and research on the molecular aspects of PC are growing. In this review, it is aimed to provide critical information about lncRNAs in PC, including the biological and oncological behaviors of lncRNAs in PC and their potential application in therapeutic strategies and as diagnostic tumor markers.
Collapse
Affiliation(s)
- Esra GÜZEL TANOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Seyfure ADIGÜZEL
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Alpaslan TANOĞLU
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine, Bahçeşehir University, İstanbul,
Turkiye
| | - Zehra Betül AYDIN
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Gülizar HOCAOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Samet EBİNÇ
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| |
Collapse
|
18
|
Nijim W, Moustafa M, Humble J, Al-Shabrawey M. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1230581. [PMID: 38983088 PMCID: PMC11182279 DOI: 10.3389/fopht.2023.1230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 07/11/2024]
Abstract
Diabetic retinopathy (DR) is a result of neurovacular insults from hyperglycemia in diabetes mellitus (DM), and it is one of the top causes of vision loss throughout the modern world. This review article explores the role endothelial to mesenchymal transition (EndMT) has on the pathogenesis of DR. EndMT contributes to the disruption of the blood-retinal barrier, vascular leakage, neovascularization, and fibrosis observed in DR. Risk factors and biomarkers associated with DR severity are discussed, highlighting the importance of early detection and targeted therapies. Current treatments primarily focus on anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation. However, emerging therapeutic strategies aimed at inhibiting EndMT and its downstream effects show promise in preventing the development and progression of DR. Understanding the molecular and cellular mechanisms underlying EndMT in DR provides valuable insights into the disease process and offers potential options for the development of potential treatments.
Collapse
Affiliation(s)
- Wasef Nijim
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Julia Humble
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
- Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
19
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Dong J, Wei Z, Zhu Z. LncRNA TSIX aggravates spinal cord injury by regulating the PI3K/AKT pathway via the miR-532-3p/DDOST axis. J Biochem Mol Toxicol 2023; 37:e23384. [PMID: 37155292 DOI: 10.1002/jbt.23384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Long noncoding RNA (lncRNA)-X-inactive-specific transcript (TSIX) expression is upregulated in spinal cord tissues following spinal cord injury (SCI). However, the role of lncRNA-TSIX in SCI remains elusive. SCI animal model was established using C57BL/6 mice. LncRNA TSIX and miR-532-3p expression were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Apoptosis, cell proliferation, and migration were evaluated by transferase dUTP nick end labeling staining, CCK-8, and Transwell assays, respectively. The interaction of miR-532-3p with lncRNA TSIX and DDOST was explored via a dual-luciferase reporter system. Hematoxylin-eosin staining and the Basso, Beattie, and Bresnahan locomotor rating (BBB) scale were performed to investigate SCI progression. The expression of the lncRNA TSIX was found to be significantly upregulated in the serum of SCI patients and spinal cord tissues of SCI mice. The overexpression of lncRNA TSIX enhanced spinal cord neural stem cell (SC-NSC) proliferation and migration in vitro while inhibiting apoptosis and inflammatory cell infiltration in vivo. Moreover, lncRNA TSIX acted as a molecular sponge for miR-532-3p, and the knockdown of miR-532-3p promoted proliferation and migration and inhibited apoptosis of SC-NSCs. Moreover, DDOST was found to be the downstream target of miR-532-3p, and DDOST overexpression showed a similar effect as miR-532-3p silencing on the proliferation, migration, and apoptosis of SC-NSCs. Furthermore, we found that lncRNA TSIX overexpression promoted the activation of the PI3K/AKT signaling pathway. LncRNA TSIX aggravates SCI by regulating the PI3K/AKT pathway via the miR-532-3p/DDOST axis, indicating potential applications for targeted therapy of SCI regeneration.
Collapse
Affiliation(s)
- Jiachun Dong
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zijian Wei
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopedic Surgery, Division of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Sato K, Hamada M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief Bioinform 2023; 24:bbad186. [PMID: 37232359 PMCID: PMC10359090 DOI: 10.1093/bib/bbad186] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences, the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures; however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA-protein interactions, has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine learning are also introducing technical innovations in the analysis of RNA-small molecule interactions for RNA-targeted drug discovery and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and will also discuss potential future avenues in the field of RNA informatics.
Collapse
Affiliation(s)
- Kengo Sato
- School of System Design and Technology, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
22
|
Nevola R, Tortorella G, Rosato V, Rinaldi L, Imbriani S, Perillo P, Mastrocinque D, La Montagna M, Russo A, Di Lorenzo G, Alfano M, Rocco M, Ricozzi C, Gjeloshi K, Sasso FC, Marfella R, Marrone A, Kondili LA, Esposito N, Claar E, Cozzolino D. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. BIOLOGY 2023; 12:984. [PMID: 37508414 PMCID: PMC10376683 DOI: 10.3390/biology12070984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Several chronic liver diseases are characterized by a clear gender disparity. Among them, hepatocellular carcinoma (HCC) shows significantly higher incidence rates in men than in women. The different epidemiological distribution of risk factors for liver disease and HCC only partially accounts for these gender differences. In fact, the liver is an organ with recognized sexual dysmorphism and is extremely sensitive to the action of androgens and estrogens. Sex hormones act by modulating the risk of developing HCC and influencing its aggressiveness, response to treatments, and prognosis. Furthermore, androgens and estrogens are able to modulate the action of other factors and cofactors of liver damage (e.g., chronic HBV infection, obesity), significantly influencing their carcinogenic power. The purpose of this review is to examine the factors related to the different gender distribution in the incidence of HCC as well as the pathophysiological mechanisms involved, with particular reference to the central role played by sex hormones.
Collapse
Affiliation(s)
- Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
23
|
Hu J, Zhang L, Zheng X, Wang G, Chen X, Hu Z, Chen Y, Wang X, Gu M, Hu S, Liu X, Jiao X, Peng D, Liu X. Long noncoding RNA #61 exerts a broad anti-influenza a virus effect by its long arm rings. Antiviral Res 2023; 215:105637. [PMID: 37196902 DOI: 10.1016/j.antiviral.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xia Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Li Z, Jin T, Yang R, Guo J, Niu Z, Gao H, Song X, Zhang Q, Ning Z, Ren L, Wang Y, Fan X, Liang H, Li T, He W. Long non-coding RNA PFI inhibits apoptosis of alveolar epithelial cells to alleviate lung injury via miR-328-3p/Creb1 axis. Exp Cell Res 2023:113685. [PMID: 37330182 DOI: 10.1016/j.yexcr.2023.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Acute lung injury (ALI), a common clinical type of critical illness, is an acute hypoxic respiratory insufficiency caused by the damage of alveolar epithelial cells and capillary endothelial cells. In a previous study, we reported a novel lncRNA, lncRNA PFI, which could protect against pulmonary fibrosis in pulmonary fibroblasts. The present study demonstrated that lncRNA PFI was downregulated in alveolar epithelial cell of mice injury lung tissues, and further investigated the role of lncRNA PFI in regulating inflammation-induced alveolar epithelial cell apoptosis. Overexpression of lncRNA PFI could partially abrogated bleomycin induced type II AECs injured. Subsequently, bioinformatic prediction revealed that lncRNA PFI might directly bind to miR-328-3p, and further AGO-2 RNA binding protein immunoprecipitation (RIP) assay confirmed their binding relationship. Furthermore, miR-328-3p promoted apoptosis in MLE-12 cells by limiting the activation of the Creb1, a protein correlated with cell apoptosis, whereas AMO-328-3p ablated the pro-apoptosis effect of silencing lncRNA PFI in MLE-12 cells. While miR-328-3p could also ablate the function of lncRNA PFI in bleomycin treated human lung epithelial cells. Enhanced expression of lncRNA PFI reversed the LPS-induced lung injury in mice. Overall, these data reveal that lncRNA PFI mitigated acute lung injury through miR-328-3p/Creb1 pathway in alveolar epithelial cells.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Huiying Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Xiaoying Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Qing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Zhiwei Ning
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Lingxue Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, 150081, PR China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
28
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
29
|
Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1050540. [PMID: 36777351 PMCID: PMC9911675 DOI: 10.3389/fendo.2023.1050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes and its complications represent a great burden on the global healthcare system. Diabetic complications are fundamentally diseases of the vasculature, with endothelial cells being the centerpiece of early hyperglycemia-induced changes. Endothelial-to-mesenchymal transition is a tightly regulated process that results in endothelial cells losing endothelial characteristics and developing mesenchymal traits. Although endothelial-to-mesenchymal transition has been found to occur within most of the major complications of diabetes, it has not been a major focus of study or a common target in the treatment or prevention of diabetic complications. In this review we summarize the importance of endothelial-to-mesenchymal transition in each major diabetic complication, examine specific mechanisms at play, and highlight potential mechanisms to prevent endothelial-to-mesenchymal transition in each of the major chronic complications of diabetes.
Collapse
|
30
|
Lv Y, Wang Y, Zhang Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum Cell 2023; 36:76-97. [PMID: 36181662 DOI: 10.1007/s13577-022-00799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA-miRNA-mRNA regulatory networks as biomarkers for the early diagnosis, epithelial-mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China. .,Department of Morphology, Medical College of China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
31
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
32
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
33
|
Gareev I, Kudriashov V, Sufianov A, Begliarzade S, Ilyasova T, Liang Y, Beylerli O. The role of long non-coding RNA ANRIL in the development of atherosclerosis. Noncoding RNA Res 2022; 7:212-216. [PMID: 36157350 PMCID: PMC9467859 DOI: 10.1016/j.ncrna.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is an important pathological basis of coronary heart disease, and the antisense non-coding RNA in the INK4 locus (ANRIL) is located in the genetically susceptible segment with the strongest correlation with it - the short arm 2 region 1 of chromosome 9 (Chr9p21). ANRIL can produce linear, circular and other transcripts through different transcriptional splicing methods, which can regulate the proliferation and apoptosis of related cells and closely related to the development of atherosclerotic plaques. Linear ANRIL can regulate proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as affecting on proliferation and the apoptosis of macrophages at the transcriptional level; circular ANRIL can affect on proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review we describe the evolutionary characteristics of ANRIL, the formation and structure of transcripts, and the mechanism by which each transcript regulates the proliferation and apoptosis of vascular cells and then participates in atherosclerosis.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | | | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sema Begliarzade
- Republican Clinical Perinatal Center, Republic of Bashkortostan, 450106, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan, Ufa, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
34
|
Bryl R, Piwocka O, Kawka E, Mozdziak P, Kempisty B, Knopik-Skrocka A. Cancer Stem Cells-The Insight into Non-Coding RNAs. Cells 2022; 11:cells11223699. [PMID: 36429127 PMCID: PMC9688207 DOI: 10.3390/cells11223699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since their initial identification three decades ago, there has been extensive research regarding cancer stem cells (CSCs). It is important to consider the biology of cancer stem cells with a particular focus on their phenotypic and metabolic plasticity, the most important signaling pathways, and non-coding RNAs (ncRNAs) regulating these cellular entities. Furthermore, the current status of therapeutic approaches against CSCs is an important consideration regarding employing the technology to improve human health. Cancer stem cells have claimed to be one of the most important group of cells for the development of several common cancers as they dictate features, such as resistance to radio- and chemotherapy, metastasis, and secondary tumor formation. Therapies which could target these cells may develop into an effective strategy for tumor eradication and a hope for patients for whom this disease remains uncurable.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Emilia Kawka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Medical University of Wrocław, 50-367 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Correspondence: or
| | - Agnieszka Knopik-Skrocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
35
|
Yang J, Qu T, Li Y, Ma J, Yu H. Biological role of long non-coding RNA FTX in cancer progression. Biomed Pharmacother 2022; 153:113446. [DOI: 10.1016/j.biopha.2022.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
|
36
|
Dong L, Zhang R, Huang Q, Shen Y, Li H, Yu S, Wu Q. Construction, bioinformatics analysis, and validation of competitive endogenous RNA networks in ulcerative colitis. Front Genet 2022; 13:951243. [PMID: 36061211 PMCID: PMC9428148 DOI: 10.3389/fgene.2022.951243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a common chronic disease of the digestive system. Recently, competitive endogenous RNAs (ceRNAs) have been increasingly used to reveal key mechanisms for the pathogenesis and treatment of UC. However, the role of ceRNA in UC pathogenesis has not been fully clarified. This study aimed to explore the mechanism of the lncRNA-miRNA-mRNA ceRNA network in UC and identify potential biomarkers and therapeutic targets. Materials and Methods: An integrative analysis of mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA) files downloaded from the Gene Expression Omnibus (GEO) was performed. Differentially expressed mRNA (DE-mRNAs), miRNA (DE-miRNAs), and lncRNA (DE-lncRNAs) were investigated between the normal and UC groups by the limma package. A weighted correlation network analysis (WGCNA) was used to identify the relative model for constructing the ceRNA network, and, concurrently, miRWalk and DIANA-LncBase databases were used for target prediction. Consecutively, the Gene Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway, and Reactome pathway enrichment analyses, protein-protein interaction (PPI) network, Cytohubba, and ClueGO were performed to identify hub genes. Additionally, we examined the immune infiltration characteristics of UC and the correlation between hub genes and immune cells using the immuCellAI database. Finally, the expression of potential biomarkers of ceRNA was validated via qRT-PCR in an experimental UC model induced by dextran sulfate sodium (DSS). Result: The ceRNA network was constructed by combining four mRNAs, two miRNAs, and two lncRNAs, and the receiver operating characteristic (ROC) analysis showed that two mRNAs (CTLA4 and STAT1) had high diagnostic accuracy (area under the curve [AUC] > 0.9). Furthermore, CTLA4 up-regulation was positively correlated with the infiltration of immune cells. Finally, as a result of this DSS-induced experimental UC model, CTLA4, MIAT, and several associate genes expression were consistent with the results of previous bioinformatics analysis, which proved our hypothesis. Conclusion: The investigation of the ceRNA network in this study could provide insight into UC pathogenesis. CTLA4, which has immune-related properties, can be a potential biomarker in UC, and MIAT/miR-422a/CTLA4 ceRNA networks may play important roles in UC.
Collapse
Affiliation(s)
- Longcong Dong
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruibin Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Huang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Shen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Li
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuguang Yu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaofeng Wu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Qiaofeng Wu,
| |
Collapse
|
37
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
38
|
Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022; 41:3385-3393. [PMID: 35597813 PMCID: PMC9203274 DOI: 10.1038/s41388-022-02353-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factors (IGFs) and their regulatory proteins—IGF receptors and binding proteins—are strongly implicated in cancer progression and modulate cell survival and proliferation, migration, angiogenesis and metastasis. By regulating the bioavailability of the type-1 IGF receptor (IGF1R) ligands, IGF-1 and IGF-2, the IGF binding proteins (IGFBP-1 to -6) play essential roles in cancer progression. IGFBPs also influence cell communications through pathways that are independent of IGF1R activation. Noncoding RNAs (ncRNAs), which encompass a variety of RNA types including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs), have roles in multiple oncogenic pathways, but their many points of intersection with IGF axis functions remain to be fully explored. This review examines the functional interactions of miRNAs and lncRNAs with IGFs and their binding proteins in cancer, and reveals how the IGF axis may mediate ncRNA actions that promote or suppress cancer. A better understanding of the links between ncRNA and IGF pathways may suggest new avenues for prognosis and therapeutic intervention in cancer. Further, by exploring examples of intersecting ncRNA-IGF pathways in non-cancer conditions, it is proposed that new opportunities for future discovery in cancer control may be generated.
Collapse
|