1
|
de Ávila RI, Ljungberg Silic L, Carreira‐Santos S, Merényi G, Bergendorff O, Zeller KS. In vitro characterisation of a novel rubber contact allergen in protective gloves. Contact Dermatitis 2025; 92:61-71. [PMID: 39183491 PMCID: PMC11669566 DOI: 10.1111/cod.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) from protective gloves is often caused by rubber additives, such as accelerators. However, while accelerator-free rubber gloves are available, they still cause ACD in some individuals. OBJECTIVES A new allergen, 2-cyаnоethyl dimethyldithiocarbamate, (CEDMC), has recently been identified in accelerator-free gloves, and we here provide a first in vitro characterisation of CEDMC in a dendritic cell (DC)-like cell model along with three reference sensitizer rubber chemicals, consisting of tetraethylthiuram disulfide (TETD) and two xanthogenates. METHODS Cellular responses after the exposure to the rubber chemicals were assessed using a transcriptomic approach, multiplex cytokine secretion profiling, and flow cytometry to determine DC model activation marker expression and apoptosis induction. RESULTS CEDMC and all other sensitizers were classified as strong skin sensitizers with the transcriptomic approach. They all significantly increased IL-8 secretion and exposure to all except one increased CD86 DC activation marker expression. When tested, CEDMC induced apoptosis, however, delayed compared to TETD. CONCLUSIONS The in vitro data corroborate CEDMC, TETD, and investigated xanthogenates as skin sensitizers. Transcriptomic analyses further reveal unique cellular responses induced by CEDMC, which together with future study can contribute to better understanding of cellular mechanisms underlying the sensitising capacity of rubber chemicals.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Department of ImmunotechnologyLund UniversityLundSweden
- Present address:
Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science ParkBedfordshireUK
| | - Linda Ljungberg Silic
- Department of Occupational and Environmental Dermatology (DOED)Lund University, Skåne University HospitalMalmöSweden
| | | | - Gábor Merényi
- Department of ImmunotechnologyLund UniversityLundSweden
| | - Ola Bergendorff
- Department of Occupational and Environmental Dermatology (DOED)Lund University, Skåne University HospitalMalmöSweden
| | | |
Collapse
|
2
|
Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int J Mol Sci 2023; 24:ijms24043410. [PMID: 36834821 PMCID: PMC9963995 DOI: 10.3390/ijms24043410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Heavy metals are defined as metals with relatively high density and atomic weight, and their various applications have raised serious concerns about the environmental impacts and potential human health effects. Chromium is an important heavy metal that is involved in biological metabolism, but Cr exposure can induce a severe impact on occupational workers or public health. In this study, we explore the toxic effects of Cr exposure through three exposure routes: dermal contact, inhalation, and ingestion. We propose the underlying toxicity mechanisms of Cr exposure based on transcriptomic data and various bioinformatic tools. Our study provides a comprehensive understanding of the toxicity mechanisms of different Cr exposure routes by diverse bioinformatics analyses.
Collapse
|
3
|
Gądarowska D, Kalka J, Daniel-Wójcik A, Mrzyk I. Alternative Methods for Skin-Sensitization Assessment. TOXICS 2022; 10:740. [PMID: 36548573 PMCID: PMC9783525 DOI: 10.3390/toxics10120740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods.
Collapse
Affiliation(s)
- Dominika Gądarowska
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Joanna Kalka
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Anna Daniel-Wójcik
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| |
Collapse
|
4
|
Iulini M, Maddalon A, Galbiati V, Corsini E. The Modified THP-1 Activation Assay for the In Vitro Identification of Drug-Inducing Systemic Hypersensitivity. FRONTIERS IN TOXICOLOGY 2022; 4:814050. [PMID: 35295210 PMCID: PMC8915845 DOI: 10.3389/ftox.2022.814050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
The development of new low molecular weight drugs has many chances of failure and is an expensive process. Currently, there are no screening methods and/or models to assess the hazard of hypersensitivity reactions to drugs (DHRs) in the preclinical phase. DHRs represent 6–15% of adverse drug reactions. Although rare, DHRs represent a serious health problem for predisposed individuals, resulting, in some cases, in life-threatening pathologies. To date, there are no in vitro or in vivo sensitive models able to predict the sensitizing potential of drugs in the preclinical tests, and these reactions are highlighted only after the drug has been placed on the market, affecting both population and public health. This article describes a novel approach methodology for the study of the sensitizing potential of drugs based on the use of the human promyelocytic cell line THP-1 as a surrogate for dendritic cells. The method is based on the upregulation of specific surface markers (CD86 and CD54) and on the production of IL-8. In our experience, the THP-1 activation assay allowed the correct identification of drugs known to induce systemic hypersensitivity in humans, including the one associated with specific HLAs. This method may help to discover possible systemic hypersensitivity reactions early in the preclinical phase of drug development.
Collapse
|
5
|
Zhang Y, de Graaf NPJ, Roffel S, Spiekstra SW, Rustemeyer T, Kleverlaan CJ, Feilzer AJ, Bontkes H, Deng D, Gibbs S. Patch test-relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivo. Contact Dermatitis 2021; 85:531-542. [PMID: 34268774 PMCID: PMC9291529 DOI: 10.1111/cod.13940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Background Metal alloys containing contact sensitizers (nickel, palladium, titanium) are extensively used in medical devices, in particular dentistry and orthopaedic surgery. The skin patch test is used to test for metal allergy. Objective To determine whether metal salts, when applied to freshly excised skin at patch test–relevant concentrations and using a method which mimics skin patch testing, cause in changes in the epidermis and dermis. Methods Tissue histology, apoptosis, metabolic activity, and inflammatory cytokine release were determined for two nickel salts, two palladium salts, and four titanium salts. Results Patch test–relevant concentrations of all metal salts caused localized cytotoxicity. This was observed as epidermis separation at the basement membrane zone, formation of vacuoles, apoptotic nuclei, decreased metabolic activity, and (pro)inflammatory cytokine release. Nickel(II) sulfate hexahydrate, nickel(II) chloride hexahydrate, titanium(IV) bis(ammonium lactato)dihydroxide, and calcium titanate were highly cytotoxic. Palladium(II) chloride, sodium tetrachloropalladate(II), titanium(IV) isopropoxide, and titanium(IV) dioxide showed mild cytotoxicity. Conclusion The patch test in itself may be damaging to the skin of the patient being tested. These results need further verification with biopsies obtained during clinical patch testing. The future challenge is to remain above the elicitation threshold at noncytotoxic metal concentrations.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Niels P J de Graaf
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam University Medical Centre location AMC, Amsterdam, The Netherlands
| | - Cees J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert J Feilzer
- Department of Dental Materials Science, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hetty Bontkes
- Unit Medical Immunology, Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Brans R, Jakasa I, Goc S, John SM, Kezic S. Stratum corneum levels of inflammatory mediators and natural moisturizing factor in patch test reactions to thiurams and fragrances and their possible role in discrimination between irritant and allergic reactions to hapten mixtures. Contact Dermatitis 2020; 84:299-307. [PMID: 33222241 DOI: 10.1111/cod.13746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patch test (PT) reactions to thiuram mix (TM) and fragrance mix (FM) I or II without concomitant reactions to their single constituents are potentially caused by the irritant properties of the mixes. OBJECTIVE Comparing inflammatory profiles of PT reactions to TM, FM I, FM II, and their constituents and assessing their potential in discrimination of irritant and allergic reactions. PATIENTS AND METHODS Levels of 14 cytokines and natural moisturizing factor (NMF) were determined in stratum corneum samples collected from PT reactions to TM, FM I or II, their constituents, and petrolatum (pet.) control sites in 36 individuals. RESULTS Levels of interleukin (IL)-16, chemokine (CXC motif) ligand (CXCL) 8, CXCL10, chemokine (CC motif) ligand (CCL) 17, and CCL22 were significantly increased in reactions (+, ++) to thiurams and fragrances compared to their petrolatum. controls, except for PT reactions to FM I/II with negative breakdown testing in which, however, decreased levels of NMF were observed. In doubtful reactions to FM I/II with negative breakdown testing, NMF was significantly lower than in petrolatum controls. CONCLUSIONS PT reactions to thiurams and fragrances indicate a Th2-skewed inflammation. The inflammatory profiles suggest that weak or doubtful FM I/II reactions without accompanying reaction to a constituent were irritant. IL-16 might be suitable to distinguish irritant from allergic reaction.
Collapse
Affiliation(s)
- Richard Brans
- Institute for Interdisciplinary Dermatologic Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Osnabrück, Germany.,Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sanja Goc
- Department for Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Swen M John
- Institute for Interdisciplinary Dermatologic Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Osnabrück, Germany.,Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Department of Public and Occupational Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Chemokines are a large group of low molecular weight cytokines that attract and activate leukocytes throughout the body and therefore have a key role in the framework of late-phase allergic responses. The purpose of this article is to provide an overview of the main chemokines involved in allergic conjunctivitis, their primary functions and their physiological roles, and therapies targeted at chemokines and their receptors for ocular allergic diseases. RECENT FINDINGS In recent years, there have been considerable advances in the understanding of ocular pathophysiology of ocular surface inflammatory diseases including both allergic eye diseases and dry eye syndrome. Several therapies being developed for dry eye inflammation are recognized as possible therapies for ocular allergic diseases as there are often common chemokines involved in both disease spectra. SUMMARY Chemokines represent an integral part of the late-phase cascade of ocular allergic inflammation. A deep understanding of specific chemokines and their interactions will help in targeting therapies to effectively manage ocular clinical findings and symptoms of allergic eye disease.
Collapse
|
8
|
Iulini M, Maddalon A, Galbiati V, Marinovich M, Corsini E. In vitro identification of drugs inducing systemic hypersensitivity reactions known in vivo to be associated with specific HLA genotypes. Toxicol In Vitro 2020; 68:104953. [PMID: 32730864 DOI: 10.1016/j.tiv.2020.104953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
Hypersensitivity drug reactions (HDRs) are common among drugs, despite this, there are no validated in vitro or in vivo methods for screening the sensitizing potential of drugs in the preclinical phase. We previously developed the THP-1 activation assay, based on CD86 upregulation and IL-8 production, for the in vitro identification of drugs able to induce selective dendritic cell activation. In this paper, we investigated the predictive capacity of the method toward drugs associated with HDRs for which a correlation with specific human leukocyte antigens (HLA) have been demonstrated. For that purpose, abacavir, carbamazepine and clozapine were used. Metformin was used as negative control. Dose- and time-course experiments were conducted. The surface markers CD86, CD54 and HLA-DR were evaluated by flow cytometry analysis, whereas IL-8 release by ELISA. Abacavir, carbamazepine and clozapine gave positive results with CD86 upregulation and/or IL-8 release, with abacavir also inducing HLA-DR. The test reveals the ability of drugs to induce dendritic cell activation (signals 1/2), that preceded the adaptive immune response, which will be manifested only in a minority of patients carrying the specific HLA genotypes. The idea is to integrate this simple method during drug development to identify the potential of drugs to induce hypersensitivity reactions in the pre-clinical phase.
Collapse
Affiliation(s)
- Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
9
|
Kimura Y, Fujimura C, Imagawa T, Lupisan SP, Saito-Obata M, Saito M, Oshitani H, Aiba S. Development of a novel in vitro assay to evaluate environmental water using an IL-8 reporter cell line. EXCLI JOURNAL 2020; 19:1054-1063. [PMID: 33013263 PMCID: PMC7527499 DOI: 10.17179/excli2020-2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022]
Abstract
The IL-8 luciferase reporter cell line, THP-G8 cells, used in the in vitro sensitization test, OECD442E, can respond to a variety of stimuli other than haptens, such as lipopolysaccharide (LPS), other bacterial toxins, and detergents. Considering these characteristics, we examined the ability of the IL-8 luciferase assay using THP-G8 cells to evaluate water pollution. We first stimulated THP-G8 cell with various Toll-like receptor (TLR) agonists and nucleotide-binding oligomerization domain-like receptor (NLR) agonists, and found that TLR1, 2, 4, 5, 6 agonists and NOD 1, 2 agonists significantly augmented IL-8 luciferase activity (IL8LA). Then, we examined the detection threshold of LPS by THP-G8 cells, and found it 0.4 EU/ml. Next, we examined whether THP-G8 cells can differently respond to a variety of sources of environmental water around Sendai, Japan and Manila, Philippine and whether there is a correlation between the IL8LA of different sources of water and their level of endotoxin assessed by the LAL assay. There was a clear trend that the IL8LA was lower in the upper stream and higher in the downstream in both Japan and Philippine. Moreover, there was a strong correlation between the IL8LA of the environmental water and its endotoxin level. Finally, using N-acetyl-L-cysteine, an antioxidant/radical scavenger, and polymyxin B that neutralizes endotoxin, we demonstrated that there was a difference in the suppressive effects by them between the water from Japan and that from Philippine. These data suggest the potential of the IL-8 luciferase assay for evaluating environmental water pollution both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Toshifumi Imagawa
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Socorro P Lupisan
- Research Institute for Tropical Medicine, FCC, Alabang, Muntinlupa 1781, Philippines
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
10
|
Marigliani B, Sehn FP, Silva JVMA, Balottin LBL, Augusto EDFP, Buehler AM. The Overt and Hidden Use of Animal-Derived Products in Alternative Methods for Skin Sensitisation: A Systematic Review. Altern Lab Anim 2020; 47:174-195. [PMID: 31902222 DOI: 10.1177/0261192919896361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro methods that can replace animal testing in the identification of skin sensitisers are now a reality. However, as cell culture and related techniques usually rely on animal-derived products, these methods may be failing to address the complete replacement of animals in safety assessment. The objective of this study was to identify the animal-derived products that are used as part of in vitro methods for skin sensitisation testing. Thus, a systematic review of 156 articles featuring 83 different in vitro methods was carried out and, from this review, the use of several animal-derived products from different species was identified, with the use of fetal bovine serum being cited in most of the methods (78%). The use of sera from other animals, monoclonal antibodies and animal proteins were also variously mentioned. While non-animal alternatives are available and methods free of animal-derived products are emerging, most of the current methods reported used at least one animal-derived product, which raises ethical and technical concerns. Therefore, to deliver technically and ethically better in vitro methods for the safety assessment of chemicals, more effort should be made to replace products of animal origin in existing methods and to avoid their use in the development of new method protocols.
Collapse
Affiliation(s)
- Bianca Marigliani
- Department of Research and Toxicology, Humane Society International (HSI), Washington, DC, USA
| | - Felipe Perraro Sehn
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Luciene Bottentuit López Balottin
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Elisabeth de Fatima Pires Augusto
- Department of Science and Technology, Science and Technology Institute, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Anna Maria Buehler
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
de Ávila RI, Lindstedt M, Valadares MC. The 21st Century movement within the area of skin sensitization assessment: From the animal context towards current human-relevant in vitro solutions. Regul Toxicol Pharmacol 2019; 108:104445. [PMID: 31430506 DOI: 10.1016/j.yrtph.2019.104445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
In a regulatory context, skin sensitization hazard and risk evaluations of manufactured products and their ingredients (e.g. cosmetics) are mandatory in several regions. Great efforts have been made within the field of 21st Century Toxicology to provide non-animal testing approaches to assess the skin allergy potential of materials (e.g. chemicals, mixtures, nanomaterials, particles). Mechanistic understanding of skin sensitization process through the adverse outcome pathway (AOP) has promoted the development of in vitro methods, demonstrating accuracies superior to the traditional animal testing. These in vitro testing approaches are based on one of the four AOP key events (KE) of skin sensitization: formation of immunogenic hapten-protein complexes (KE-1 or the molecular initiating event, MIE), inflammatory keratinocyte responses (KE-2), dendritic cell activation (KE-3), and T-lymphocyte activation and proliferation (KE-4). This update provides an overview of the historically used in vivo methods as well as the current in chemico and in cell methods with and without OECD guideline designations to analyze the progress towards human-relevant in vitro test methods for safety assessment of the skin allergenicity potential of materials. Here our focus is to review 96 in vitro testing approaches directed to the KEs of the skin sensitization AOP.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil
| | - Malin Lindstedt
- Department of Immunotechnology, Medicon Village, Lund University, Lund, Sweden
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil.
| |
Collapse
|
12
|
Kimber I, Agius R, Basketter DA, Corsini E, Cullinan P, Dearman RJ, Gimenez-Arnau E, Greenwell L, Hartung T, Kuper F, Maestrelli P, Roggen E, Rovida C. Chemical Respiratory Allergy: Opportunities for Hazard Identification and Characterisation. Altern Lab Anim 2019; 35:243-65. [PMID: 17559314 DOI: 10.1177/026119290703500212] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Kimber
- Syngenta Central Toxicology Laboratory, Macclesfield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Basketter D, Pease C, Kasting G, Kimber I, Casati S, Cronin M, Diembeck W, Gerberick F, Hadgraft J, Hartung T, Marty JP, Nikolaidis E, Patlewicz G, Roberts D, Roggen E, Rovida C, van de Sandt J. Skin Sensitisation and Epidermal Disposition: The Relevance of Epidermal Disposition for Sensitisation Hazard Identification and Risk Assessment. Altern Lab Anim 2019; 35:137-54. [PMID: 17411362 DOI: 10.1177/026119290703500124] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David Basketter
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee S, Greenstein T, Shi L, Maguire T, Schloss R, Yarmush M. Tri-culture system for pro-hapten sensitizer identification and potency classification. TECHNOLOGY 2018; 6:67-74. [PMID: 30519598 PMCID: PMC6276108 DOI: 10.1142/s233954781850005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1β, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Talia Greenstein
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
- Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital and the Shriners Burns Hospital, Boston, MA 02114, USA
| |
Collapse
|
15
|
Asakawa S, Onodera R, Kasai K, Kishimoto Y, Sato T, Segawa R, Mizuno N, Ogasawara K, Moriya T, Hiratsuka M, Hirasawa N. Nickel ions bind to HSP90β and enhance HIF-1α-mediated IL-8 expression. Toxicology 2018; 395:45-53. [PMID: 29355601 DOI: 10.1016/j.tox.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Nickel ions (Ni2+) eluted from biomedical devices cause inflammation and Ni allergy. Although Ni2+ and Co2+ elicit common effects, Ni2+ induces a generally stronger inflammatory reaction. However, the molecular mechanism by which Ni2+ and Co2+ induce such different responses remains to be elucidated. In the present study, we compared the effects of Ni2+ and Co2+ on the expression of interleukin (IL)-8 in human monocyte THP-1 cells. We report that NiCl2 but not CoCl2 induced the expression of IL-8; in contrast, CoCl2 elicited a higher expression of hypoxia-inducible factor-1α (HIF-1α). The NiCl2-induced expression of IL-8 in late phase was blocked by a HIF-1α inhibitor, PX-478, indicating that NiCl2 targets additional factors responsible for activating HIF-1α. To identify such targets, proteins that bound preferentially to Ni-NTA beads were analyzed by LC/MS/MS. The analysis yielded heat shock protein 90β (HSP90β) as a possible candidate. Furthermore, Ni2+ reduced the interaction of HSP90β with HIF-1α, and instead promoted the interaction between HIF-1α and HIF-1β, as well as the nuclear localization of HIF-1α. Using various deletion variants, we showed that Ni2+ could bind to the linker domain on HSP90β. These results suggest that HSP90β plays important roles in Ni2+-induced production of IL-8 and could be a potential target for the regulation of Ni2+-induced inflammation.
Collapse
Affiliation(s)
- Sanki Asakawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Onodera
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Koji Kasai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yu Kishimoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
16
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
17
|
Abstract
Over the recent years development toward assessing skin sensitization hazard has moved toward non-animal testing methods. These methods are based on the key events as described in the OECD Adverse Outcome Pathway (AOP) for skin sensitization initiated by covalent binding to proteins. As these individual methods address mainly one mechanistic event (key event) in the initiation of skin sensitization, combination of different methods are needed to conclude on the skin sensitization hazard. Validated and regulatory adopted (EU and OECD) in chemico/in vitro methods are available for KEs 1-3 and are presented here. This chapter also illustrates how individual test methods can be combined by providing two examples of defined approaches to testing and assessment for skin sensitization hazard identification and assessment.
Collapse
|
18
|
Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology 2018; 393:62-72. [DOI: 10.1016/j.tox.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
|
19
|
Williams MA, Cheadle C, Watkins T, Tailor A, Killedar S, Breysse P, Barnes KC, Georas SN. TLR2 and TLR4 as Potential Biomarkers of Environmental Particulate Matter Exposed Human Myeloid Dendritic Cells. Biomark Insights 2017. [DOI: 10.1177/117727190700200041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In many subjects who are genetically susceptible to asthma, exposure to environmental stimuli may exacerbate their condition. However, it is unknown how the expression and function of a family of pattern-recognition receptors called toll-like receptors (TLR) are affected by exposure to particulate pollution. TLRs serve a critical function in alerting the immune system of tissue damage or infection—the so-called “danger signals”. We are interested in the role that TLRs play in directing appropriate responses by innate immunity, particularly dendritic cells (DC), after exposing them to particulate pollution. Dendritic cells serve a pivotal role in directing host immunity. Thus, we hypothesized that alterations in TLR expression could be further explored as potential biomarkers of effect related to DC exposure to particulate pollution. We show some preliminary data that indicates that inhaled particulate pollution acts directly on DC by down-regulating TLR expression and altering the activation state of DC. While further studies are warranted, we suggest that alterations in TLR2 and TLR4 expression should be explored as potential biomarkers of DC exposure to environmental particulate pollution.
Collapse
Affiliation(s)
- Marc A. Williams
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - Chris Cheadle
- Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, U.S.A
| | - Tonya Watkins
- Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, U.S.A
| | - Anitaben Tailor
- Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, U.S.A
| | - Smruti Killedar
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - Patrick Breysse
- Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, U.S.A
| | - Kathleen C. Barnes
- Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland, U.S.A
| | - Steve N. Georas
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| |
Collapse
|
20
|
Narita K, Vo PTH, Yamamoto K, Kojima H, Itagaki H. Preventing false-negatives in the in vitro skin sensitization testing of acid anhydrides using interleukin-8 release assays. Toxicol In Vitro 2017; 42:69-75. [DOI: 10.1016/j.tiv.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
21
|
Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Jurakić-Tončic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 2017; 77:1-16. [DOI: 10.1111/cod.12789] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sjors A. Koppes
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
- Department of Dermatology-Allergology; VU University Medical Centre; 081 HV Amsterdam The Netherlands
| | - Kristiane A. Engebretsen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| | - Tove Agner
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | | | - Teresa Berents
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Johanna Brandner
- Department of Dermatology and Venerology; University Hospital Hamburg-Eppendorf; 20246 Hamburg Germany
| | - Richard Brans
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Maja-Lisa Clausen
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | - Edith Hummler
- Department of Pharmacology and Toxicology; University of Lausanne; 1011 Lausanne Switzerland
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry; University of Zagreb; 10000 Zagreb Croatia
| | - Ružica Jurakić-Tončic
- University Department of Dermatovenereology; Clinical Hospital Zagreb and School of Medicine; 10000 Zagreb Croatia
| | - Swen M. John
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Denis Khnykin
- Department of Pathology; Oslo University Hospital - Rikshospitalet; 0424 Oslo Norway
- Centre for Immune Regulation; University of Oslo; 0424 Oslo Norway
| | - Sonja Molin
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; 81377 München Germany
| | - Jan O. Holm
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Sari Suomela
- Department of Dermatology; Finnish Institute of Occupational Health; 00251 Helsinki Finland
| | - Hermann-Josef Thierse
- Department of Chemicals and Product Safety; German Federal Institute for Risk Assessment; 10589 Berlin Germany
- Laboratory for Immunology & Proteomics, Department of Dermatology and University Medical Centre Mannheim; University of Heidelberg; 68167 Mannheim Germany
| | - Sanja Kezic
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
| | - Stefan F. Martin
- Department of Dermatology, Allergy Research Group; Medical Centre - University of Freiburg; 79104 Freiburg Germany
| | - Jacob P. Thyssen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| |
Collapse
|
22
|
Rachmawati D, von Blomberg BME, Kleverlaan CJ, Scheper RJ, van Hoogstraten IMW. Immunostimulatory capacity of dental casting alloys on endotoxin responsiveness. J Prosthet Dent 2016; 117:677-684. [PMID: 27881328 DOI: 10.1016/j.prosdent.2016.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022]
Abstract
STATEMENT OF PROBLEM Oral metal exposure has been associated with systemic and local adverse reactions, probably due to elemental release from the alloys. Although supraphysiological concentrations of salts from dentally applied metals can activate innate cells through TLR4 (Ni, Co, Pd) and TLR3 (Au), whether direct exposure to solid alloys can also trigger innate immune reactivity is still unknown. PURPOSE The purpose of this in vitro study was to determine whether dental cast alloy specimens can activate innate cells and influence their responsiveness to bacterial endotoxin. MATERIAL AND METHODS Human monocyte-derived dendritic cells (MoDC) and THP-1 cells were cultured on top of different alloy specimens (Ni-Cr, Co-Cr, Pd-Cu, Pd-Ag, Ti-6Al-4V, amalgam, gold, and stainless steel) or in alloy-exposed culture medium with or without endotoxin (lipopolysaccharide [LPS]; Escherichia coli 055:B5). Interleukin-8 (IL-8) production was used as the parameter for innate stimulation and evaluated by enzyme-linked immunosorbent assay after 24 hours of culture. The statistical significance of the effects of various casting alloys on the secretion of IL-8 was analyzed by using the nonparametric Wilcoxon rank sum test (α=.05). RESULTS Dental cast alloys induced IL-8 production in MoDC and THP-1 cells, with Au and Pd-Cu providing the strongest stimulation. The alloy-exposed culture media tested contained sufficient stimulatory metal ions to induce detectable IL-8 production in THP-1 cells, except for the Ni-Cr and stainless steel exposed media. Au and Pd-Cu alloys were also most effective in potentiating LPS responsiveness as measured by IL-8 production. CONCLUSIONS Using an in vitro culture system to expose MoDC and THP-1 cells to different alloy specimens this study showed that contact with the solid alloys, in particular when they contain Pd or Au, can trigger innate immune responses and augment responsiveness to bacterial endotoxin.
Collapse
Affiliation(s)
- Dessy Rachmawati
- Postgraduate student, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; and Lecturer, Department of Biomedical Science, Faculty of Dentistry, University of Jember, Jember, Indonesia.
| | - B Mary E von Blomberg
- Medical Immunologist, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Kleverlaan
- Professor, Department of Dental Materials Science, Academic Center for Dentistry Amsterdam, VU University Amsterdam and University of Amsterdam, The Netherlands
| | - Rik J Scheper
- Professor, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingrid M W van Hoogstraten
- Associate Professor, Medical Immunologist, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Gölz L, Buerfent BC, Hofmann A, Rühl H, Fricker N, Stamminger W, Oldenburg J, Deschner J, Hoerauf A, Nöthen MM, Schumacher J, Hübner MP, Jäger A. Genome-wide transcriptome induced by nickel in human monocytes. Acta Biomater 2016; 43:369-382. [PMID: 27477848 DOI: 10.1016/j.actbio.2016.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Nickel-containing alloys are frequently used in the biomedical field, although, owing to corrosive processes metal ion leaching is inevitable. Due to nickel ion (Ni(2+)) leaching several adverse effects are described in the literature. However, only a few studies evaluated the genetic profile of Ni(2+) in human cells which is of great importance since nickel-induced effects differ between humans and mice as a result of species-specific receptor variability. Thus, we investigated gene expression induced by Ni(2+)in human monocytes using a transcriptome-wide approach determining new target genes implicated in nickel-induced pathologies. Monocytes were isolated from healthy volunteers of Central European origin using stringent inclusion criteria. Cells were challenged with different Ni(2+) concentrations. Array-based gene expression analysis was performed comprising more than 47,000 transcripts followed by pathway analyses. Transcriptional data were validated by protein and cell surface markers. Ni(2+) significantly influenced the expression of 1385 transcripts in a dose-dependent manner. Apart from known targets (CCL20↑, PTGS2↑, MTs↑, SLCs↑), we identified new candidates implicated in Ni(2+)-elicited processes (various microRNAs↑, INSIG1↑, NAMPT↑, MS4A6A↓, DHRS9↓). Several of these transcripts correspond to immunity, inflammation and were shown to be involved in cellular reactions related to hypersensitivity, cancer, colitis, and encephalitis. Moreover, 459 canonical pathways/signaling, 500 pathologies and 2687 upstream regulators were detected. Protein results validated our findings. To our knowledge, the present systematic transcriptome-wide expression study is the first which explored Ni(2+)-elicited cell responses in human primary monocytes identifying new target genes, pathways and upstream regulators of relevance to diagnostic and therapeutic strategies. STATEMENT OF SIGNIFICANCE Nickel is widely applied in the biomedical field, although several adverse effects are documented in the literature due to nickel ion (Ni(2+)) leaching. In humans, allergic reactions like contact dermatitis are the most common adverse effect to Ni(2+), whereas serious concerns relate to possible systemic and carcinogenic activities. Using a systematic genome-wide transcriptional approach in human primary monocytes unveil new target genes, pathways and upstream regulators implicated in nickel-elicited immune response which are of significance to diagnostic and therapeutic strategies. This approach provides new information of how host-derived immune response contributes to the interaction with antigens and supports the interplay between metal ions and systemic diseases.
Collapse
|
24
|
Skin sensitizer identification by IL-8 secretion and CD86 expression on THP-1 cells. Toxicol In Vitro 2015; 30:318-24. [DOI: 10.1016/j.tiv.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
|
25
|
Dental metal-induced innate reactivity in keratinocytes. Toxicol In Vitro 2015; 30:325-30. [DOI: 10.1016/j.tiv.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
|
26
|
Curtis A, Morton J, Fraser S, Harding AH, Prideaux B, Clench M, Warren ND, Evans GS. Can the KG1 cell line be used as a model of dendritic cells and discriminate the sensitising potential of chemicals? Toxicol Lett 2015; 239:32-40. [PMID: 26260117 DOI: 10.1016/j.toxlet.2015.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
The KG1 myeloid leukaemia was used as source of dendritic cells (DC) to discriminate between respiratory and contact sensitising chemicals. A cocktail of cytokines was used to differentiate KG1 to dendritic like cells (termed dKG1) and the effects of nine chemicals (respiratory and contact sensitisers) and an irritant control on surface marker expression, 'antigen presenting' function and cytokine expression investigated. The stability of these chemicals when dissolved was characterised using MALDI ToF MS. A Hill plot model was used with the cellular viability data to quantify the lethal dose 50% (LD50) and a maximum sub toxic concentration of each chemical defined. Cytokine expression by the treated dKG1 was quantified using multiplex immunobead analysis. Whilst dKG1 cells were morphologically similar to DCs, expression of specific surface markers was not typical for DCs derived from healthy precursor cells. When the chemicals were applied at defined sub toxic doses no effects on dKG1 phenotype, function, or cytokine expression, attributable to the sensitisation properties were discriminated. However, dKG1 cells were much more sensitive to the toxic effects of these chemicals compared to the parent KG1 cells. Only 4 of the 9 chemicals tested were stable when dissolved indicating that the effect of sensitising chemicals on antigen presenting cells may be related to species other than the parent compound.
Collapse
Affiliation(s)
- Angela Curtis
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Jackie Morton
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Susan Fraser
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Anne-Helen Harding
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Brendan Prideaux
- Biomedical Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - Malcom Clench
- Biomedical Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - Nicholas D Warren
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Gareth S Evans
- Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
| |
Collapse
|
27
|
Optimization of the THP-1 activation assay to detect pharmaceuticals with potential to cause immune mediated drug reactions. Toxicol In Vitro 2015; 29:1339-49. [DOI: 10.1016/j.tiv.2015.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 11/17/2022]
|
28
|
Reporter cell lines for skin sensitization testing. Arch Toxicol 2015; 89:1645-68. [DOI: 10.1007/s00204-015-1555-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
|
29
|
Krutz NL, Hennen J, Korb C, Schellenberger MT, Gerberick GF, Blömeke B. Activation of the Endoperoxide Ascaridole Modulates Its Sensitizing Capacity. Toxicol Sci 2015; 147:515-23. [DOI: 10.1093/toxsci/kfv148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
30
|
Kimura Y, Fujimura C, Ito Y, Takahashi T, Nakajima Y, Ohmiya Y, Aiba S. Optimization of the IL-8 Luc assay as an in vitro test for skin sensitization. Toxicol In Vitro 2015; 29:1816-30. [PMID: 26187477 DOI: 10.1016/j.tiv.2015.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023]
Abstract
We previously reported a dataset of the IL-8 Luc assay covering reference chemicals published by ECVAM, in which the effects of chemicals on IL-8 promoter activity were evaluated by an IL-8 reporter cell line, THP-G8 cells. To clarify its performance, we created another dataset of 88 sensitizers and 34 non-sensitizers. Simultaneously, to improve its performance, we changed the incubation time from 5 h to 16 h, deleted the criterion regarding the effects of N-acetylcysteine, and set an exclusion criterion for detergents. These modifications significantly improved its performance. In addition, we examined the following three criteria to judge chemicals as sensitizers: Criterion 1: Fold induction of SLO luciferase activity (FlnSLO-LA)⩾1.4, Criterion 2: the lower limit of the 95% confidence interval of FInSLO-LA⩾1.0, Criterion 3: the intersection of criteria 1 and 2. Among them, Criterion 1 produced the best performance, demonstrating that the accuracy, sensitivity and specificity were 81%, 79%, and 90%, respectively. In addition, we found that the IL-8 Luc assay solubilizing chemicals with X-VIVO substantially improved its performance. Finally, the IL-8 Luc assay combined with DPRA and DEREK could improve substantially its performance. These data suggest that the IL-8 Luc assay is a promising test method to screen skin sensitizers.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yumiko Ito
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yoshihiro Nakajima
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yoshihiro Ohmiya
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| |
Collapse
|
31
|
Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury). Toxicol In Vitro 2015; 29:363-9. [DOI: 10.1016/j.tiv.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022]
|
32
|
Lee S, Dong DX, Jindal R, Maguire T, Mitra B, Schloss R, Yarmush M. Predicting full thickness skin sensitization using a support vector machine. Toxicol In Vitro 2014; 28:1413-23. [PMID: 25025180 PMCID: PMC4470375 DOI: 10.1016/j.tiv.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022]
Abstract
To assess the public's propensity for allergic contact dermatitis (ACD), many alternatives to in vivo chemical screening have been developed which generally incorporate a small panel of cell surface and secreted dendritic cell biomarkers. However, given the underlying complexity of ACD, one cell type and limited cellular metrics may be insufficient to predict contact sensitizers accurately. To identify a molecular signature that can further characterize sensitization, we developed a novel system using RealSkin, a full thickness skin equivalent, in co-culture with MUTZ-3 derived Langerhan's cells. This system was used to distinguish a model moderate pro-hapten isoeugenol (IE) and a model strong pre-hapten p-phenylenediamine (PPD) from irritant, salicylic acid (SA). Commonly evaluated metrics such as CD86, CD54, and IL-8 secretion were assessed, in concert with a 27-cytokine multi-plex screen and a functional chemotaxis assay. Data were analyzed with feature selection methods using ANOVA, hierarchical cluster analysis, and a support vector machine to identify the best molecular signature for sensitization. A panel consisting of IL-12, IL-9, VEGF, and IFN-γ predicted sensitization with over 90% accuracy using this co-culture system analysis. Thus, a multi-metric approach that has the potential to identify a molecular signature may be more predictive of contact sensitization.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - David Xu Dong
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States; Center for Engineering in Medicine and the Department of Surgery, Massachusettes General Hospital and the Shriners Burns Hospital, Boston, MA 02114, United States.
| |
Collapse
|
33
|
Spiewak R, Pietowska J, Curzytek K. Nickel: a unique allergen – from molecular structure to European legislation. Expert Rev Clin Immunol 2014; 3:851-9. [DOI: 10.1586/1744666x.3.6.851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Cytokines and chemokines in irritant contact dermatitis. Mediators Inflamm 2013; 2013:916497. [PMID: 24371376 PMCID: PMC3858878 DOI: 10.1155/2013/916497] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022] Open
Abstract
Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences between allergic contact dermatitis and irritant contact dermatitis.
Collapse
|
35
|
Corsini E, Galbiati V, Esser PR, Pinto A, Racchi M, Marinovich M, Martin SF, Galli CL. Role of PKC-β in chemical allergen-induced CD86 expression and IL-8 release in THP-1 cells. Arch Toxicol 2013; 88:415-24. [PMID: 24136171 DOI: 10.1007/s00204-013-1144-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
We previously demonstrated an age-related decrease in receptor for activated C-kinase (RACK-1) expression and functional deficit in Langerhans cells' responsiveness. This defect specifically involves the translocation of protein kinase C (PKC)-β. The purpose of this study was to investigate the role of RACK-1 and PKC-β in chemical allergen-induced CD86 expression and IL-8 release in the human promyelocytic cell line THP-1 and primary human dendritic cells (DC). Dinitrochlorobenzene, p-phenylenediamine and diethyl maleate were used as contact allergens. The selective cell-permeable inhibitor of PKC-β and the broad PKC inhibitor GF109203X completely prevented chemical allergen- or lipopolysaccharide (LPS)-induced CD86 expression and significantly modulated IL-8 release (50 % reduction). The selective cell-permeable inhibitor of PKC-ε (also known to bind to RACK-1) failed to modulate allergen- or LPS-induced CD86 expression or allergen-induced IL-8 release, while modulating LPS-induced IL-8 release. The use of a RACK-1 pseudosubstrate, which directly activates PKC-β, resulted in dose-related increase in CD86 expression and IL-8 release. Similar results were obtained with human DC, confirming the relevance of results obtained in THP-1 cells. Overall, our findings demonstrate the role of PKC-β and RACK-1 in allergen-induced CD86 expression and IL-8 production, supporting a central role of PKC-β in the initiation of chemical allergen-induced DC activation.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
van den Broek LJ, Kroeze KL, Waaijman T, Breetveld M, Sampat-Sardjoepersad SC, Niessen FB, Middelkoop E, Scheper RJ, Gibbs S. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27. Tissue Eng Part A 2013; 20:197-209. [PMID: 23980822 DOI: 10.1089/ten.tea.2013.0123] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation factors. Our findings have implications for the choice of cell type (ASC or dermal fibroblast) to be used in regenerative medicine strategies and indicate the importance of taking into account interactions with the wound bed when developing advanced therapies for difficult-to-close cutaneous wounds.
Collapse
Affiliation(s)
- Lenie J van den Broek
- 1 Department of Dermatology, VU University Medical Center , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hitzler M, Bergert A, Luch A, Peiser M. Evaluation of selected biomarkers for the detection of chemical sensitization in human skin: A comparative study applying THP-1, MUTZ-3 and primary dendritic cells in culture. Toxicol In Vitro 2013; 27:1659-69. [DOI: 10.1016/j.tiv.2013.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 12/26/2022]
|
38
|
Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BME, Scheper RJ, van Hoogstraten IMW. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis 2013; 68:331-8. [DOI: 10.1111/cod.12042] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Neves BM, Rosa SC, Martins JD, Silva A, Gonçalo M, Lopes MC, Cruz MT. Development of an in Vitro Dendritic Cell-Based Test for Skin Sensitizer Identification. Chem Res Toxicol 2013; 26:368-78. [DOI: 10.1021/tx300472d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bruno Miguel Neves
- Department of Chemistry, Mass
Spectrometry Center, QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - Susana Carvalho Rosa
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - João Demétrio Martins
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
| | - Margarida Gonçalo
- Faculty
of Medicine, Dermatology
Unit, University Hospital of Coimbra, 3000-075
Coimbra, Portugal
| | - Maria Celeste Lopes
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| | - Maria Teresa Cruz
- Center for Neuroscience and
Cell Biology, University of Coimbra, 3004-517
Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548
Coimbra, Portugal
| |
Collapse
|
40
|
Development of an in vitro skin sensitization test based on ROS production in THP-1 cells. Toxicol In Vitro 2013; 27:857-63. [DOI: 10.1016/j.tiv.2012.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/30/2012] [Accepted: 12/24/2012] [Indexed: 11/22/2022]
|
41
|
Carney EW, Settivari R. Predictive Toxicology. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN PRECLINICAL DRUG DEVELOPMENT 2013:777-806. [DOI: 10.1016/b978-0-12-387815-1.00033-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R. Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 2012; 86:1273-95. [PMID: 22707154 DOI: 10.1007/s00204-012-0867-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022]
Abstract
Contact allergies are complex diseases, and it is estimated that 15-20 % of the general population suffers from contact allergy, with increasing prevalence. Evaluation of the sensitization potential of a substance is usually carried out in animal models. Nowadays, there is much interest in reducing and ultimately replacing current animal tests. Furthermore, as of 2013, the EU has posed a ban on animal testing of cosmetic ingredients that includes skin sensitization. Therefore, predictive and robust in vitro tests are urgently needed. In order to establish alternatives to animal testing, the in vitro tests must mimic the very complex interactions between the sensitizing chemical and the different parts of the immune system. This review article summarizes recent efforts to develop in vitro tests for predicting skin sensitizers. Cell-based assays, in chemico methods and, to a lesser extent, in silico methods are presented together with a discussion of their current status. With considerable progress having been achieved during the last years, the rationale today is that data from different non-animal test methods will have to be combined in order to obtain reliable hazard and potency information on potential skin sensitizers.
Collapse
|
43
|
Van Den Heuvel RL, Lambrechts N, Verstraelen S, Nelissen IC, Schoeters GER. Chemical sensitization and allergotoxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:289-314. [PMID: 22945573 DOI: 10.1007/978-3-7643-8340-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chemical sensitization remains an important environmental and occupational health issue. A wide range of substances have been shown to possess the ability to induce skin sensitization or respiratory sensitization. As a consequence, there is a need to have appropriate methods to identify sensitizing agents. Although a considerable investment has been made in exploring opportunities to develop methods for hazard identification and characterization, there are, as yet, no validated nonanimal methods available. A state of the art of the different in vitro approaches to identify contact and respiratory capacity of chemicals is covered in this chapter.
Collapse
Affiliation(s)
- Rosette L Van Den Heuvel
- Environmental Risk and Health Unit-Toxicology, Flemish Institute for Technological Research (VITO N.V.), Centre for Advanced R&D on Alternative Methods (CARDAM), Boeretang 200, 2400, Mol, Belgium,
| | | | | | | | | |
Collapse
|
44
|
Inter-laboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicol In Vitro 2011; 25:2124-34. [DOI: 10.1016/j.tiv.2011.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/21/2022]
|
45
|
Kireche M, Peiffer JL, Antonios D, Fabre I, Giménez-Arnau E, Pallardy M, Lepoittevin JP, Ourlin JC. Evidence for Chemical and Cellular Reactivities of the Formaldehyde Releaser Bronopol, Independent of Formaldehyde Release. Chem Res Toxicol 2011; 24:2115-28. [DOI: 10.1021/tx2002542] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mustapha Kireche
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Jean-Luc Peiffer
- AFSSAPS, Unité BCM/DLC, 635 rue de la garenne, 34740 Vendargues, France
| | - Diane Antonios
- Universud, INSERM UMR 996, Faculty of Pharmacy, 5 rue JB Clément, 92290 Châtenay-Malabry, France
| | - Isabelle Fabre
- AFSSAPS, Unité BCM/DLC, 635 rue de la garenne, 34740 Vendargues, France
| | - Elena Giménez-Arnau
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Marc Pallardy
- Universud, INSERM UMR 996, Faculty of Pharmacy, 5 rue JB Clément, 92290 Châtenay-Malabry, France
| | - Jean-Pierre Lepoittevin
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | | |
Collapse
|
46
|
Peiser M, Tralau T, Heidler J, Api AM, Arts JHE, Basketter DA, English J, Diepgen TL, Fuhlbrigge RC, Gaspari AA, Johansen JD, Karlberg AT, Kimber I, Lepoittevin JP, Liebsch M, Maibach HI, Martin SF, Merk HF, Platzek T, Rustemeyer T, Schnuch A, Vandebriel RJ, White IR, Luch A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 2011; 69:763-81. [PMID: 21997384 PMCID: PMC3276771 DOI: 10.1007/s00018-011-0846-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German ‘Federal Institute for Risk Assessment’ hosted an ‘International Workshop on Contact Dermatitis’. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15–20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed.
Collapse
Affiliation(s)
- M. Peiser
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Tralau
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - J. Heidler
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - A. M. Api
- Research Institute for Fragrance Materials, Hackensack, NJ USA
| | | | | | - J. English
- Nottingham University Hospitals, Nottingham, UK
| | - T. L. Diepgen
- Department of Social Medicine, Occupational and Environmental Dermatology, University of Heidelberg, Heidelberg, Germany
| | | | - A. A. Gaspari
- School of Medicine, University of Maryland, Baltimore, MD USA
| | - J. D. Johansen
- Department of Derma-allergology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A. T. Karlberg
- Department of Chemistry, Dermatochemistry and Skin Allergy, University of Gothenburg, Gothenburg, Sweden
| | - I. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - M. Liebsch
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - H. I. Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA USA
| | - S. F. Martin
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - H. F. Merk
- Department of Dermatology and Allergology, University Hospitals Aachen, Aachen, Germany
| | - T. Platzek
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
| | - T. Rustemeyer
- VU University Medical Center, Amsterdam, The Netherlands
| | - A. Schnuch
- Department of Dermatology, University of Göttingen, Göttingen, Germany
| | - R. J. Vandebriel
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - I. R. White
- St. John’s Institute of Dermatology, St. Thomas’ Hospital, London, UK
| | - A. Luch
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Thielallee 88-92, 14195 Berlin, Germany
- Department of Experimental Toxicology and ZEBET, Center for Alternatives to Animal Testing, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
47
|
Takahashi T, Kimura Y, Saito R, Nakajima Y, Ohmiya Y, Yamasaki K, Aiba S. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci 2011; 124:359-69. [PMID: 21920952 DOI: 10.1093/toxsci/kfr237] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.
Collapse
Affiliation(s)
- Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Skazik C, Heise R, Ott H, Czaja K, Marquardt Y, Merk HF, Baron JM. Active transport of contact allergens in human monocyte-derived dendritic cells is mediated by multidrug resistance related proteins. Arch Biochem Biophys 2011; 508:212-6. [PMID: 21284934 DOI: 10.1016/j.abb.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 01/19/2023]
Abstract
The multidrug resistance related proteins (MRPs) function as efflux transporters of a variety of large organic anions or their conjugates. In recent studies we demonstrated that antigen-presenting cells express a specific pattern of MRPs. MRP-mediated efflux activity of human monocyte-derived dendritic cells (moDCs) was analyzed using an in vitro transport assay. The efflux transport of radiolabeled contact allergens was inhibited using the specific MRP inhibitor indomethacin. Treatment with indomethacin increased intracellular concentration of [³H] eugenol and [³H] isoeugenol in moDCs. In addition by using MRP1 expressing inside-out membrane vesicles we revealed that the transport of eugenol is mediated by MRP1. Human DCs were employed to assess the sensitizing potential of contact allergens and alters their cytokine gene expression profile. Hence, to survey the functionality of indomethacin after stimulation with contact allergens IL-8 and TRIM16 regulation was measured by a DC-based in vitro assay. Incubation with isoeugenol after pre-treatment with indomethacin leads to increased IL-8 and TRIM16 gene expression. These results strongly support the functional role of MRPs in the active efflux of contact allergens also in antigen-presenting cells like moDCs, a novel mechanism which could possibly play a role in the pathogenesis of contact allergy.
Collapse
Affiliation(s)
- Claudia Skazik
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Andreas N, Caroline B, Leslie F, Frank G, Kimberly N, Allison H, Heather I, Robert L, Stefan O, Hendrik R, Andreas S, Roger E. The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol In Vitro 2010; 25:733-44. [PMID: 21195160 DOI: 10.1016/j.tiv.2010.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/06/2010] [Accepted: 12/20/2010] [Indexed: 11/29/2022]
Abstract
Due to regulatory constraints and ethical considerations, research on alternatives to animal testing to predict the skin sensitization potential of novel chemicals has gained a high priority. Accordingly, different in vitro, in silico and in chemico approaches have been described in the scientific literature to achieve this goal. To replace regulatory approved animal tests, these alternatives need to be transferable to other labs, their within and between laboratory reproducibility must be assured, and their predictivity should be high. The KeratinoSens assay is a cell-based reporter gene assay to screen substances with a full dose-response assessment. It is based on a stable transgenic keratinocyte cell line. The induction of a luciferase gene under the control of the antioxidant response element (ARE) derived from the human AKR1C2 gene is determined. Here we report on the results of a ring-study with five laboratories performing the KeratinoSens assay on a set of 28 test substances. The assay was found to be easily transferable to all laboratories. Overall both the qualitative (sensitizer/non-sensitizer categorization) and the quantitative (concentration for significant gene induction) results were reproducible between laboratories. A detailed analysis of the transferability, the within- and between laboratory reproducibility and the predictivity is presented.
Collapse
Affiliation(s)
- Natsch Andreas
- Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|