1
|
Sun L, Zheng M, Gao Y, Brigstock DR, Gao R. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism. Eur J Pharmacol 2024; 967:176374. [PMID: 38309676 DOI: 10.1016/j.ejphar.2024.176374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TβRⅡ, PDGFRβ, β-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-β1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and is essential for development and growth as well as cellular metabolism. Through genomic and nongenomic actions, RA regulates a variety of physiological functions. Dysregulation of RA signaling is associated with many diseases. Targeting RA signaling has been proven valuable to human health. All-trans retinoic acid (AtRA) and anthracycline-based chemotherapy are the standard treatment of acute promyelocytic leukemia (APL). Both human and animal studies have shown a significant relationship between RA signaling and the development and progression of nonalcoholic fatty liver disease (NAFLD). In this review article, we will first summarize vitamin A metabolism and then focus on the role of RA signaling in NAFLD. AtRA inhibits the development and progression of NAFLD via regulating lipid metabolism, inflammation, thermogenesis, etc.
Collapse
Affiliation(s)
- Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| |
Collapse
|
3
|
Modulation of adipose inflammation by cellular retinoic acid-binding protein 1. Int J Obes (Lond) 2022; 46:1759-1769. [PMID: 35794192 PMCID: PMC9492549 DOI: 10.1038/s41366-022-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Objectives Obesity, a metabolic syndrome, is known to be related to inflammation, especially adipose tissue inflammation. Cellular interactions within the expanded white adipose tissue (WAT) in obesity contribute to inflammation and studies have suggested that inflammation is triggered by inflamed adipocytes that recruit M1 macrophages into WAT. What causes accumulation of unhealthy adipocytes is an important topic of investigation. This study aims to understand the action of Cellular Retinoic Acid Binding Protein 1 (CRABP1) in WAT inflammation. Methods Eight weeks-old wild type (WT) and Crabp1 knockout (CKO) mice were fed with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Body weight and food intake were monitored. WATs and serum were collected for cellular and molecular analyses to determine affected signaling pathways. In cell culture studies, primary adipocyte differentiation and bone marrow-derived macrophages (BMDM) were used to examine adipocytes’ effects, mediated by CRABP1, in macrophage polarization. The 3T3L1-adipocyte was used to validate relevant signaling pathways. Results CKO mice developed an obese phenotype, more severely under high-fat diet (HFD) feeding. Further, CKO’s WAT exhibited a more severe inflammatory state as compared to wild type (WT) WAT, with a significantly expanded M1-like macrophage population. However, this was not caused by intrinsic defects of CKO macrophages. Rather, CKO adipocytes produced a significantly reduced level of adiponectin and had significantly lowered mitochondrial DNA content. CKO adipocyte-conditioned medium, compared to WT control, inhibited M2-like (CD206+) macrophage polarization. Mechanistically, defects in CKO adipocytes involved the ERK1/2 signaling pathway that could be modulated by CRABP1. Conclusions This study shows that CRABP1 plays a protective role against HFD-induced WAT inflammation through, in part, its regulation of adiponectin production and mitochondrial homeostasis in adipocytes, thereby modulating macrophage polarization in WAT to control its inflammatory potential.
Collapse
|
4
|
Wang Y, Song X, Geng Y. Effects of IC 50 dose of retinol on metabolomics of RAW264.7 cells. J Food Biochem 2020; 44:e13327. [PMID: 32539219 DOI: 10.1111/jfbc.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Vitamin A is one of the most multifunctional vitamins in normal human physiology and is involved in several basic physiological processes from embryonic development to adulthood, such as embryogenesis, vision, immunity, cell differentiation, and proliferation. In this study, we conducted 1 H- NMR to evaluate the metabolomic changes in RAW264.7 cells after treatment with retinol at an IC50 dose to identify its effects on the differential metabolites and main metabolic pathways. Our results showed that the IC50 dose (140 μM) of retinol affected the metabolism of RAW264.7 cells, with a total of 22 differential metabolites identified via 1 H-NMR, including amino acids, sugars, organic acids, glutathione, glycerin, and creatine. Additionally, multiple metabolic pathways were affected by retinol treatment, including downregulation of amino acid biosynthesis, protein synthesis, and pyruvate metabolism. We speculate that the cytotoxicity of retinol at the IC50 dose is attributed to mitochondrial dysfunction as a result of oxidative stress or lipid peroxidation. PRACTICAL APPLICATIONS: With the general improvement of people's living standards, people use dietary supplements to improve the level of retinol to prevent non-specific diseases. But there are more and more cases of acute or chronic poisoning caused by excessive intake of vitamin A. Therefore, it is necessary to study the toxicity of vitamin A, and more attention should be paid to the excessive intake of vitamin A. From the perspective of metabolomics, this experiment studies the adverse effects of high dose retinol through the changes of metabolites and metabolic pathways at the cellular level. This study will assist further analyses of the toxic mechanism of excessive retinol as fortified foods and nutrient supplementation.
Collapse
Affiliation(s)
- Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Kim SM, Yokoyama T, Ng D, Ulu F, Yamazaki Y. Retinoic acid-stimulated ERK1/2 pathway regulates meiotic initiation in cultured fetal germ cells. PLoS One 2019; 14:e0224628. [PMID: 31682623 PMCID: PMC6827903 DOI: 10.1371/journal.pone.0224628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
In murine fetal germ cells, retinoic acid (RA) is an extrinsic cue for meiotic initiation that stimulates transcriptional activation of the Stimulated by retinoic acid gene 8 (Stra8), which is required for entry of germ cells into meiotic prophase I. Canonically, the biological activities of RA are mediated by nuclear RA receptors. Recent studies in somatic cells found that RA noncanonically stimulates intracellular signal transduction pathways to regulate multiple cellular processes. In this study, using a germ cell culture system, we investigated (1) whether RA treatment activates any mitogen-activated protein kinase (MAPK) pathways in fetal germ cells at the time of sex differentiation, and (2) if this is the case, whether the corresponding RA-stimulated signaling pathway regulates Stra8 expression in fetal germ cells and their entry into meiosis. When XX germ cells at embryonic day (E) 12.5 were cultured with RA, the extracellular-signal-regulated kinase (ERK) 1/2 pathway was predominantly activated. MEK1/2 inhibitor (U0126) treatment suppressed the mRNA expressions of RA-induced Stra8 and meiotic marker genes (Rec8, Spo11, Dmc1, and Sycp3) in both XX and XY fetal germ cells. Furthermore, U0126 treatment dramatically reduced STRA8 protein levels and numbers of meiotic cells among cultured XX and XY fetal germ cells even in the presence of RA. Taken together, our results suggest the novel concept that the RA functions by stimulating the ERK1/2 pathway and that this activity is critical for Stra8 expression and meiotic progression in fetal germ cells.
Collapse
Affiliation(s)
- Sung-Min Kim
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Toshifumi Yokoyama
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
- Department of Animal Science, Kobe University, Kobe, Hyogo, Japan
| | - Dylan Ng
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Ferhat Ulu
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Yukiko Yamazaki
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
- * E-mail:
| |
Collapse
|
6
|
de Miranda Ramos V, Gasparotto J, Figueiró F, de Fraga Dias A, Rostirolla DC, Somensi N, da Rosa HT, Grun LK, Barbé-Tuana FM, Gelain DP, Moreira JCF. Retinoic acid downregulates thiol antioxidant defences and homologous recombination while promotes A549 cells sensitization to cisplatin. Cell Signal 2019; 62:109356. [PMID: 31288066 DOI: 10.1016/j.cellsig.2019.109356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023]
Abstract
Recent studies have investigated the use of retinoic acid (RA) molecule in combined chemotherapies to cancer cells as an attempt to increase treatment efficiency and circumvent cell resistance. Positive results were obtained in clinical trials from lung cancer patients treated with RA and cisplatin. Meanwhile, the signalling process that results from the interaction of both molecules remains unclear. One of the pathways that RA is able to modulate is the activity of NRF2 transcription factor, which is highly associated with tumour progression and resistance. Therefore, the aim of this work was to investigate molecular mechanism of RA and cisplatin co-treatment in A549 cells, focusing in NRF2 pathway. To this end, we investigated NRF2 and NRF2-target genes expression, cellular redox status, cisplatin-induced apoptosis, autophagy and DNA repair through homologous recombination. RA demonstrated to have an inhibitory effect over NRF2 activation, which regulates the expression of thiol antioxidants enzymes. Moreover, RA increased reactive species production associated with increased oxidation of thiol groups within the cells. The expression of proteins associated with DNA repair through homologous recombination was also suppressed by RA pre-treatment. All combined, these effects appear to create a more sensitive cellular environment to cisplatin treatment, increasing apoptosis frequency. Interestingly, autophagy was also increased by combination therapy, suggesting a resistance mechanism by A549 cells. In conclusion, these results provided new information about molecular mechanisms of RA and cisplatin treatment contributing to chemotherapy optimization.
Collapse
Affiliation(s)
- Vitor de Miranda Ramos
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Juciano Gasparotto
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Departamento de Civil y Ambiental, Universidad de la Costa, Barranquilla, Atlántico, Colombia; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Sinalização Purinérgica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda de Fraga Dias
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Sinalização Purinérgica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diana Carolina Rostirolla
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Tais da Rosa
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Group of Inflammation and Cellular Senescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Florencia María Barbé-Tuana
- Group of Inflammation and Cellular Senescence, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Postgraduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Daniel Pens Gelain
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Abstract
Much evidence has accumulated in the literature over the last fifteen years that indicates vitamin A has a role in metabolic disease prevention and causation. This literature proposes that vitamin A can affect obesity development and the development of obesity-related diseases including insulin resistance, type 2 diabetes, hepatic steatosis and steatohepatitis, and cardiovascular disease. Retinoic acid, the transcriptionally active form of vitamin A, accounts for many of the reported associations. However, a number of proteins involved in vitamin A metabolism, including retinol-binding protein 4 (RBP4) and aldehyde dehydrogenase 1A1 (ALDH1A1, alternatively known as retinaldehyde dehydrogenase 1 or RALDH1), have also been identified as being associated with metabolic disease. Some of the reported effects of these vitamin A-related proteins are proposed to be independent of their roles in assuring normal retinoic acid homeostasis. This review will consider both human observational data as well as published data from molecular studies undertaken in rodent models and in cells in culture. The primary focus of the review will be on the effects that vitamin A per se and proteins involved in vitamin A metabolism have on adipocytes, adipose tissue biology, and adipose-related disease, as well as on early stage liver disease, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
| |
Collapse
|
8
|
Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol 2016; 54:6903-6916. [PMID: 27771902 DOI: 10.1007/s12035-016-0189-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Human neuroblastoma SH-SY5Y cells have been used as an in vitro model for neurodegenerative disorders such as Parkinson's disease and can be induced to a mature neuronal phenotype through retinoic acid (RA) differentiation. However, mechanisms of RA-induced differentiation remain unclear. Here, we investigate the role of reactive species (RS) on SH-SY5Y neuroblastoma cells under RA differentiation, using the antioxidant Trolox® as co-treatment. We found that RA treatment for 7 days reduced the cell number and proliferative capacity and induced the expression of adult catecholaminergic/neuronal markers such as tyrosine hydroxylase (TH), β-III tubulin, and enolase-2. Evaluation of intracellular RS production by DCFH oxidation assay and quantification of cell non-enzymatic antioxidant activity by TRAP demonstrated that RA increases RS production. Furthermore, mitochondrial NADH oxidation showed to be inhibited under differentiation with RA. Cells subjected to co-treatment with antioxidant Trolox® demonstrated a remaining proliferative capacity and a decrease in the pro-oxidant state and RS production. Besides, antioxidant treatment restores the mitochondrial NADH oxidation. Importantly, Trolox® co-treatment inhibited the appearance of morphological characteristics such as neurite extension and branching, and decreased the expression of TH, β-III tubulin, and enolase-2 after a seven-day differentiation with RA, indicating that RS production is a necessary step in this process. Trolox® also inhibited the phosphorylation of Akt and ERK1/2, which are involved in differentiation and survival, respectively, of these cells. Altogether, these data indicate the presence of a redox-dependent mechanism in SH-SY5Y RA-differentiation process and can be a useful insight to improve understanding of neuronal differentiation signaling.
Collapse
|
9
|
Liu C, Du Q, Zhang X, Tang Z, Ji H, Li Y. Clematichinenoside Serves as a Neuroprotective Agent Against Ischemic Stroke: The Synergistic Action of ERK1/2 and cPKC Pathways. Front Cell Neurosci 2016; 9:517. [PMID: 26793066 PMCID: PMC4709476 DOI: 10.3389/fncel.2015.00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022] Open
Abstract
There are numerous evidences suggesting that inhibition of apoptosis of neurons play a critical role in preventing the damage and even death of neurons after brain ischemia/reperfusion, which shows therapeutic potential for clinical treatment of brain injury induced by stroke. In this study, we aimed to investigate the neuroprotective effect of Clematichinenoside (AR) and its underlying mechanisms. MCAO mode was performed in rats and OGD/R model in primary cortical neurons to investigate the neuroprotective effect of AR. The rate of apoptotic cells was measured using TUNEL assay in cerebral cortex and flow cytometric assay in cortical neurons. Apoptosis-related proteins such as bcl-2, bcl-xl, and bax and the phosphorylation of ERK1/2, cPKC, p90RSK, and CREB in ischemic penumbra were assayed by western blot. Furthermore, we made a thorough inquiry about how these proteins play roles in the anti-apoptotic mechanism using targets-associated inhibitors step by step. The results revealed that AR could activate both ERK1/2 and cPKC which resulted in p90RSK phosphorylation and translocation into the nucleus. Moreover, CREB, a downstream target of p90RSK, was phosphorylated and then bound to cAMP-regulated enhancer (CRE) to activate apoptosis-related genes, and finally ameliorate ischemic stroke through preventing neuron death. In conclusion, these data strongly suggest that AR could be used as an effective neuroprotective agent to protect against ischemic stroke after cerebral I/R injury through regulating both ERK1/2 and cPKC mediated p90RSK/CREB apoptotic pathways.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University Nanjing, China
| | - Qianming Du
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University Nanjing, China
| | - Xu Zhang
- Department of Combine Traditional Chinese and Western Medicine, College of Clinical Medicine, Chengdu University of TCM Chengdu, China
| | - Zhichao Tang
- State Key Laboratory of Natural Medicines, Department of Pharmacochemistry, China Pharmaceutical University Nanjing, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University Nanjing, China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University Nanjing, China
| |
Collapse
|
10
|
NRF2 Mediates Neuroblastoma Proliferation and Resistance to Retinoic Acid Cytotoxicity in a Model of In Vitro Neuronal Differentiation. Mol Neurobiol 2015; 53:6124-6135. [PMID: 26541884 DOI: 10.1007/s12035-015-9506-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox® as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.
Collapse
|
11
|
All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:404368. [PMID: 26557664 PMCID: PMC4628773 DOI: 10.1155/2015/404368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted.
Collapse
|
12
|
Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid. Mol Neurobiol 2014; 53:423-435. [PMID: 25465239 DOI: 10.1007/s12035-014-8998-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023]
Abstract
SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.
Collapse
|
13
|
Maruyama Y, Arahara K, Kinoshita E, Arai K. AP-1-mediated expression of brain-specific class IVa β-tubulin in P19 embryonal carcinoma cells. J Vet Med Sci 2014; 76:1609-15. [PMID: 25649943 PMCID: PMC4300376 DOI: 10.1292/jvms.14-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of brain-specific
phenotypes increased in all trans retinoic acid (ATRA)-induced neural
differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression
of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural
differentiation. Transient transfection assays employing a reporter construct found that
ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137
nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1
binding site at −29/−17 suggested that the AP-1 binding site was a critical region for
ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested
participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression.
Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled
ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal
activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein,
while a significant amount of ATF2 protein was constantly produced. These results suggest
that differentiation-mediated activation of JunD results in enhanced TUBB4a
expression.
Collapse
Affiliation(s)
- Yuka Maruyama
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
14
|
Amano Y, Noguchi M, Nakagomi M, Muratake H, Fukasawa H, Shudo K. Design, synthesis and evaluation of retinoids with novel bulky hydrophobic partial structures. Bioorg Med Chem 2013; 21:4342-50. [DOI: 10.1016/j.bmc.2013.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
|
15
|
Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell Signal 2013; 25:939-54. [PMID: 23333461 DOI: 10.1016/j.cellsig.2013.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 12/24/2022]
Abstract
As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by retinol is mediated by the redox-dependent activation of p38/NF-kB signaling pathway.
Collapse
|
16
|
Todaro LB, Veloso MJ, Campodónico PB, Puricelli LI, Farías EF, Bal de Kier Joffé ED. A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression. Breast Cancer 2012; 20:342-56. [PMID: 22374508 DOI: 10.1007/s12282-012-0342-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/30/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND The effect of retinoic acid (RA) on breast cancer progression is controversial. Our objective was to obtain information about breast cancer progression, taking advantage of the ER-negative murine mammary adenocarcinoma model LM38 (LM38-LP constituted by luminal (LEP) and myoepithelial-like cells (MEP), LM38-HP mainly composed of spindle-shaped epithelial cells, and LM38-D2 containing only large myoepithelial cells), and to validate the role of the retinoic acid receptors (RARs) in each cell-type compartment. MATERIALS AND METHODS We studied the expression and functionality of the RARs in LM38 cell lines. We analyzed cell growth and cell cycle distribution, apoptosis, the activity of proteases, motility properties, and expression of the molecules involved in these pathways. We also evaluated tumor growth and dissemination in vivo under retinoid treatment. RESULTS LM38 cell lines expressed most retinoic receptor isotypes that were functional. However, only the bi-cellular LM38-LP cells responded to retinoids by increasing RARβ2 and CRBP1 expression. The growth of LM38 cell sublines was inhibited by retinoids, first by inducing arrest in MEP cells, then apoptosis in LEP cells. Retinoids induced inhibitory effects on motility, invasiveness, and activity of proteolytic enzymes, mainly in the LM38-LP cell line. In in-vivo assays with the LM38-LP cell line, RA treatment impaired both primary tumor growth and lung metastases dissemination. CONCLUSION These in-vivo and in-vitro results show that to achieve maximum effects of RA on tumor progression both the LEP and MEP cell compartments have to be present, suggesting that the interaction between the LEP and MEP cells is crucial to full activation of the RARs.
Collapse
Affiliation(s)
- Laura Beatriz Todaro
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, 5481 San Martín Ave, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Chaudhry P, Yang X, Wagner M, Jong A, Wu L. Retinoid-regulated FGF8f secretion by osteoblasts bypasses retinoid stimuli to mediate granulocytic differentiation of myeloid leukemia cells. Mol Cancer Ther 2011; 11:267-76. [PMID: 22135230 DOI: 10.1158/1535-7163.mct-11-0584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling from the human hematopoietic stem cell (HSC) niche formed by osteoblastic cells regulates hematopoiesis. We previously found that retinoic acid receptor alpha (RARα), a transcription factor activated by retinoic acid (RA), mediates both granulocytic and osteoblastic differentiation. This effect depends on decreased phosphorylation of serine 77 of RARα (RARαS77) by the cyclin-dependent kinase-activating kinase (CAK) complex, a key cell-cycle regulator. In this article, we report that, by suppressing CAK phosphorylation of RARα, RA induces FGF8f to mediate osteosarcoma U2OS cell differentiation in an autocrine manner. By contrast, paracrine FGF8f secreted into osteoblast-conditioned medium by U2OS cells transduced with FGF8f or a phosphorylation-defective RARαS77 mutant, RARαS77A, bypasses RA stimuli to cross-mediate granulocytic differentiation of different types of human leukemic myeloblasts and normal primitive hematopoietic CD34(+) cells, possibly through modulating mitogen-activated protein kinase (MAPK) pathways. Further experiments using recombinant human FGF8f (rFGF8f) stimuli, antibody neutralization, and peptide blocking showed that paracrine FGF8f is required for mediating terminal leukemic myeloblast differentiation. These studies indicate a novel regulatory mechanism of granulocytic differentiation instigated by RA from the HSC niche, which links loss of CAK phosphorylation of RARα with paracrine FGF8f-mediated MAPK signaling to mediate leukemic myeloblast differentiation in the absence of RA. Therefore, these findings provide a compelling molecular rationale for further investigation of paracrine FGF8f regulation, with the intent of devising HSC niche-based FGF8f therapeutics for myeloid leukemia, with or without RA-resistance.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Cyclin-Dependent Kinases/metabolism
- Fibroblast Growth Factor 8/genetics
- Fibroblast Growth Factor 8/metabolism
- Fibroblast Growth Factor 8/pharmacology
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- HL-60 Cells
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Mice
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Mitogen-Activated Protein Kinases/metabolism
- Mutation
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Phosphorylation/drug effects
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Retinoids/pharmacology
- Stem Cell Niche/drug effects
- Cyclin-Dependent Kinase-Activating Kinase
Collapse
Affiliation(s)
- Parvesh Chaudhry
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
18
|
A retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene 2011; 31:3333-45. [PMID: 22056876 DOI: 10.1038/onc.2011.499] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retinoic acid (RA) regulates several gene programs by nuclear RA receptors (RARs) that are ligand-dependent transcriptional transregulators. The basic mechanism for switching on transcription of cognate-target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes. In addition to these classical genomic effects, we recently demonstrated that RA also induces the rapid activation of the p38MAPK/MSK1 pathway, with characteristic downstream consequences on the phosphorylation of RARs and the expression of their target genes. Here, we aimed at deciphering the underlying mechanism of the rapid non-genomic effects of RA. We highlighted a novel paradigm in which a fraction of the cellular RARα pool is present in membrane lipid rafts, where it forms complexes with G protein alpha Q (Gαq) in response to RA. This rapid RA-induced formation of RARα/Gαq complexes in lipid rafts is required for the activation of p38MAPK that occurs in response to RA. Accordingly, in RA-resistant cancer cells, characterized by the absence of p38MAPK activation, RARα present in membrane lipid rafts does not associate with Gαq, pointing out the essential contribution of RARα/Gαq complexes in RA signaling.
Collapse
|
19
|
Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Moreira JCF. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation. Toxicology 2011; 289:38-44. [PMID: 21807062 DOI: 10.1016/j.tox.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022]
Abstract
Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
20
|
Vitamin A supplementation to pregnant and breastfeeding female rats induces oxidative stress in the neonatal lung. Reprod Toxicol 2010; 30:452-6. [DOI: 10.1016/j.reprotox.2010.05.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 05/15/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
|
21
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
22
|
Wang A, Alimova IN, Luo P, Jong A, Triche TJ, Wu L. Loss of CAK phosphorylation of RAR{alpha} mediates transcriptional control of retinoid-induced cancer cell differentiation. FASEB J 2009; 24:833-43. [PMID: 19917671 DOI: 10.1096/fj.09-142976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the role of the classic retinoic acid (RA)-induced genomic pathway in cancer cell differentiation is well recognized, the underlying mechanisms remain to be dissected. Retinoic acid receptor alpha (RARalpha) is a transcription factor activated by RA, and its serine 77 (RARalphaS77) is the main residue phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase (CAK) complex. We report here that in both human myeloid leukemia and mouse embryonic teratocarcinoma stem cells, either RA-suppressed CAK phosphorylation of RARalpha or mutation of RARalphaS77 to alanine (RARalphaS77A) coordinates CAK-dependent G(1) arrest with cancer cell differentiation by transactivating RA-target genes. Both hypophosphorylated RARalpha and RARalphaS77A reduce binding to retinoic acid-responsive elements (RARE) in the promoters of RA-target genes while stimulating gene transcription. The enhanced transactivation and reduced RARalpha-chromatin interaction are accompanied by RARalpha dissociation from the transcriptional repressor N-CoR and are association with the coactivator NCoA-3. Such effects of decreased CAK phosphorylation of RARalphaS77 on mediating RA-dependent transcriptional control of cancer cell differentiation are examined correspondingly in both RA-resistant myeloid leukemia and embryonic teratocarcinoma stem RARalpha(-/-) cells. These studies demonstrate, for the first time, that RA couples G(1) arrest to transcriptional control of cancer cell differentiation by suppressing CAK phosphorylation of RARalpha to release transcriptional repression.-Wang, A., Alimova, I. N., Luo, P. Jong, A., Triche, T. J., Wu, L. Loss of CAK phosphorylation of RARalpha mediates transcriptional control of retinoid-induced cancer cell differentiation.
Collapse
Affiliation(s)
- Anxun Wang
- Department of Pathology, MS# 103, Childrens Hospital Los Angeles, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lee DD, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol 2009; 220:427-439. [PMID: 19388012 DOI: 10.1002/jcp.21784] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Retinoids (RA) have been used as therapeutic agents for numerous skin diseases, from psoriasis to acne and wrinkles. While RA is known to inhibit keratinocyte differentiation, the molecular effects of RA in epidermis have not been comprehensively defined. To identify the transcriptional targets of RA in primary human epidermal keratinocytes, we compared the transcriptional profiles of cells grown in the presence or absence of all-trans retinoic acid for 1, 4, 24, 48, and 72 h, using large DNA microarrays. As expected, RA suppresses the protein markers of cornification; however the genes responsible for biosynthesis of epidermal lipids, long-chain fatty acids, cholesterol, and sphingolipids, are also suppressed. Importantly, the pathways of RA synthesis, esterification and metabolism are activated by RA; therefore, RA regulates its own bioavailability. Unexpectedly, RA regulates many genes associated with the cell cycle and programmed cell death. This led us to reveal novel effects of RA on keratinocyte proliferation and apoptosis. The response to RA is very fast: 315 genes were regulated already after 1 h. More than one-third of RA-regulated genes function in signal transduction and regulation of transcription. Using in silico analysis, we identified a set of over-represented transcription factor binding sites in the RA-regulated genes. Many psoriasis-related genes are regulated by RA, some induced, others suppressed. These results comprehensively document the transcriptional changes caused by RA in keratinocytes, add new insights into the molecular mechanism influenced by RA in the epidermis and demonstrate the hypothesis-generating power of DNA microarray analysis.
Collapse
Affiliation(s)
- Ding-Dar Lee
- New York University School of Medicine, Departments of Dermatology, Biochemistry and The Cancer Institute, New York, New York 10016.,Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Dermatology, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Olivera Stojadinovic
- Department of Dermatology & Cutaneous Surgery, Wound Healing and Regenerative Medicine Program, University of Miami Miller School of Medicine, Miami, Florida.,Hospital for Special Surgery at Weill Medical College of Cornell University, Tissue Repair Lab, Tissue Engineering, Regeneration and Repair Program, New York, New York 10021
| | - Agata Krzyzanowska
- Hospital for Special Surgery at Weill Medical College of Cornell University, Tissue Repair Lab, Tissue Engineering, Regeneration and Repair Program, New York, New York 10021
| | - Constantinos Vouthounis
- Hospital for Special Surgery at Weill Medical College of Cornell University, Tissue Repair Lab, Tissue Engineering, Regeneration and Repair Program, New York, New York 10021
| | - Miroslav Blumenberg
- New York University School of Medicine, Departments of Dermatology, Biochemistry and The Cancer Institute, New York, New York 10016
| | - Marjana Tomic-Canic
- Department of Dermatology & Cutaneous Surgery, Wound Healing and Regenerative Medicine Program, University of Miami Miller School of Medicine, Miami, Florida.,Hospital for Special Surgery at Weill Medical College of Cornell University, Tissue Repair Lab, Tissue Engineering, Regeneration and Repair Program, New York, New York 10021.,Department of Dermatology, Weill Medical College of the Cornell University, New York, New York 10021
| |
Collapse
|
24
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|