1
|
Horowitz BZ. Silibinin: a toxicologist's herbal medicine? Clin Toxicol (Phila) 2022; 60:1194-1197. [PMID: 36222816 DOI: 10.1080/15563650.2022.2128815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Silymarin is an herbal remedy, commonly called milk thistle, or St. Mary's Thistle, and has been used for over 2000 years. It has been available as a capsule of the plant extract in Europe since 1974 to treat hepatic disorders. To date toxicologists have relied on animal studies, human case series, or retrospective reviews to decide on its use. In the U.S. the ability to use IV silibinin, its pharmacologically active purified flavonolignan, is hindered by its lack of availability as a Food and Drug Administration approved pharmaceutical preparation. This commentary reviews the in vitro studies, animal studies, and human retrospective analyses which form the basis for its clinical use. Despite the numerous publications, summarized in this issue in a systematic review, the mortality rate from Amanita mushroom ingestion remains stubbornly the same over four decades of use, and hovers around 10%. Although in the retrospective systematic review the use of silibinin, or penicillin, compared to routine care is statistically significantly superior when the primary outcome is fatality. Despite this there is no quality randomized trial to definitively demonstrate its utility. While, intravenous silibinin has a low toxicity, unanswered is whether it is useful in protecting the liver in cases of amanitin-containing mushrooms toxicity, and whether earlier administration would likely improve outcomes.
Collapse
Affiliation(s)
- B Z Horowitz
- Oregon-Alaska Poison Center, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
2
|
Kotb MA, Kotb A, Talaat S, Shehata SM, El Dessouki N, ElHaddad AA, El Tagy G, Esmat H, Shehata S, Hashim M, Kotb HA, Zekry H, Abd Elkader HM, Kaddah S, Abd El Baky HE, Lotfi N. Congenital aflatoxicosis, mal-detoxification genomics & ontogeny trigger immune-mediated Kotb disease biliary atresia variant: SANRA compliant review. Medicine (Baltimore) 2022; 101:e30368. [PMID: 36181129 PMCID: PMC9524989 DOI: 10.1097/md.0000000000030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biliary atresia (BA) is the most common indication for pediatric liver transplantation. We describe The BA variant: Kotb disease. Liver tissue in the Kotb disease BA is massively damaged by congenital aflatoxicosis resulting in inflammation, adhesions, fibrosis, bile duct proliferation, scarring, cholestasis, focal syncytial giant cell transformation, and typical immune response involving infiltration by CD4+, CD8+, CD68+, CD14+, neutrophil infiltration, neutrophil elastase spill, heavy loads of aflatoxin B1, accelerated cirrhosis, disruption of p53 and GSTPi, and have null glutathione S transferase M1 (GSTM1). All their mothers are heterozygous for GSTM1. This inability to detoxify aflatoxicosis results in progressive inflammatory adhesions and obliterative cholangiopathy early in life. The typical disruption of both p53 and GSTPi causes loss of fidelity of hepatic regeneration. Hence, regeneration in Kotb disease BA typically promotes accelerated cirrhosis. The immune response in Kotb disease BA is for damage control and initiation of regeneration, yet, this friendly fire incurs massive structural collateral damage. The Kotb disease BA is about actual ongoing hepatic entrapment of aflatoxins with lack of ability of safe disposal due to child detoxification-genomics disarray. The Kotb disease BA is a product of the interaction of persistent congenital aflatoxicosis, genetic lack of GSTM1 detoxification, ontogenically impaired activity of other hepatic detoxification, massive neutrophil-elastase, immune-induced damage, and disturbed regeneration. Ante-natal and neonatal screening for aflatoxicosis, avoiding cord milking, and stringent control of aflatoxicosis content of human, poultry and live-stock feeds might prove effective for prevention, prompt diagnosis and management based on our recent understanding of its patho-genomics.
Collapse
Affiliation(s)
- Magd A. Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
- *Correspondence: (e-mail: )
| | - Ahmed Kotb
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Sahar Talaat
- Department of Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Sherif M. Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Nabil El Dessouki
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Ahmed A. ElHaddad
- Department of Pediatric Surgery, Faculty of Medicine, Tanta University, Egypt
| | - Gamal El Tagy
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Haytham Esmat
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | - Sameh Shehata
- Department of Pediatric Surgery, Faculty of Medicine, Alexandria University, Egypt
| | - Mohamed Hashim
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Hanan A. Kotb
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Egypt
| | - Hanan Zekry
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | | | - Sherif Kaddah
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Egypt
| | | | - Nabil Lotfi
- Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
3
|
Functional Characterization and Whole-Genome Analysis of an Aflatoxin-Degrading Rhodococcus pyridinivorans Strain. BIOLOGY 2022; 11:biology11050774. [PMID: 35625502 PMCID: PMC9138218 DOI: 10.3390/biology11050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary The microbiological degradation of AFB1 has been a promising approach to control AFB1 contamination. Here, we characterize a Rhodococcus pyridinivorans strain that can efficiently degrade AFB1. The AFB1-degrading capacity of this bacterial strain was characterized, and the completed genome was sequenced and analyzed. Further proteomic analyses of this strain identified a total of 723 proteins in an extracellular component that showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). Multiple potential AFB1-degrading enzymes, and enzymes that are reported to respond to AFB1 treatment, have been identified accordingly. These findings provide a genomic, proteomic, and experimental approach for characterizing an efficient AFB1-degrading bacterial strain with great potential for use in the remediation of AFB1 contamination. Abstract Aflatoxin B1 (AFB1) is one of the most toxic, naturally occurring carcinogen compounds and is produced by specific strains of fungi. Crop contamination with AFB1 can cause huge economic losses and serious health problems. Many studies have examined the microbiological degradation of AFB1, especially the use of efficient AFB1-degrading microorganisms, to control AFB1 contamination. Here, we reported the identification of a new Rhodococcus pyridinivorans strain (4-4) that can efficiently degrade AFB1 (degradation rate 84.9%). The extracellular component of this strain showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). The effects of proteinase K, SDS, temperature, pH, incubation time, and AFB1 concentration on the AFB1 degradation ability of the extracellular component were investigated. We sequenced the complete genome of this strain, encoding 5246 protein-coding genes and 169 RNA genes on a circular chromosome and two plasmids. Comparative genomic analysis revealed high homology with other Rhodococcus strains with high AFB1-degradation ability. Further proteomic analyses of this strain identified a total of 723 proteins in the extracellular component, including multiple potential AFB1-degrading enzymes, along with enzymes that are reported to response to AFB1 treatment. Overall, the results demonstrate that R. pyridinivorans 4-4 would be an excellent candidate for the biodegradation and detoxification of AFB1 contamination.
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
5
|
Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L. Comparative transcriptome analysis reveals the different roles between hepatopancreas and intestine of Litopenaeus vannamei in immune response to aflatoxin B1 (AFB1) challenge. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:1-10. [PMID: 30981908 DOI: 10.1016/j.cbpc.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin mainly produced by Aspergillus flavus and Aspergillus parasiticus contaminating food, feed ingredients and products of animal origin. In mammals, this toxin causes widespread organ-specific damage; it is immunotoxicity and could promote hepatotoxicity, alter intestinal functions and so on. In this study, we conducted transcriptome and histomorphology analyses of hepatopancreas and intestinal in Litopenaeus vannamei (L. vannamei) challenged with AFB1. Totally 12,014 and 1387 differentially expression genes (DEGs) were identified in the hepatopancreas and intestine, respectively. In hepatopancreas, a total of 1995 DEGs were mainly annotated and grouped into 18 processes or pathways related to animal immune system. With respect to intestine, a total of 152 DEGs were mainly annotated to 7 processes or pathways related to animal immune system. Meanwhile, we determined the relative mRNA expression of several crucial representative immune genes including Toll, immune deficiency (IMD), prophenoloxidase (proPO), Rab and glutathione S-transferase (GST) in the hepatopancreas and intestines of shrimp at 3-, 6-, 12-, 18-, 24- and 30-d after challenged by AFB1. Exposure to AFB1 increased mortality, decrease weight gain rate, severely destroyed the histomorphology of hepatopancreas and intestine, and resulted in the damaged of immune system of shrimp. The present data reveals the different roles between hepatopancreas and intestine of L. vannamei in immune response to AFB1 challenge, and provides insight into the molecular basis of the relationship between hepatopancreas and intestinal immunity during either homeostasis or inflammation.
Collapse
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengqiang Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Research Platform for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266400, China.
| |
Collapse
|
6
|
Yang X, Liu L, Chen J, Xiao A. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice. Toxins (Basel) 2017; 9:toxins9100317. [PMID: 29023377 PMCID: PMC5666364 DOI: 10.3390/toxins9100317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.
Collapse
Affiliation(s)
- Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Jing Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
7
|
Matabaro E, Ishimwe N, Uwimbabazi E, Lee BH. Current Immunoassay Methods for the Rapid Detection of Aflatoxin in Milk and Dairy Products. Compr Rev Food Sci Food Saf 2017; 16:808-820. [DOI: 10.1111/1541-4337.12287] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Nestor Ishimwe
- Hefei Natl. Laboratory for Physical Sciences at Microscale and School of Life Sciences; Univ. of Science and Technology of China; Hefei Anhui 230027 China
- the Dept. of Chemistry, College of Science and Technology; Univ. of Rwanda; Rwanda
| | - Eric Uwimbabazi
- School of Food Science; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Byong H. Lee
- Dept. of Microbiology and Immunology; McGill Univ.; Montreal QC H3A 2B4 Canada
- Dept. of Food Science and Biotechnology; Kangwon Natl. Univ.; Chuncheon 200701 South Korea
| |
Collapse
|
8
|
Pérez-Acosta JA, Burgos-Hernandez A, Velázquez-Contreras CA, Márquez-Ríos E, Torres-Arreola W, Arvizu-Flores AA, Ezquerra-Brauer JM. An in vitro study of alkaline phosphatase sensitivity to mixture of aflatoxin B1 and fumonisin B1 in the hepatopancreas of coastal lagoon wild and farmed shrimp Litopenaeus vannamei. Mycotoxin Res 2016; 32:117-25. [PMID: 27040818 DOI: 10.1007/s12550-016-0246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
This study aimed to establish the combined effect of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on wild Litopenaeus vannamei hepatopancreas alkaline phosphatase (AP) activity compared with that of farmed shrimp. AP activity in hepatopancreas extract was confirmed by several specific inhibitor assays. AP activity of wild shrimp was higher than that of farmed shrimp (p < 0.05). However, AP activity from both wild and farmed shrimp was inhibited when incubated with AFB1 and FB1. The greatest inhibition occurred when AP was incubated with a mixture of AFB1 and FB1. The IC50 for AFB1 on AP activity of wild and farmed shrimp hepatopancreases was 0.790 and 0.398 μg/mL, respectively. The IC50 of FB1 was 0.87 μg/mL for wild shrimp and 0.69 μg/mL for farmed shrimp. These results suggest that, at the mycotoxins concentrations used in the study, AP from farmed L. vannamei was sensitive to the presence of both mycotoxins; however, AP is more sensitive to the combination of AFB1 + FB1 suggesting a possible synergistic or potentiating inhibitory effect.
Collapse
Affiliation(s)
- Jesús A Pérez-Acosta
- Department of Research and Postgraduate in Foods, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Apdo. Postal 1658, 83000, Hermosillo, Sonora, Mexico
| | - Armando Burgos-Hernandez
- Department of Research and Postgraduate in Foods, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Apdo. Postal 1658, 83000, Hermosillo, Sonora, Mexico
| | - Carlos A Velázquez-Contreras
- Department of Chemical and Biological Sciences, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83000, Hermosillo, Sonora, Mexico
| | - Enrique Márquez-Ríos
- Department of Research and Postgraduate in Foods, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Apdo. Postal 1658, 83000, Hermosillo, Sonora, Mexico
| | - Wilfrido Torres-Arreola
- Department of Research and Postgraduate in Foods, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Apdo. Postal 1658, 83000, Hermosillo, Sonora, Mexico
| | - Aldo A Arvizu-Flores
- Department of Chemical and Biological Sciences, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83000, Hermosillo, Sonora, Mexico
| | - J Marina Ezquerra-Brauer
- Department of Research and Postgraduate in Foods, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Apdo. Postal 1658, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
9
|
Kim SH, Cha SH, Karyn B, Park SW, Son SW, Kang HG. Production of Group Specific Monoclonal Antibody to Aflatoxins and its Application to Enzyme-linked Immunosorbent Assay. Toxicol Res 2013; 27:125-31. [PMID: 24278561 PMCID: PMC3834372 DOI: 10.5487/tr.2011.27.2.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 11/20/2022] Open
Abstract
Through the present study, we produced a monoclonal antibody against aflatoxin B1 (AFB1) using AFB1- carboxymethoxylamine BSA conjugates. One clone showing high binding ability was selected and it was applied to develop a direct competitive ELISA system. The epitope densities of AFB1-CMO against BSA and KLH were about 1 : 6 and 1 : 545, respectively. The monoclonal antibody (mAb) from cloned hybridoma cell was the IgG1 subclass with λ-type light chains. The IC50s of the monoclonal antibody developed for AFB1, AFB2, AFG1 and AFG2 were 4.36, 7.22, 6.61 and 29.41 ng/ml, respectively, based on the AFB1-KLH coated ELISA system and 15.28, 26.62, 32.75 and 56.67 ng/ml, respectively, based on the mAb coated ELISA. Cross-relativities of mAb to AFB1 for AFB2, AFG1 and AFG2 were 60.47, 65.97 and 14.83% in the AFB1-KLH coated ELISA, and 59.41, 46.66 and 26.97% in the mAb coated ELISA, respectively. Quantitative calculations for AFB1 from the AFB1-Ab ELISA and AFB1-Ag ELISA ranged from 0.25 to 25 ng/ml (R(2) > 0.99) and from 1 to 100 ng/ml (R(2) > 0.99), respectively. The intra- and inter-assay precision CVs were < 10% in both ELISA assay, representing good reproducibility of developed assay. Recoveries ranged from 79.18 to 91.27%, CVs ranged from 3.21 to 7.97% after spiking AFB1 at concentrations ranging from 5 to 50 ng/ml and following by extraction with 70% methanol solution in the Ab-coated ELISA. In conclusion, we produced a group specific mAb against aflatoxins and developed two direct competitive ELISAs for the detection of AFB1 in feeds based on a monoclonal antibody developed.
Collapse
Affiliation(s)
- Sung-Hee Kim
- National Veterinary Research and Quarantine Service, Anyang 430-757, Korea
| | | | | | | | | | | |
Collapse
|