1
|
Qi X, Chen Y, Liu S, Liu L, Yu Z, Yin L, Fu L, Deng M, Liang S, Lü M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:696-709. [PMID: 37092313 PMCID: PMC10128503 DOI: 10.1080/13880209.2023.2200787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Sanguinarine (SAG) is the most abundant constituent of Macleaya cordata (Willd.) R. Br. (Popaceae). SAG has shown antimammary and colorectal metastatic effects in mice in vivo, suggesting its potential for cancer chemotherapy. OBJECTIVE To determine the antimetastatic effect and underlying molecular mechanisms of SAG on melanoma. MATERIALS AND METHODS CCK8 assay was used to determine the inhibition of SAG on the proliferation of A375 and A2058 cells. Network pharmacology analysis was applied to construct a compound-target network and select potential therapeutic targets of SAG against melanoma. Molecular docking simulation was conducted for further analysis of the selected targets. In vitro migration/invasion/western blot assay with 1, 1.5, 2 μM SAG and in vivo effect of 2, 4, 8 mg/kg SAG in xenotransplantation model in nude mice. RESULTS The key targets of SAG treatment for melanoma were mainly enriched in PI3K-AKT pathway, and the binding energy of SAG to PI3K, AKT, and mTOR were -6.33, -6.31, and -6.07 kcal/mol, respectively. SAG treatment inhibited the proliferation, migration, and invasion ability of A375 and A2058 cells (p < 0.05) with IC50 values of 2.378 μM and 2.719 μM, respectively. It also decreased the phosphorylation levels of FAK, PI3K, AKT, mTOR and protein expression levels of MMP2 and ICAM-2. In the nude mouse xenograft model, 2, 4, 8 mg/kg SAG was shown to be effective in inhibiting tumour growth. CONCLUSIONS Our research offered a theoretical foundation for the clinical antitumor properties of SAG, further suggesting its potential application in the clinic.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Yin
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- CONTACT Sicheng Liang Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Muhan Lü Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
2
|
Kulíšková P, Vašátková L, Slaninová I. Quaternary Benzophenanthridine Alkaloids Act as Smac Mimetics and Overcome Resistance to Apoptosis. Int J Mol Sci 2023; 24:15405. [PMID: 37895085 PMCID: PMC10607862 DOI: 10.3390/ijms242015405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Defects in cell death signaling pathways are one of the hallmarks of cancer and can lead to resistance to conventional therapy. Natural products are promising compounds that can overcome this resistance. In the present study we studied the effect of six quaternary benzophenanthridine alkaloids (QBAs), sanguinarine, chelerythrine, sanguirubine, chelirubine, sanguilutine, and chelilutine, on Jurkat leukemia cells, WT, and cell death deficient lines derived from them, CASP3/7/6-/- and FADD-/-, and on solid tumor, human malignant melanoma, A375 cells. We demonstrated the ability of QBAs to overcome the resistance of these deficient cells and identified a novel mechanism for their action. Sanguinarine and sanguirubine completely and chelerythrine, sanguilutine, and chelilutine partially overcame the resistance of CASP3/7/6-/- and FADD-/- cells. By detection of cPARP, a marker of apoptosis, and pMLKL, a marker of necroptosis, we proved the ability of QBAs to induce both these cell deaths (bimodal cell death) with apoptosis preceding necroptosis. We identified the new mechanism of the cell death induction by QBAs, the downregulation of the apoptosis inhibitors cIAP1 and cIAP2, i.e., an effect similar to that of Smac mimetics.
Collapse
Affiliation(s)
- Petra Kulíšková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lucie Vašátková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic; (P.K.); (L.V.)
| |
Collapse
|
3
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
4
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
5
|
Croaker A, Davis A, Carroll A, Liu L, Myers SP. Understanding of black salve toxicity by multi-compound cytotoxicity assays. BMC Complement Med Ther 2022; 22:247. [PMID: 36127674 PMCID: PMC9487053 DOI: 10.1186/s12906-022-03721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Black salve is a controversial complementary and alternative medicine (CAM) associated with skin toxicity and skin cancer treatment failures. Black salve formulations vary between manufacturers and contain a number of botanical and synthetic constituents. The skin cancer cytotoxicity of a number of these constituents has not been assessed to date. The alkaloids from the rhizomes of Sanguinaria canadensis, a key black salve ingredient, have had their single compound cytotoxicity assessed; however, whether they possess synergistic cytotoxicity with other compounds has not been studied and is of direct clinical relevance. This research aimed to improve our understanding of the skin cancer cytotoxicity of black salve constituents.
Methods
The cytotoxicity of individual and combination black salve constituents were assessed against the A375 melanoma and A431 squamous cell carcinoma cell lines. Cytotoxicity was determined using the Resazurin assay with fluorescence measured using a Tecan Infinite 200 Pro Microplate reader, compound cytotoxicity being compared to that of the topical cancer therapeutic agent, 5- fluouracil. Docetaxal was used as a positive control. Dunnetts p value was used to determine whether significant synergistic cytotoxicity was present.
Results
Sanguinarine was the most cytotoxic compound tested with a 24-hour IC50 of 2.1 μM against the A375 Melanoma cell line and 3.14 μM against the A431 SCC cell line. All black salve constituents showed greater cytotoxicity against the two skin cancer cell lines tested than the skin cancer therapeutic 5-Fluouracil with 24 hours of compound exposure. Chelerythrine and minor Quaternary Benzophenanthridine Alkaloids (QBAs) present in black salve, at concentrations not having a cytotoxic effect by themselves, boosted the cytotoxic effects of sanguinarine. This could be a synergistic rather than additive cytotoxic effect although the synergistic effect was cell line and concentration dependent.
Conclusions
Black salve contains several cytotoxic compounds, a number of which have been found to possess synergistic cytotoxicity for the first time against skin cancer cell lines. In addition, these compounds together increase the overall cytotoxic effect. Assessing multi-compound cytotoxicity in herbal medicine can provide additional information about both their therapeutic and toxicity potential. As black salve is currently being used by patients, further cytotoxicity work should be undertaken to assess whether synergistic cytotoxicity exists when tested in normal skin cells.
Collapse
|
6
|
Computational Studies of the Photogeneration from Dihydrosanguinarine and the Probable Cytotoxicity Mechanism of Sanguinarine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A computational investigation of the mechanism of dihydrosanguinarine (DHSAN) photoactivation and its conversion into the active drug sanguinarine (SAN) is here reported. The reaction mechanism of DHSAN photoconversion was fully explored by considering its excitation first, essential for generating one of the reactants, the 1O2, and then locating all the minima and transition states involved in the formation of SAN. Both forms of the drug present at physiological pH, namely, iminium cation and alkanolamine, were considered as products of such reaction. The ability of the generated drug SAN to induce cell apoptosis was then explored, taking into consideration two anticancer activities: the induction of DNA conformational and functional changes by intercalation and the absorption of light with proper wavelength to trigger type II photochemical reactions leading to 1O2 sensitization for photodynamic therapy application. Concerning the ability to work as photosensitizers, the outcomes of our calculations prove that DHSAN can easily be converted into the active SAN under visible and NIR irradiation through the application of two-photon excitation, and that the maximum absorption of SAN, once intercalated into DNA, shifts to the near region of the therapeutic window.
Collapse
|
7
|
Qing C, Zhang H, Chen A, Lin Y, Shao J. Effects and possible mechanisms of sanguinarine on the competition between Raphidiopsis raciborskii (Cyanophyta) and Scenedesmus obliquus (Chlorophyta): A comparative toxicological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111192. [PMID: 32858326 DOI: 10.1016/j.ecoenv.2020.111192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The phytogenic algicide sanguinarine shows strong inhibitory effects on some bloom-forming cyanobacteria and exhibits great potential in cyanobacterial bloom mitigation. To evaluate the possible ecological effects of sanguinarine on microalgae, the effects and possible mechanisms of sanguinarine on the competition between bloom-forming cyanobacterium Raphidiopsis raciborskii (formerly named Cylindrospermopsis raciborskii) and green alga Scenedesmus obliquus were investigated through co-culture competition test and comparative toxicological study including growth characteristics, chlorophyll fluorescence transients, activities of antioxidant enzymes, and lipid peroxidation. The results of Raphidiopsis-Scenedesmus co-culture competition test showed that sanguinarine decreased the competition ability of R. raciborskii, which benefitted S. obliquus in winning the competition. Toxicological studies have shown that sanguinarine exhibited high inhibitory effects on the growth and photosynthesis of R. raciborskii but no obvious toxicity on S. obliquus at concentrations of no more than 80 μg L-1. Oxidative damage partially contributed but was not the primary mechanism for the toxicity of sanguinarine on R. raciborskii. The results presented in this study indicate that sanguinarine may be a good algicidal candidate in mitigation of Raphidiopsis-based water bloom.
Collapse
Affiliation(s)
- Chun Qing
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Huiling Zhang
- School of Chemical Engineering, Hunan Chemical Vocational Technology College, Zhuzhou, 412000, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yiqing Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
8
|
Enhancement of Macarpine Production in Eschscholzia Californica Suspension Cultures under Salicylic Acid Elicitation and Precursor Supplementation. Molecules 2020; 25:molecules25061261. [PMID: 32168770 PMCID: PMC7143939 DOI: 10.3390/molecules25061261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/03/2022] Open
Abstract
Macarpine is a minor benzophenanthridine alkaloid with interesting biological activities, which is produced in only a few species of the Papaveraceae family, including Eschscholzia californica. Our present study was focused on the enhancement of macarpine production in E. californica suspension cultures using three elicitation models: salicylic acid (SA) (4; 6; 8 mg/L) elicitation, and simultaneous or sequential combinations of SA and L-tyrosine (1 mmol/L). Sanguinarine production was assessed along with macarpine formation in elicited suspension cultures. Alkaloid production was evaluated after 24, 48 and 72 h of elicitation. Among the tested elicitation models, the SA (4 mg/L), supported by L-tyrosine, stimulated sanguinarine and macarpine production the most efficiently. While sequential treatment led to a peak accumulation of sanguinarine at 24 h and macarpine at 48 h, simultaneous treatment resulted in maximum sanguinarine accumulation at 48 h and macarpine at 72 h. The effect of SA elicitation and precursor supplementation was evaluated also based on the gene expression of 4′-OMT, CYP719A2, and CYP719A3. The gene expression of investigated enzymes was increased at all used elicitation models and their changes correlated with sanguinarine but not macarpine accumulation.
Collapse
|
9
|
Wang YH, Zhong M, Wang L, Liu YL, Wang B, Li Y. Chelerythrine loaded composite magnetic thermosensitive hydrogels as a novel anticancer drug-delivery system. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur J Pharmacol 2019; 858:172472. [PMID: 31228447 DOI: 10.1016/j.ejphar.2019.172472] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Alkaloids are important chemical compounds that serve as a rich source for drug discovery. Numerous alkaloids screened from medicinal plants and herbs showed antiproliferative and anticancer effects on wide category of cancers both in vitro and in vivo. Vinblastine, vinorelbine, vincristine, and vindesine have already been successfully developed as anticancer drugs. The available and up-to-date information on the ethnopharmacological uses in traditional medicine, phytochemistry, pharmacology and clinical utility of alkaloids were collected using various resources (PubMed, ScienceDirect, Google Scholar and Springerlink). In this article, we provide a comprehensive and critical overview on naturally-occurring alkaloids with anticancer activities and highlight the molecular mechanisms of action of these secondary metabolites. Furthermore, this review also presents a summary of synthetic derivatives and pharmacological profiles useful to researchers for the therapeutic development of alkaloids. Based on the literature survey compiled in this review, alkaloids represent an important group of anticancer drugs of plant origin with enormous potential for future development of drugs for cancer therapy and management.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, 700 053, West Bengal, India.
| | - Arijit Gandhi
- Department of Pharmaceutics, Bengal College of Pharmaceutical Science and Research, Durgapur, 713 212, West Burdwan, West Bengal, India
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Street, Sofia, 1113, Bulgaria
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Rahman A, Pallichankandy S, Thayyullathil F, Galadari S. Critical role of H 2O 2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic Biol Med 2019; 134:527-544. [PMID: 30735839 DOI: 10.1016/j.freeradbiomed.2019.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Natural products are a major source of potential anticancer agents, and in order to develop improved and more effective cancer treatments, there is an immense need in exploring and elucidating their mechanism of action. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, has been shown to induce cytotoxicity in various human cancers and suppresses various pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Lack of understanding the anticancer mechanism(s) of SNG has impeded the development of this molecule as a potential anticancer agent. Earlier, we have reported that SNG induces reactive oxygen species (ROS)-dependent ceramide (Cer) generation and Akt dephosphorylation, leading to the induction of apoptosis in human leukemic cells. In the present study, we demonstrate that SNG has potent anti-proliferative activity against prostate cancer cells. Our data suggest that SNG induces Cer generation via inhibiting acid ceramidase and glucosylceramide synthase, two important enzymes involved in Cer metabolism. Furthermore, we demonstrate that SNG induces ROS-depended extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation, and prostate apoptosis response-4 (Par-4) cleavage, leading to the induction of apoptosis in human prostate cancer cells. Overall, our findings provide molecular insight into the role of ROS signaling in the anticancer mechanism(s) of SNG. This may provide the basis for its use as a nontoxic and an effective therapeutic agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Cao FJ, Xu MX, Zhou BH, Du YS, Yao JH, Zhou L. Effects of 2-aryl-1-cyano-1,2,3,4-tetrohydroisoquinolines on apoptosis induction mechanism in NB4 and MKN-45 cells. Toxicol In Vitro 2018; 54:295-303. [PMID: 30342220 DOI: 10.1016/j.tiv.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Our previous study found that 2-aryl-1-cyano-1,2,3,4-tetrahydroisoquinolines (CATHIQs) have excellent anti-cancer activity and obvious apoptosis induction phenomenon. As our continuing research, this study further explored their underlying molecular mechanism of apoptosis induction in cancer cells. Flow cytometry analysis showed that the NB4 cells treated by 1-cyano-2-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinoline or the MKN-45 cells treated by 1-cyano-2-(4-trifluoromethylphenyl)-1,2,3,4-tetrahydroisoquinoline for 48 h were at early stage of apoptosis, and the cell cycle arrest was only slightly affected. Apoptosis rates of the cells significantly increase with the treatment concentration of the compounds. The compounds could significantly decrease the activities of SOD, raise the MDA level and promote the LDH leakage, suggesting that the excessive formation of ROS should be involved in the cell apoptosis. Western blot analysis showed that the compounds improved both Bax/Bcl-2 ratio and cleavages of procaspase-3, promoted efflux of cytochrome c to cytosol and phosphorylation of p38 and JNK, and attenuated phosphorylations of Akt and ERK. Together, inhibitions of PI3K/Akt and ERK and activation of p38 mediated the compounds-induced apoptosis through modulating the mitochondrial pathway and/or ROS production.
Collapse
Affiliation(s)
- Fang-Jun Cao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Xuan Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo-Hang Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi-Si Du
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun-Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Singh N, Sharma B. Toxicological Effects of Berberine and Sanguinarine. Front Mol Biosci 2018; 5:21. [PMID: 29616225 PMCID: PMC5867333 DOI: 10.3389/fmolb.2018.00021] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 01/25/2023] Open
Abstract
Berberine and Sanguinarine alkaloids belong to a group of naturally occurring chemical compounds that mostly contain basic nitrogen atoms. This group also includes some related compounds with neutral or weakly acidic properties. Alkaloids are produced by a large number of organisms including bacteria, fungi, plants, and animals. Berberine and Sanguinarine both are isoquinoline derivatives and belong to protoberberine and benzophenanthridines, respectively. Tyrosine or phenylalanine is common precursor for the biosynthesis of both. Sanguinarine [13-methyl (1,3) benzodioxolo(5,6-c)-1,3-dioxolo (4,5) phenanthridinium] is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Berberine, on the other hand, has been reported to cause cytotoxicity and adversely influence the synthesis of DNA. Several workers have reported varied pharmacological properties of these alkaloids as they exhibit antibacterial, antiasthma, anticancer, anti-inflammatory, and antidiabetic activities. This review article illustrates the toxicological effects of berberine and sanguinarine as well as mechanistic part of berberine and sanguinarine mediated toxicity in different living systems. This manuscript has included the lethal doses (LD50) of berberine and sanguinarine in different animals via different routs of exposure. Also, the effects of these alkaloids on the activities of some key enzymes, cell lines and organ development etc. have been summarized.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| |
Collapse
|
14
|
The capability of minor quaternary benzophenanthridine alkaloids to inhibit TNF-α secretion and cyclooxygenase activity. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Quaternary benzophenanthridine alkaloids are known to have a wide range of biological effects, including antimicrobial, antifungal, anti-inflammatory, and antitumour activities. However, only sanguinarine and chelerythrine have been studied intensively. The aim of this study was to evaluate the anti-inflammatory potential of the five minor quaternary benzophenanthridine alkaloids sanguilutine, sanguirubine, chelirubine, chelilutine, and macarpine in vitro and to compare them with more thoroughly studied sanguinarine and chelerythrine. Before making cell-based assays, the cytotoxicity of the alkaloids was evaluated. The anti-inflammatory potential of the chosen alkaloids was evaluated as for their ability to modulate the lipopolysaccharide-induced secretion of tumour necrosis factor α (TNF-α) in the macrophage-like cell line THP-1. The cyclooxygenase (COX)-1 and COX-2 inhibitory activities were also measured. The results indicate that the presence of a methylenedioxy ring attached at carbon (C)7-C8 is important for reducing the secretion of TNF-α. Interestingly, this effect did not show a simple dependence on concentration. The selected alkaloids showed little or no anti-COX activity. The results obtained from the present experiments may provide additional information useful in understanding the structure-to-activity relationship of the quaternary benzophenanthridine alkaloids. The anti-inflammatory potential and the cytotoxic effect are driven by the presence of a methylenedioxy ring attached at C7-C8 and C2-C3, respectively.
Collapse
|
15
|
Lin L, Liu YC, Huang JL, Liu XB, Qing ZX, Zeng JG, Liu ZY. Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): A review of their phytochemistry, pharmacology, and toxicology. Phytother Res 2017; 32:19-48. [PMID: 29130543 DOI: 10.1002/ptr.5952] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
In the genus Macleaya, Macleaya cordata and Macleaya microcarpa have been recognized as traditional herbs that are primarily distributed in China, North America, and Europe and have a long history of medicinal usage. These herbs have been long valued and studied for detumescence, detoxification, and insecticidal effect. This review aims to provide comprehensive information on botanical, phytochemical, pharmacological, and toxicological studies on plants in the genus Macleaya. Plants from the genus of Macleaya provide a source of bioactive compounds, primarily alkaloids, with remarkable diversity and complex architectures, thereby having attracted attention from researchers. To date, 291 constituents have been identified and/or isolated from this group. These purified compounds and/or crude extract possess antitumor, anti-inflammatory, insecticidal, and antibacterial activities in addition to certain potential toxicities. Macleaya species hold potential for medicinal applications. However, despite the pharmacological studies on these plants, the mechanisms underlying the biological activities of active ingredients derived from Macleaya have not been thoroughly elucidated to date. Additionally, there is a need for research focusing on in vivo medical effects of Macleaya compounds and, eventually, for clinical trials.
Collapse
Affiliation(s)
- Li Lin
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Yan-Chun Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Jia-Lu Huang
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Xiu-Bin Liu
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Xing Qing
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jian-Guo Zeng
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhao-Ying Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.,Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
16
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Molecular targets and anticancer potential of sanguinarine-a benzophenanthridine alkaloid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:143-153. [PMID: 28899497 DOI: 10.1016/j.phymed.2017.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/06/2017] [Accepted: 08/06/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cancer is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Currently, over 60% of the clinically approved anticancer agents are either directly isolated from natural sources or are modified from natural lead molecules. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid has gained increasing attention in recent years as a potential anticancer agent. PURPOSE There is a large untapped source of phytochemical-based anticancer agents remaining to be explored. This review article aims to recapitulate different anticancer properties of SNG, and describes some of the molecular targets involved in exerting its effect. It also depicts the pharmacokinetic and toxicological properties of SNG, two parameters important in determining the druggability of a molecule. METHODS Numerous in vivo and in vitro published studies have signified the anticancer properties of SNG. In order to collate and decipher these properties, an extensive literature search was conducted in PubMed, ScienceDirect, and Scopus using keywords followed by the evaluation of the relevant articles where the relevant reports are integrated and analyzed. RESULTS Apart from inducing cell death, SNG inhibits pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Moreover, SNG has been shown to synergistically enhance the sensitivity of several chemotherapeutic agents and is effective against a variety of multi-drug resistant cancers.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Anees Rahman
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
17
|
A Review of Black Salve: Cancer Specificity, Cure, and Cosmesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9184034. [PMID: 28246541 PMCID: PMC5299188 DOI: 10.1155/2017/9184034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Abstract
Black salve is a topical escharotic used for the treatment of skin cancer. Although promoted as a safe and effective alternative to conventional management by its proponents, limited clinical research has been undertaken to assess its efficacy and potential toxicities. Patients are increasingly utilizing the Internet as a source of health information. As a minimally regulated space, the quality and accuracy of this information vary considerably. This review explores four health claims made by black salve vendors, investigating its natural therapy credentials, tumour specificity, and equivalence to orthodox medicine in relation to skin cancer cure rates and cosmesis. Based upon an analysis of in vitro constituent cytotoxicity, in vivo post black salve histology, and experience with Mohs paste, black salve is likely to possess normal tissue toxicity with some cancer cell lines being relatively resistant to its effects. This may explain the incongruous case study reports of excessive scarring, deformity, and treatment failure.
Collapse
|
18
|
Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int J Mol Sci 2016; 17:ijms17091414. [PMID: 27618894 PMCID: PMC5037693 DOI: 10.3390/ijms17091414] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022] Open
Abstract
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S.canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.
Collapse
|
19
|
Deljanin M, Nikolic M, Baskic D, Todorovic D, Djurdjevic P, Zaric M, Stankovic M, Todorovic M, Avramovic D, Popovic S. Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:362-371. [PMID: 27350008 DOI: 10.1016/j.jep.2016.06.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chelidonium majus L (Papaveraceae) is widely used in alternative medicine for treatment of various disorders. Antitumor activities of alkaloids isolated from this plant have been reviewed, while there are only a few studies that examine properties of the whole extract. AIM OF THE STUDY The aim of the present study was to investigate direct cytotoxic effects, as well as indirect antitumor effects of Chelidonium majus ethanolic extract against different tumor cell lines,. MATERIALS AND METHODS MTT and SRB assays were performed to estimate cytotoxic effects of Chelidonium majus extract against human tumor cell lines A549, H460, HCT 116, SW480, MDA-MB 231 and MCF-7 and peripheral blood mononuclear cells from healthy individuals. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by extract was determined by flow cytometry and cell morphology assessment. Inhibitory effect on migration of cancer cells was assessed by wound healing assay. RESULTS Chelidonium majus extract showed selective time- and dose-dependent increase of cytotoxicity in all six cell lines, with individual cell line sensitivities. Extract promoted cell cycle arrest and induced apoptosis. Cotreatment with doxorubicin enhanced cytotoxicity of the drug. Also, inhibitory effect on migration was shown with non-toxic extract concentration. CONCLUSIONS These results indicate possible usefulness of Chelidonium majus crude extract in antitumor therapy, whether through its direct cytotoxic effect, by prevention of metastasis, or as adjuvant therapy.
Collapse
Affiliation(s)
- Milena Deljanin
- College for Preschool Teachers, Cirila i Metodija 22, 37000 Krusevac, Serbia.
| | - Mladen Nikolic
- College of Applied Technical Studies and Technology, Kosanciceva 36, 37000 Krusevac, Serbia.
| | - Dejan Baskic
- Department of Immunology and Microbiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Danijela Todorovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Predrag Djurdjevic
- Department of Pathophysiology, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Milan Zaric
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Milan Stankovic
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia.
| | - Milos Todorovic
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| | - Dusko Avramovic
- Special Hospital for Internal Desease, Vojvode Misica 2, 11400 Mladenovac, Serbia.
| | - Suzana Popovic
- Department of Immunology and Microbiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
20
|
Han N, Yang Z, Liu Z, Liu H, Yin J. Research Progress on Natural Benzophenanthridine Alkaloids and their Pharmacological Functions: A Review. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Benzophenanthridine alkaloids belong to the benzyl isoquinoline family of alkaloids, which are mainly found in Papaveraceae and Rutaceae. To date, over 100 compounds have been isolated from natural herbal medicines which display a variety of pharmacological functions. In this paper, we have summarized the work since 1980 and our own research on benzophenanthridine alkaloids in terms of their chemical structures and distribution, biosynthesis, biotransformation and metabolism, spectral characteristics, pharmacological activities and toxicity. This review lays the foundation for further research into benzophenanthridine alkaloids and their potential applications.
Collapse
Affiliation(s)
- Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiyou Yang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huijing Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
21
|
Yang F, Xiao W, Ma X, Huang R, Yu R, Li G, Huang X, Chen C, Ding P. Optimization of a novel chelerythrine-loaded magnetic Fe3 O4 /chitosan alpha-ketoglutaric acid system and evaluation of its anti-tumour activities. J Pharm Pharmacol 2016; 68:1030-40. [PMID: 27293067 DOI: 10.1111/jphp.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES A novel magnetic targeting anti-tumour drug delivery system (Fe3 O4 /KCTS-CHE) was designed using magnetic Fe3 O4 /chitosan alpha-ketoglutaric acid (Fe3 O4 /KCTS) as carrier and chelerythrine (CHE) as an anti-tumour drug model. Moreover, the anti-tumour activities and mechanisms of Fe3 O4 /KCTS-CHE were investigated. METHODS The preparation conditions of Fe3 O4 /KCTS-CHE microspheres were optimized by response surface methodology (RSM). The CHE drug release kinetics was evaluated by fitting the experimental data to standard release equations. The inhibitive activities of Fe3 O4 /KCTS-CHE microspheres against the HepG2 cells were estimated using MTT assay in vitro, and the mechanisms were studied using Hoechst 33258 staining. KEY FINDINGS The optimum preparation conditions were 11.68 : 1 for Fe3 O4 /KCTS:CHE ratio, 4 : 1 for oil/water ratio and 50.03 min for the ultrasonic time. The drug loading content and entrapment efficiency under the optimal conditions were 23.3% and 50.9%. The best fit was Higuchi model for the microspheres. The inhibitive rate on HepG2 cells of Fe3 O4 /KCTS-CHE nanoparticles varied from 30.19 ± 2.64% to 70.46 ± 6.42% at different concentrations from 50 to 400 mg/l in 72 h. CONCLUSION Fe3 O4 /KCTS-CHE exhibited effective anti-tumour activities against the HepG2 cells and induced cell apoptosis in HepG2 cells. Fe3 O4 /KCTS-CHE possess a high drug loading efficiency and entrapment efficiency, which are a new matrix for controlling release of drugs and a promising candidate for targeted drug delivery.
Collapse
Affiliation(s)
- Fei Yang
- School of Public Health, Central South University, Changsha, China.,Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wen Xiao
- School of Public Health, Central South University, Changsha, China
| | - Xiaohua Ma
- Department of Chemical and Engineering, China University of Mining and Technology, Xuzhou, China
| | - Ruixue Huang
- School of Public Health, Central South University, Changsha, China
| | - Ran Yu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China
| | - Xiao Huang
- School of Public Health, Central South University, Changsha, China
| | - Cuimei Chen
- School of Public Health, Central South University, Changsha, China
| | - Ping Ding
- School of Public Health, Central South University, Changsha, China
| |
Collapse
|
22
|
Sandor R, Midlik A, Sebrlova K, Dovrtelova G, Noskova K, Jurica J, Slaninova I, Taborska E, Pes O. Identification of metabolites of selected benzophenanthridine alkaloids and their toxicity evaluation. J Pharm Biomed Anal 2016; 121:174-180. [DOI: 10.1016/j.jpba.2016.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
|
23
|
Slaninová I, López-Sánchez N, Šebrlová K, Vymazal O, Frade JM, Táborská E. Introduction of macarpine as a novel cell-permeant DNA dye for live cell imaging and flow cytometry sorting. Biol Cell 2015; 108:1-18. [DOI: 10.1111/boc.201500047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Iva Slaninová
- Department of Biology; Faculty of Medicine; Masaryk University; Brno 62500 Czech Republic
| | | | - Kristýna Šebrlová
- Department of Biochemistry; Faculty of Medicine; Masaryk University; Brno 62500 Czech Republic
| | - Ondřej Vymazal
- Department of Biology; Faculty of Medicine; Masaryk University; Brno 62500 Czech Republic
| | - José María Frade
- Cajal Institute; IC-CSIC; Avda. Doctor Arce 37 Madrid E-28002 Spain
| | - Eva Táborská
- Department of Biochemistry; Faculty of Medicine; Masaryk University; Brno 62500 Czech Republic
| |
Collapse
|
24
|
Chan WH. Hazardous effects of sanguinarine on maturation of mouse oocytes, fertilization, and fetal development through apoptotic processes. ENVIRONMENTAL TOXICOLOGY 2015; 30:946-955. [PMID: 24677673 DOI: 10.1002/tox.21969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Previously, we reported that sanguinarine, a phytoalexin with antimicrobial, anti-oxidant, anti-inflammatory and pro-apoptotic effects, is a risk factor for normal embryonic development that triggers apoptotic processes in the inner cell mass of mouse blastocysts, causing decreased embryonic development and cell viability. In the current study, we investigated the deleterious effects of sanguinarine on mouse oocyte maturation, in vitro fertilization (IVF), and subsequent pre- and postimplantation development both in vitro and in vivo. Notably, sanguinarine significantly impaired mouse oocyte maturation, decreased IVF rates, and inhibited subsequent embryonic development in vitro. Preincubation of oocytes with sanguinarine during in vitro maturation induced an increase in postimplantation embryo resorption and a decrease in mouse fetal weight. In an in vivo animal model, 1 to 5 μM sanguinarine, provided in drinking water, caused a decrease in oocyte maturation and IVF, and led to deleterious effects on early embryonic development. Importantly, preincubation of oocytes with a caspase-3-specific inhibitor effectively blocked sanguinarine-triggered deleterious effects, clearly implying that embryonic injury induced by sanguinarine is mediated by a caspase-dependent apoptotic mechanism.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
- Center for Biomedical Technology, Chung Yuan Christian University, Chung Li, Taiwan
| |
Collapse
|
25
|
Rájecký M, Šebrlová K, Mravec F, Táborský P. Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids. PLoS One 2015; 10:e0129925. [PMID: 26091027 PMCID: PMC4474729 DOI: 10.1371/journal.pone.0129925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1).
Collapse
Affiliation(s)
- Michal Rájecký
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Kristýna Šebrlová
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Petr Táborský
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
26
|
Shalaweh SM, Erasmus N, Weitz F, Henkel RR. Effect ofCissampelos capensisrhizome extract on human spermatozoain vitro. Andrologia 2014; 47:318-27. [DOI: 10.1111/and.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
- S. M. Shalaweh
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
| | - N. Erasmus
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
| | - F. Weitz
- Department of Biodiversity and Conservation Biology; University of the Western Cape; Bellville South Africa
| | - R. R. Henkel
- Department of Medical Biosciences; University of the Western Cape; Bellville South Africa
- Centre for Male Reproductive Health and Biotechnology; Bellville South Africa
| |
Collapse
|
27
|
Sanguinarine suppresses IgE induced inflammatory responses through inhibition of type II PtdIns 4-kinase(s). Arch Biochem Biophys 2013; 537:192-7. [DOI: 10.1016/j.abb.2013.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/03/2013] [Accepted: 07/20/2013] [Indexed: 01/22/2023]
|
28
|
Kumar S, Acharya A. Chelerythrine induces reactive oxygen species-dependent mitochondrial apoptotic pathway in a murine T cell lymphoma. Tumour Biol 2013; 35:129-40. [PMID: 23900672 DOI: 10.1007/s13277-013-1016-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023] Open
Abstract
Chelerythrine is a well-known protein kinase C inhibitor and potential antiproliferative and antitumor pharmacological agent. Chelerythrine inhibits/suppresses the HSF1 phosphorylation by inhibiting PKC and blocks the nuclear migration and subsequent synthesis of hsp70 leading to reduced cell viability and activation of apoptotic machinery. Chelerythrine is also known to enhance the production of reactive oxygen intermediate that is strong activator of apoptosis in high concentration. Therefore, the present study intended to investigate the role of chelerythrine-induced reactive oxygen intermediate on the viability and apoptosis of Dalton's lymphoma cells. Enhanced production of reactive oxygen species in Dalton's lymphoma (DL) cells was observed upon treatment of chelerythrine only which was seen completely abolished on treatment of mitochondrial complex inhibitors rotenone and malonate, and anti-oxidant, N-acetyl-L-cysteine. Increased number of DL cells undergoing apoptosis, as observed by fluorescent microscopy and flow cytometry analysis, in chelerythrine only-treated group was seen that was significantly inhibited on treatment of mitochondrial complex inhibitors and anti-oxidants. Staurosporine, on the other hand, does not lead to enhanced production of reactive oxygen intermediate in DL cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi, 221-005, UP, India
| | | |
Collapse
|
29
|
Xu JY, Meng QH, Chong Y, Jiao Y, Zhao L, Rosen EM, Fan S. Sanguinarine inhibits growth of human cervical cancer cells through the induction of apoptosis. Oncol Rep 2012; 28:2264-70. [PMID: 22965493 DOI: 10.3892/or.2012.2024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/25/2012] [Indexed: 12/14/2022] Open
Abstract
Sanguinarine, a natural benzophenanthridine alkaloid, has been shown to possess anticancer activity in vitro and in vivo. In the present study, we demonstrated that sanguinarine caused a dose-dependent inhibition of growth in HeLa and SiHa human cervical cancer cells, i.e., 2.43 µmol/l (IC50) in HeLa cells and 3.07 µmol/l in SiHa cells. Cell cycle analysis revealed that sanguinarine significantly increased the sub-G1 population, from 1.7 to 59.7% in HeLa cells and from 1.7 to 41.7% in SiHa cells. Sanguinarine caused a dose-dependent decrease in Bcl-2 and NF-κB protein expression and a significant increase in Bax protein expression. Our findings indicate that sanguinarine as an effective anticancer drug candidate inhibits the growth of cervical cancer cells through the induction of apoptosis.
Collapse
Affiliation(s)
- Jia-Ying Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Urbanová J, Pěnčíková K, Gregorová J, Hohnová B, Sťavíková L, Karásek P, Roth M, Táborská E. Isolation of quaternary benzo[c]phenanthridine alkaloids from Macleaya microcarpa (MAXIM.) FEDDE: comparison of maceration, Soxhlet extraction and pressurised liquid extraction. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:477-482. [PMID: 22371200 DOI: 10.1002/pca.2344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/25/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Macleaya microcarpa (Papaveraceae family) has been of considerable interest in recent years as a prospective source of quaternary benzo[c]phenanthridine alkaloids (QBAs) related to many pharmaceutical beneficial effects. For this purpose, a quantitative, efficient and fast method to isolate the QBAs from the plant material is required. OBJECTIVE To optimise and compare pressurised liquid extraction (PLE) with Soxhlet extraction and maceration in order to estimate extraction conditions for fast and efficient isolation of QBAs contained in the roots of Macleaya microcarpa. METHODOLOGY The QBAs were extracted by PLE, Soxhlet extraction and maceration at different conditions (solvent, time, etc.). Reversed phase HPLC with diode-array detector was utilised for their determination and quantification. To optimise the PLE procedure, the variable parameters, including temperature (40-150 °C), sample-to-inert material ratio, extraction time (5-30 min) and number of extraction cycles (1-4), were also tested. RESULTS Quantitative determination of QBAs resulted in 0.2-2.8 mg/g, 0.3-2.5 mg/g and 0.3-3.1 mg/g for PLE, Soxhlet extraction and maceration. To produce the yields mentioned above, PLE required only up to 30 min compared with 21 h for Soxhlet extraction and 49 days for maceration. CONCLUSION PLE provided an effective and fast extraction of QBAs from M. microcarpa roots and can be recommended as an alternative isolation method to conventional techniques for QBAs from the plant sources.
Collapse
Affiliation(s)
- Jana Urbanová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 62500 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Funakoshi T, Aki T, Nakayama H, Watanuki Y, Imori S, Uemura K. Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicol In Vitro 2011; 25:1581-7. [DOI: 10.1016/j.tiv.2011.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/09/2011] [Accepted: 05/25/2011] [Indexed: 12/31/2022]
|
32
|
Li GY, Zhong M, Zhou ZD, Zhong YD, Ding P, Huang Y. Formulation optimization of chelerythrine loaded O-carboxymethylchitosan microspheres using response surface methodology. Int J Biol Macromol 2011; 49:970-8. [DOI: 10.1016/j.ijbiomac.2011.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 11/27/2022]
|
33
|
Chan WH. Embryonic toxicity of sanguinarine through apoptotic processes in mouse blastocysts. Toxicol Lett 2011; 205:285-92. [PMID: 21722720 DOI: 10.1016/j.toxlet.2011.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
Abstract
In this study, we examined the cytotoxic effects of sanguinarine, a phytoalexin with antimicrobial, anti-oxidant, anti-inflammatory and pro-apoptotic effects, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro and in vivo implantation via embryo transfer. Blastocysts treated with 0.5-2 μM sanguinarine exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with sanguinarine were lower than that of their control counterparts. Moreover, in vitro treatment with 0.5-2 μM sanguinarine was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that sanguinarine induces apoptosis and retards early post-implantation development in vitro and in vivo. In addition, sanguinarine induces apoptotic injury effects on mouse blastocysts through intrinsic and extrinsic apoptotic signaling processes to impair sequent embryonic development. However, the extent to which sanguinarine exerts teratogenic effects on early human development is not known at present, and further studies are required to establish effective protection strategies against its cytotoxic effects.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan.
| |
Collapse
|
34
|
Seasonal variation of bioactive alkaloid contents in Macleaya microcarpa (Maxim.) Fedde. Molecules 2011; 16:3391-401. [PMID: 21512447 PMCID: PMC6260594 DOI: 10.3390/molecules16043391] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/30/2022] Open
Abstract
Macleaya microcarpa (Maxim.) Fedde belongs to the genus Macleaya, family Papaveraceae. Together with the better known and more frequently studied species M. cordata (Willd.) R. Br. it is a main source of quaternary benzo[c]phenanthridine alkaloids. Using HPLC we determined the content of eight isoquinoline alkaloids in the aerial and underground parts of 1-, 2-, 12- and 13-year old plants and followed their changes during the vegetative period. The dominant alkaloid of all samples collected in the end of this period was allocryptopine (3.8–13.6 mg/g for aerial parts, 24.2–48.9 mg/g for underground parts). Chelerythrine, sanguinarine and protopine were also present in both parts of the plant. Additionally, measurable concentrations of chelilutine (CL), chelirubine (CR), macarpine (MA) and sanguirubine (SR) were detected in underground parts. The most important finding was that contents of CR, CL, SR and MA in the 12- and 13-year old plant roots were significantly higher (approximately 3-fold for CR, 6-fold for CL, 5-fold for SR, and at least 14-fold for MA) than in 1- or 2-year old plants. The proportion of individual alkaloids in aerial and underground parts thus changed significantly during the vegetative period.
Collapse
|
35
|
Hammerová J, Uldrijan S, Táborská E, Slaninová I. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J Dermatol Sci 2011; 62:22-35. [PMID: 21324654 DOI: 10.1016/j.jdermsci.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Search for new substances with antiproliferative activity towards melanoma cells is important since malignant melanoma is notoriously resistant to conventional chemotherapy. Benzo[c]phenanthridine alkaloids (BAs) are natural products with significant anti-proliferative activities, therefore they are considered as agents promising for cancer therapy. OBJECTIVES The effects of five BAs (sanguinarine, chelerythrine, chelidonine, sanguilutine, and chelilutine) on human malignant melanoma cell lines were compared. The study focused on BAs effects on DNA, anti-apoptotic and p53 protein levels; and the involvement of p53 in cellular responses to alkaloids treatment. METHODS Melanoma cell lines, two wild types and two with dysfunctional p53 derived from one of them were used. The mechanism of anti-proliferative and pro-apoptotic effects and the effect on DNA was investigated using MTT assay, flow cytometry, Western blot analysis, fluorescence and electron microscopy. RESULTS All tested alkaloids exhibit strong anti-proliferative activity. CHL, CHE and SA induced apoptosis, which was probably mediated by decreasing levels of anti-apoptotic proteins (Bcl-xL, Mcl-1, XIAP) and was accompanied by mitochondrial membrane potential decrease as well as caspase-3 and PARP cleavage. Although all alkaloids caused DNA damage, which was demonstrated by induction of H2AX phosphorylation, none of the tested alkaloids stabilised p53 and their toxicity in cells with non-functional p53 was comparable to wild type cells. CONCLUSION Despite the profound similarity of BAs molecular structures, it is clear that the mechanism of cell death induction is different for each alkaloid. Our results indicate that BAs could be effective in malignant melanoma treatment, including tumours which have lost wild type p53.
Collapse
Affiliation(s)
- Jindřiška Hammerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A16, 62500 Brno, Czech Republic
| | | | | | | |
Collapse
|