1
|
Ford LC, Lin HC, Tsai HHD, Zhou YH, Wright FA, Sedykh A, Shah RR, Chiu WA, Rusyn I. Hazard and risk characterization of 56 structurally diverse PFAS using a targeted battery of broad coverage assays using six human cell types. Toxicology 2024; 503:153763. [PMID: 38423244 PMCID: PMC11214689 DOI: 10.1016/j.tox.2024.153763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their prevalence in the environment. Due to their chemical stability, PFAS are considered to be persistent and bioaccumulative; they are frequently detected in both the environment and humans. Because of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of very high concern. Little information is available for the vast majority of PFAS, and regulatory agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-based assays are a pragmatic approach to inform decision-makers on potential health hazards; therefore, we hypothesized that a targeted battery of human in vitro assays can be used to determine whether there are structure-bioactivity relationships for PFAS, and to characterize potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 PFAS from 8 structure-based subclasses in concentration response (0.1-100 μM) using six human cell types selected from target organs with suggested adverse effects of PFAS - human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in vitro models to identify potential hazards. No class-specific groupings were evident except for some chain length- and structure-related trends. In addition, margins of exposure (MOE) were derived using empirical and predicted exposure data. Conservative MOE calculations showed that most tested PFAS had a MOE in the 1-100 range; ∼20% of PFAS had MOE<1, providing tiered priorities for further studies. Overall, we show that a compendium of human cell-based models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity relationships may be challenging for the tested PFAS.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Yang YD, Lu N, Tian R. The interaction of perfluorooctane sulfonate with hemoproteins and its relevance to molecular toxicology. Int J Biol Macromol 2024; 254:128069. [PMID: 37967600 DOI: 10.1016/j.ijbiomac.2023.128069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
3
|
Yang YD, Li JX, Lu N, Tian R. Serum albumin mitigated perfluorooctane sulfonate-induced cytotoxicity by affecting the cellular responses. Biophys Chem 2023; 302:107110. [PMID: 37741269 DOI: 10.1016/j.bpc.2023.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
During the wide applications of perfluorinated materials such as perfluorooctane sulfonate (PFOS) in commercial and industrial products, the potential toxicity of these engineered compounds has attracted more and more attention. As a typical environmental pollutant, PFOS could preferentially bind to albumin protein in vivo. However, the role of protein-PFOS interactions in the cytotoxicity of PFOS was not stressed enough. Herein, we investigated the interactions of PFOS with human serum albumin (HSA, the most abundant protein in human plasma) using both experimental and theoretical approaches. It was demonstrated that PFOS could mainly bind to the Sudlow site I of HSA to generate HSA-PFOS complex through hydrogen bonds and van der Waals forces. Toxicity assays with endothelial cells illustrated that the binding of HSA could significantly attenuate the intracellular uptake and subcellular distribution of PFOS, thereby inhibiting the formation of reactive oxygen species and toxicity for those HSA-bound PFOS. Similarly, the presence of fetal bovine serum in the cell culture media greatly reduced PFOS-caused cytotoxicity. Conclusively, our study reveals that the binding of albumin protein to PFOS could mitigate its toxicity by the modulation of cellular responses. The formation of protein-complexed contaminants would significantly reduce the bioavailability of these chemicals and subsequently mitigate their environmental toxicology to the human health.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia-Xin Li
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
4
|
Dangudubiyyam SV, Bosse B, Yadav P, Song R, Hofmann A, Mishra JS, Kumar S. Restoring Angiotensin Type 2 Receptor Function Reverses PFOS-Induced Vascular Hyper-Reactivity and Hypertension in Pregnancy. Int J Mol Sci 2023; 24:14180. [PMID: 37762482 PMCID: PMC10531530 DOI: 10.3390/ijms241814180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy induces hypertension with decreased vasodilatory angiotensin type-2 receptor (AT2R) expression and impaired vascular reactivity and fetal weights. We hypothesized that AT2R activation restores the AT1R/AT2R balance and reverses gestational hypertension by improving vascular mechanisms. Pregnant Sprague-Dawley rats were exposed to PFOS through drinking water (50 μg/mL) from gestation day (GD) 4-20. Controls received drinking water with no detectable PFOS. Control and PFOS-exposed rats were treated with AT2R agonist Compound 21 (C21; 0.3 mg/kg/day, SC) from GD 15-20. In PFOS dams, blood pressure was higher, blood flow in the uterine artery was reduced, and C21 reversed these to control levels. C21 mitigated the heightened contraction response to Ang II and enhanced endothelium-dependent vasorelaxation in uterine arteries of PFOS dams. The observed vascular effects of C21 were correlated with reduced AT1R levels and increased AT2R and eNOS protein levels. C21 also increased plasma bradykinin production in PFOS dams and attenuated the fetoplacental growth restriction. These data suggest that C21 improves the PFOS-induced maternal vascular dysfunction and blood flow to the fetoplacental unit, providing preclinical evidence to support that AT2R activation may be an important target for preventing or treating PFOS-induced adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| |
Collapse
|
5
|
Yang YD, Tian R, Lu N. Binding of serum albumin to perfluorooctanoic acid reduced cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162738. [PMID: 36906033 DOI: 10.1016/j.scitotenv.2023.162738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
With the ubiquitous applications of perfluorinated compounds such as perfluorooctanoic acid (PFOA) in industrial and commercial products, the toxicity of these engineered materials in environmental and public health is received growing attention. As a typical organic pollutant, PFOA has been extensively found in wildlife and human bodies, and can preferentially bind to serum albumin in vivo. However, the importance of protein-PFOA interactions on the cytotoxicity of PFOA could not be stressed enough. In this study, we used both experimental and theoretical approaches, to investigate the interactions of PFOA with bovine serum albumin (BSA, the most abundant protein in blood). It was found that PFOA could mainly interact with Sudlow site I of BSA to form BSA-PFOA complex, in which van der Waals forces and hydrogen bonds played dominant roles. Moreover, the strong binding of BSA could greatly alter the cellular uptake and distribution of PFOA in human endothelial cells, and result in the decreases of reactive oxygen species formation and cytotoxicity for these BSA-coated PFOA. Consistently, the addition of fetal bovine serum into cell culture medium also significantly mitigated PFOA-induced cytotoxicity, which was attributed to the extracellular complexation between PFOA and serum proteins. Altogether, our study demonstrates that the binding of serum albumin to PFOA could reduce its toxicity by affecting the cellular responses.
Collapse
Affiliation(s)
- Ya-Di Yang
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
6
|
Solan ME, Koperski CP, Senthilkumar S, Lavado R. Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines. ENVIRONMENTAL RESEARCH 2023; 223:115424. [PMID: 36740157 DOI: 10.1016/j.envres.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Long-chain per- and polyfluoralkyl substances (PFAS) are ubiquitous contaminants implicated in the induction of intracellular reactive oxygen species (ROS), compromising antioxidant defense mechanisms in vitro and in vivo. While a handful of studies have assessed oxidative stress effects by PFAS, few specifically address short-chain PFAS. We conducted an evaluation of oxidative stress biomarkers in vitro following exposures to low (1 nM) and high (1 μM) concentrations of five short-chain PFAS compounds: perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), [undecafluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)], 6:2 fluorotelomer alcohol (6:2 FTOH) and perfluorohexanesulfonic acid (PFHxS). We conducted experiments in human kidney (HEK293-hTLR2), liver (HepaRG), microglia (HMC-3), and muscle (RMS-13) cell lines. Fluorescence microscopy measurements in HepaRG cells indicated ROS generation in cells exposed to PFBS and PFHxA for 24 h. Antioxidant enzyme activities were determined following 24 h short-chain PFAS exposures in HepaRG, HEK293-hTLR2, HMC-3, and RMS-13. Notably, exposure to PFBS for 24 h increased the activity of GPX in all four cell types at 1 μM and 1 nM in HepaRG and RMS-13 cells. Every short-chain PFAS evaluated, except for PFHxS, increased the activity of at least one antioxidant enzyme. To our knowledge, this is the first study of its kind to explore antioxidant defense alterations to microglia and muscle cell lines by PFAS. The findings of this study hold great potential to contribute to the limited understanding of short-chain PFAS mechanisms of toxicity and provide data necessary to inform the human health risk assessment process.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Camryn P Koperski
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
7
|
Wen ZJ, Wei YJ, Zhang YF, Zhang YF. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 2023; 97:1195-1245. [PMID: 36947184 DOI: 10.1007/s00204-023-03477-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Feng X, Long G, Zeng G, Zhang Q, Song B, Wu KH. Association of increased risk of cardiovascular diseases with higher levels of perfluoroalkylated substances in the serum of adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89081-89092. [PMID: 35849234 DOI: 10.1007/s11356-022-22021-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Evidence showing the association of perfluoroalkylated substance (PFAS) exposure with CVD risk is scarce. The objective of this study was to explore the relationships of CVD risk with mixed or individual serum PFAS levels among general adults. We analyzed combined data of 7904 adults who participated in the National Health and Nutrition Examination Survey 2003-2012 with a Bayesian kernel machine regression (BKMR) to examine the relationships of individual or mixed PFAS exposure with total CVD risk. A logistic regression model and restricted cubic spline (RCS) regression with multivariate adjustment were conducted to assess the relationships between individual serum PFAS levels and the risk of total CVD or its subtypes. A mediation model was applied to investigate how C-reactive protein (CRP) levels mediate the strength of the association. The BKMR results indicated a positive relationship between mixed PFAS exposure and total CVD risk; among the PFASs, perfluorooctane sulfonic acid (PFOS) had the highest posterior inclusion probability. As determined by logistic regression, a log-unit change in PFOS levels was positively related to a higher risk of heart attack and stroke in males (both P < 0.05). A nonlinear relationship was found between PFOS levels and stroke risk (P for nonlinearity = 0.04), as illustrated in the RCS plot. The mediation analysis showed that CRP levels mediated 8% and 1.2% of the relationship between serum PFOS and PFNA levels, respectively, and the prevalence of stroke. A significant relationship between higher serum PFAS concentrations and an increased risk of CVD was observed, mainly in males.
Collapse
Affiliation(s)
- Xinghui Feng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Binqian Song
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Taibl KR, Schantz S, Aung MT, Padula A, Geiger S, Smith S, Park JS, Milne GL, Robinson JF, Woodruff TJ, Morello-Frosch R, Eick SM. Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with oxidative stress biomarkers during pregnancy. ENVIRONMENT INTERNATIONAL 2022; 169:107541. [PMID: 36191484 PMCID: PMC9846434 DOI: 10.1016/j.envint.2022.107541] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Oxidative stress from excess reactive oxygen species (ROS) is a hypothesized contributor to preterm birth. Per- and polyfluoroalkyl substances (PFAS) exposure is reported to generate ROS in laboratory settings, and is linked to adverse birth outcomes globally. However, to our knowledge, the relationship between PFAS and oxidative stress has not been examined in the context of human pregnancy. OBJECTIVE To investigate the associations between prenatal PFAS exposure and oxidative stress biomarkers among pregnant people. METHODS Our analytic sample included 428 participants enrolled in the Illinois Kids Development Study and Chemicals In Our Bodies prospective birth cohorts between 2014 and 2019. Twelve PFAS were measured in second trimester serum. We focused on seven PFAS that were detected in >65 % of participants. Urinary levels of 8-isoprostane-prostaglandin-F2α, prostaglandin-F2α, 2,3-dinor-8-iso-PGF2α, and 2,3-dinor-5,6-dihydro-8-iso-PGF2α were measured in the second and third trimesters as biomarkers of oxidative stress. We fit linear mixed-effects models to estimate individual associations between PFAS and oxidative stress biomarkers. We used quantile g-computation and Bayesian kernel machine regression (BKMR) to assess associations between the PFAS mixture and averaged oxidative stress biomarkers. RESULTS Linear mixed-effects models showed that an interquartile range increase in perfluorooctane sulfonic acid (PFOS) was associated with an increase in 8-isoprostane-prostaglandin-F2α (β = 0.10, 95 % confidence interval = 0, 0.20). In both quantile g-computation and BKMR, and across all oxidative stress biomarkers, PFOS contributed the most to the overall mixture effect. The six remaining PFAS were not significantly associated with changes in oxidative stress biomarkers. CONCLUSIONS Our study is the first to investigate the relationship between PFAS exposure and biomarkers of oxidative stress during human pregnancy. We found that PFOS was associated with elevated levels of oxidative stress, which is consistent with prior work in animal models and cell lines. Future research is needed to understand how prenatal PFAS exposure and maternal oxidative stress may affect fetal development.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua F Robinson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Cui J, Wang P, Yan S, Liang Y, Liu D, Ren S. Perfluorooctane Sulfonate Induces Dysfunction of Human Umbilical Vein Endothelial Cells via Ferroptosis Pathway. TOXICS 2022; 10:503. [PMID: 36136468 PMCID: PMC9500952 DOI: 10.3390/toxics10090503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant, and it is receiving increasing attention regarding its human health risks due to its extensive use. Endothelial dysfunction is a mark of cardiovascular disease, but the basic mechanism of PFOS-induced endothelial dysfunction is still not fully understood. Ferroptosis is a newly defined regulatory cell death driven by cellular metabolism and iron-dependent lipid peroxidation. Although ferroptosis has been shown to be involved in the pathogenesis of cardiovascular diseases, the involvement of ferroptosis in the pathogenesis of endothelial dysfunction caused by PFOS remains unclear. (2) Purpose: To explore the role of ferroptosis in the dysfunction of endothelial cells and underlying mechanisms. (3) Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to PFOS or PFOS and Fer-1. The viability, morphology change under electronic microscope, lipid-reactive oxygen species (lipid-ROS), and production of nitric oxide (NO) were determined. The expression of glutathione peroxidase 4(GPX4), ferritin heavy chain protein 1 (FTH1), heme oxygenase 1 (HO-1) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) were analyzed via Western blot analysis. (4) Results: PFOS was shown to cause a decrease in viability and morphological changes of mitochondria, and well as an increase in lipid droplets. The expression of GPX4, FTH1 and HO-1 was decreased, and that of ACSL4 was increased after exposure to PFOS. In addition to the above-mentioned ferroptosis-related manifestations, there was also a reduction in NO content. (5) Conclusions: PFOS induces ferroptosis by regulating the GPX4 and ACSL4 pathways, which leads to HUVEC dysfunction.
Collapse
|
11
|
Kaiser AM, Zare Jeddi M, Uhl M, Jornod F, Fernandez MF, Audouze K. Characterization of Potential Adverse Outcome Pathways Related to Metabolic Outcomes and Exposure to Per- and Polyfluoroalkyl Substances Using Artificial Intelligence. TOXICS 2022; 10:toxics10080449. [PMID: 36006128 PMCID: PMC9412358 DOI: 10.3390/toxics10080449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/09/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with numerous adverse health effects, depending on various factors such as the conditions of exposure (dose/concentration, duration, route of exposure, etc.) and characteristics associated with the exposed target (e.g., age, sex, ethnicity, health status, and genetic predisposition). The biological mechanisms by which PFAS might affect systems are largely unknown. To support the risk assessment process, AOP-helpFinder, a new artificial intelligence tool, was used to rapidly and systematically explore all available published information in the PubMed database. The aim was to identify existing associations between PFAS and metabolic health outcomes that may be relevant to support building adverse outcome pathways (AOPs). The collected information was manually organized to investigate linkages between PFAS exposures and metabolic health outcomes, including dyslipidemia, hypertension, insulin resistance, and obesity. Links between PFAS exposure and events from the existing metabolic-related AOPs were also retrieved. In conclusion, by analyzing dispersed information from the literature, we could identify some associations between PFAS exposure and components of existing AOPs. Additionally, we identified some linkages between PFAS exposure and metabolic outcomes for which only sparse information is available or which are not yet present in the AOP-wiki database that could be addressed in future research.
Collapse
Affiliation(s)
| | - Maryam Zare Jeddi
- National Institute for Public Health and Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Correspondence:
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Florence Jornod
- Université Paris Cité, T3S, Inserm UMRS 1124, F-75006 Paris, France
| | - Mariana F. Fernandez
- Centre for Biomedical Research, E-18016 Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, E-18071 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, F-75006 Paris, France
| |
Collapse
|
12
|
Lin CY, Lee HL, Chen CW, Wang C, Sung FC, Su TC. Global DNA methylation mediates the association between serum perfluorooctane sulfonate and carotid intima-media thickness in young and middle-aged Taiwanese populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113782. [PMID: 35753273 DOI: 10.1016/j.ecoenv.2022.113782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals used in the manufacture of many everyday products. Previous reports have shown PFAS exposure may contribute to cardiovascular diseases (CVD). Recent studies have also identified a critical role for DNA methylation, a model of epigenetic regulation, in the pathogenesis of CVD. Additionally, PFAS has been shown to affect DNA methylation. Our previous study reported the positive association between serum perfluorooctane sulfonate (PFOS) levels and mean carotid intima-media thickness (CIMT), a biomarker of arteriosclerosis, in a cohort composed of adolescent and young adult Taiwanese. However, the contribution of DNA methylation in the mechanism of PFOS-induced arteriosclerosis has never been explored in previous literature. APPROACH AND RESULTS In this cross-sectional study, we included 1425 young and middle-aged Taiwanese individuals (12-63 years) to investigate the correlation between serum PFOS levels, 5mdC/dG (a global DNA methylation marker) and the mean CIMT. We showed that the positive association between serum PFOS levels, 5mdC/dG, and mean CIMT. The regression coefficients of mean CIMT with a one-unit increase in ln-PFOS concentration were higher when the levels of 5mdC/dG were above the 50th percentile in the multiple regression analysis. In the structural equation model (SEM), the results showed that serum PFOS levels were directly correlated with mean CIMT and indirectly correlated with CIMT through 5mdC/dG. CONCLUSIONS Our results showed that PFOS exposure has direct associations on arteriosclerosis and indirect direct associations on arteriosclerosis through DNA methylation. The results suggest that DNA methylation might regulate the relationship between PFOS and arteriosclerosis in the study subjects. Additional works are required to understand the causal inference between PFOS, DNA methylation, and arteriosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
13
|
Qin W, Ren X, Zhao L, Guo L. Exposure to perfluorooctane sulfonate reduced cell viability and insulin release capacity of β cells. J Environ Sci (China) 2022; 115:162-172. [PMID: 34969446 DOI: 10.1016/j.jes.2021.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found to have multiple adverse outcomes on human health. Recently, epidemiological and toxicological studies showed that exposure to PFAS had adverse impacts on pancreas and showed association with insulin abnormalities. To explore how PFAS may contribute to diabetes, we studied impacts of perfluorooctane sulfonate (PFOS) on cell viability and insulin release capacity of pancreatic β cells by using in vivo and in vitro methods. We found that 28-day administration with PFOS (10 mg/(kg body weight•day)) caused reductions of pancreas weight and islet size in male mice. PFOS administration also led to lower serum insulin level both in fasting state and after glucose infusion among male mice. For cell-based in vitro bioassay, we used mouse β-TC-6 cancer cells and found 48-hr exposure to PFOS decreased the cell viability at 50 μmol/L. By measuring insulin content in supernatant, 48-hr pretreatment of PFOS (100 μmol/L) decreased the insulin release capacity of β-TC-6 cells after glucose stimulation. Although these concentrations were higher than the environmental concentration of PFOS, it might be reasonable for high concentration of PFOS to exert observable toxic effects in mice considering mice had a faster removal efficiency of PFOS than human. PFOS exposure (50 μmol/L) to β-TC-6 cells induced intracellular accumulation of reactive oxidative specie (ROS). Excessive ROS induced the reactive toxicity of cells, which eventually invoke apoptosis and necrosis. Results in this study provide evidence for the possible causal link of exposure to PFOS and diabetes risk.
Collapse
Affiliation(s)
- Weiping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
14
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
15
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
16
|
Osorio-Yáñez C, Sanchez-Guerra M, Cardenas A, Lin PID, Hauser R, Gold DR, Kleinman KP, Hivert MF, Fleisch AF, Calafat AM, Webster TF, Horton ES, Oken E. Per- and polyfluoroalkyl substances and calcifications of the coronary and aortic arteries in adults with prediabetes: Results from the diabetes prevention program outcomes study. ENVIRONMENT INTERNATIONAL 2021; 151:106446. [PMID: 33631604 PMCID: PMC8721596 DOI: 10.1016/j.envint.2021.106446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals that have been associated with cardiovascular risk factors including elevated body weight and hypercholesterolemia. Therefore, PFAS may contribute to the development of atherosclerosis and cardiovascular disease (CVD). However, no previous study has evaluated associations between PFAS exposure and arterial calcification. METHODS AND RESULTS This study used data from 666 prediabetic adults enrolled in the Diabetes Prevention Program trial who had six PFAS quantified in plasma at baseline and two years after randomization, as well as measurements of coronary artery calcium (CAC) and ascending (AsAC) and descending (DAC) thoracic aortic calcification 13-14 years after baseline. We performed multinomial regression to test associations between PFAS and CAC categorized according to Agatston score [low (<10), moderate (11-400) and severe (>400)]. We used logistic regression to assess associations between PFAS and presence of AsAC and DAC. We adjusted models for baseline sex, age, BMI, race/ethnicity, cigarette smoking, education, treatment assignment (placebo or lifestyle intervention), and statin use. PFAS concentrations were similar to national means; 53.9% of participants had CAC > 11, 7.7% had AsAC, and 42.6% had DAC. Each doubling of the mean sum of plasma concentrations of linear and branched isomers of perfluorooctane sulfonic acid (PFOS) was associated with 1.49-fold greater odds (95% CI: 1.01, 2.21) of severe versus low CAC. This association was driven mainly by the linear (n-PFOS) isomer [1.54 (95% CI: 1.05, 2.25) greater odds of severe versus low CAC]. Each doubling of mean plasma N-ethyl-perfluorooctane sulfonamido acetic acid concentration was associated with greater odds of CAC in a dose-dependent manner [OR = 1.26 (95% CI:1.08, 1.47) for moderate CAC and OR = 1.37 (95% CI:1.07, 1.74) for severe CAC, compared to low CAC)]. Mean plasma PFOS and n-PFOS were also associated with greater odds of AsAC [OR = 1.67 (95% CI:1.10, 2.54) and OR = 1.70 (95% CI:1.13, 2.56), respectively], but not DAC. Other PFAS were not associated with outcomes. CONCLUSIONS Prediabetic adults with higher plasma concentrations of select PFAS had higher risk of coronary and thoracic aorta calcification. PFAS exposure may be a risk factor for adverse cardiovascular health among high-risk populations.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico.
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico.
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ken P Kleinman
- Department of Biostatistics, School of Public Health and Human Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Edward S Horton
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
17
|
Singh N, Hsieh CYJ. Exploring Potential Carcinogenic Activity of Per- and Polyfluorinated Alkyl Substances Utilizing High-Throughput Toxicity Screening Data. Int J Toxicol 2021; 40:355-366. [PMID: 33944624 DOI: 10.1177/10915818211010490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.
Collapse
Affiliation(s)
- Nalin Singh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA.,University of California, Davis, CA, USA
| | - Ching Yi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
18
|
Zheng D, Shi Z, Yang M, Liang B, Zhou X, Jing L, Sun Z. NLRP3 inflammasome-mediated endothelial cells pyroptosis is involved in decabromodiphenyl ethane-induced vascular endothelial injury. CHEMOSPHERE 2021; 267:128867. [PMID: 33187650 DOI: 10.1016/j.chemosphere.2020.128867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a novel environmental pollutant that has attracted growing attention. Previous studies have indicated that DBDPE could induce vascular endothelial injury and cardiovascular damage, but the underlying mechanisms are not well understood. This study was designed to examine the mechanisms of DBDPE induces vascular endothelial injury. In vivo, Sprague-Dawley rats were administered with 0, 5, 50, 500 mg/kg bw/day of DBDPE via gavage for 28 days. Results showed that DBDPE could damage abdominal aortas morphological and ultrastructural structure and increase the protein levels of interleukin 1β (IL-1β) and interleukin 18 (IL-18) of the abdominal aortas. Moreover, DBDPE induced NLRP3 inflammasome activation and activated caspase-1 in abdominal aorta endothelium of rats. In vitro, human vascular endothelial cells (HAECs) were treated with different concentrations of DBDPE (0, 6.25, 12.5, 25, 50, and 100 μM). DBDPE not only induced cytotoxicity and reactive oxygen species (ROS) generation in HAECs but also caused HAECs pyroptosis, which was evidenced by the elevated expression of Nod-like receptor protein -3 (NLRP3), ASC, and caspase-1 in DBDPE-treated group. To further elucidate the effects of NLRP3 inflammasome on DBDPE-induced HAECs pyroptosis, we constructed NLRP3 knockdown HAECs by lentivirus-mediated short hairpin RNA (shRNA). And the results showed that NLRP3 knockdown downregulated DBDPE-induced increases of caspase-1 activity and caspase-1, ASC and NLRP3 mRNA and protein expression levels. Accordingly, our data suggested that DBDPE may damage vascular endothelium by NLRP3 inflammasome-mediated endothelial cells pyroptosis.
Collapse
Affiliation(s)
- Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Man Yang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Baolu Liang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
19
|
Liu D, Liu NY, Chen LT, Shao Y, Shi XM, Zhu DY. Perfluorooctane sulfonate induced toxicity in embryonic stem cell-derived cardiomyocytes via inhibiting autophagy-lysosome pathway. Toxicol In Vitro 2020; 69:104988. [PMID: 32861759 DOI: 10.1016/j.tiv.2020.104988] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 μM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Shao
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Meng Shi
- Undergraduate Students in Research Training Project at Zhejiang University, Hangzhou 310058, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
20
|
Perfluoroctanoic acid (PFOA) enhances NOTCH-signaling in an angiogenesis model of placental trophoblast cells. Int J Hyg Environ Health 2020; 229:113566. [PMID: 32485599 DOI: 10.1016/j.ijheh.2020.113566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
Exposure to perfluoroalkyl substances (PFAS) was found to be associated with several pathological endpoints, including high cholesterol levels, specific defective functions of the immune system and reduced birth weight. While environmental PFAS have been recognized as threats for public health, surprisingly little is known about the underlying mechanisms of toxicity. We hypothesized that some of the observed vascular and developmental effects of environmental PFAS may share a common molecular pathway. At elevated levels of exposure to PFAS, a reduction in mean birth weight of newborns has been observed in combination with a high incidence rate of preeclampsia. As both, preeclampsia and reduced birth weight are consequences of an inadequate placental vascularization, we hypothesized that the adaptation of placental vasculature may get compromised by PFAS. We analyzed pseudo-vascular network formation and protein expression in the HTR8/SVneo cell line, an embryonic trophoblast cell type that is able to form vessel-like vascular networks in 3D-matrices, similar to endothelial cells. PFOA (perfluoroctanoic acid), but not PFOS (perfuoroctanesulfonic acid), induced morphological changes in the vascular 3D-network structure, without indications of compromised cellular viability. Incubation with PFOA reduced cellular sprouting and elongated isolated stalks in pseudo-vascular networks, while a γ-secretase inhibitor BMS-906024 induced directional opposite effects. We found a PFOA-induced increase in NOTCH intracellular domain (NICD) abundance in HTR8/SVneo, indicating that PFOA enhances NOTCH-signaling in this cell type. Enhancement of NOTCH-pathway by PFOA may be a key to understand the mode of action of PFAS, as this pathway is critically involved in many confirmed physiological/toxicological symptoms associated with PFAS exposure.
Collapse
|
21
|
Lin CY, Lee HL, Hwang YT, Su TC. The association between total serum isomers of per- and polyfluoroalkyl substances, lipid profiles, and the DNA oxidative/nitrative stress biomarkers in middle-aged Taiwanese adults. ENVIRONMENTAL RESEARCH 2020; 182:109064. [PMID: 31884197 DOI: 10.1016/j.envres.2019.109064] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used in consumer products. In vitro and animal studies have demonstrated that exposure to perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) increases oxidative/nitrative stress. Recent studies have also found that isomers of PFOA/PFOS may have unique biological effects on clinical parameters. However, the correlation between PFOA/PFOS isomers and markers of oxidative/nitrative stress has never been investigated in the general population. In the current study, 597 adult subjects (ages between 22 and 63 years old) were enrolled from a control group of a case-control study entitled "Work-related risk factors and coronary heart disease". We investigated the correlation between the serum isomers of PFOA/PFOS, lipid profiles, and the urine compounds 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua) in these participants. There were 519 men and 78 women with a mean age of 45.8 years. Linear PFOA levels were positively correlated with serum low density lipoprotein cholesterol (LDL-C), small dense LDL, and triglyceride, and linear PFOS levels were positively correlated with LDL-C and HDL-C in multiple linear regression analyses. After controlling for potential confounders, the mean levels of 8-OHdG and 8-NO2Gua significantly increased across the quartiles of linear PFOS in multiple linear regression analyses. When both the 8-OHdG and 8-NO2Gua levels were above the 50th percentile, the odds ratio (OR) of higher levels of LDL-C (>75th percentile) with one unit increase in ln linear PFOS level was the highest (OR 3.15 (95% CI = 1.45-6.64), P = 0.003) in logistic regression models. In conclusion, serum linear PFOA/PFOS were correlated with lipid profiles, and linear PFOS was associated with urine oxidative/nitrative stress biomarkers. The positive correlation between linear PFOS and LDL-C was more marked when concentrations of urine oxidative/nitrative stress biomarkers were elevated. Further studies are needed to elucidate the causal relationships among PFAS isomers, lipid profiles, and oxidative/nitrative stress.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
22
|
Zhi H, Wu JP, Lu LM, Zhang XM, Chen XY, Wu SK, Tao J, Mai BX. Decarbromodiphenyl ether (BDE-209) promotes monocyte-endothelial adhesion in cultured human aortic endothelial cells through upregulating intercellular adhesion molecule-1. ENVIRONMENTAL RESEARCH 2019; 169:62-71. [PMID: 30419430 DOI: 10.1016/j.envres.2018.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
There is growing evidence that exposure to persistent organic pollutants (POPs) is statistically associated with incidence of cardiovascular disease (CVD) or its risk factors. Decarbromodiphenyl ether (BDE-209) is a new POP which exists extensively in human tissues, but its potential effects on CVD have so far received less focus. The adhesion of circulating monocytes to endothelial cells is one of the critical underlying steps in the initiation and development of CVD. In the present study, we investigated the effect of BDE-209 on the adhesion of THP-1 monocytes to human aortic endothelial cells (HAECs) and identified the molecular mechanisms involved. Our results showed that 6.25, 12.5 and 25 µM of BDE-209 exposures caused significant increases in monocyte-endothelial cell adhesion, in a dose-dependent manner. Mechanistically, BDE-209 exposure increased the expression of intercellular adhesion molecule-1 (ICAM-1). Moreover, the up-regulation of ICAM-1 was accompanied by a decrease in the expression of microRNA-141 (miR-141). Furthermore, the up-regulation of ICAM-1 and the increased adhesion induced by BDE-209 could be reversed by miR-141 supplement. Taken together, our results show that BDE-209 potentiates monocyte-endothelial cell interaction via miR-141/ICAM-1 pathway in HAECs.
Collapse
Affiliation(s)
- Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China; Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiang-Ping Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Lin-Ming Lu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China
| | - Xue-Mei Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yun Chen
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Si-Kang Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
23
|
Wang X, Liu L, Zhang W, Zhang J, Du X, Huang Q, Tian M, Shen H. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:168-176. [PMID: 28599201 DOI: 10.1016/j.envpol.2017.04.086] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/22/2017] [Accepted: 04/29/2017] [Indexed: 05/26/2023]
Abstract
Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| | - Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
24
|
Wimsatt J, Villers M, Thomas L, Kamarec S, Montgomery C, Yeung LWY, Hu Y, Innes K. Oral perfluorooctane sulfonate (PFOS) lessens tumor development in the APC min mouse model of spontaneous familial adenomatous polyposis. BMC Cancer 2016; 16:942. [PMID: 27927180 PMCID: PMC5143440 DOI: 10.1186/s12885-016-2861-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer is the second most common cause of cancer deaths for both men and women, and the third most common cause of cancer in the U.S. Toxicity of current chemotherapeutic agents for colorectal cancer, and emergence of drug resistance underscore the need to develop new, potentially less toxic alternatives. Our recent cross-sectional study in a large Appalachian population, showed a strong, inverse, dose–response association of serum perfluorooctane sulfonate (PFOS) levels to prevalent colorectal cancer, suggesting PFOS may have therapeutic potential in the prevention and/or treatment of colorectal cancer. In these preliminary studies using a mouse model of familial colorectal cancer, the APCmin mouse, and exposures comparable to those reported in human populations, we assess the efficacy of PFOS for reducing tumor burden, and evaluate potential dose–response effects. Methods At 5–6 weeks of age, APCmin mice were randomized to receive 0, 20, 250 mg PFOS/kg (females) or 0, 10, 50 and 200 mg PFOS/kg (males) via their drinking water. At 15 weeks of age, gastrointestinal tumors were counted and scored and blood PFOS levels measured. Results PFOS exposure was associated with a significant, dose–response reduction in total tumor number in both male and female mice. This inverse dose–response effect of PFOS exposure was particularly pronounced for larger tumors (r2 for linear trend = 0.44 for males, p’s <0.001). Conclusions The current study in a mouse model of familial adenomatous polyposis offers the first experimental evidence that chronic exposure to PFOS in drinking water can reduce formation of gastrointestinal tumors, and that these reductions are both significant and dose-dependent. If confirmed in further studies, these promising findings could lead to new therapeutic strategies for familial colorectal cancer, and suggest that PFOS testing in both preventive and therapeutic models for human colorectal cancer is warranted.
Collapse
Affiliation(s)
- Jeffrey Wimsatt
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, 26506, USA. .,West Virginia University, 186 HSCN, 1 Medical Center Drive, Morgantown, WV, 26508, USA.
| | - Meghan Villers
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Laurel Thomas
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Stacey Kamarec
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Caitlin Montgomery
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Leo W Y Yeung
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro, SE-70182, Sweden
| | - Yanqing Hu
- Department of Statistics, West Virginia University, Morgantown, WV, 26506, USA
| | - Kim Innes
- Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
25
|
Lin CY, Chen PC, Lo SC, Torng PL, Sung FC, Su TC. The association of carotid intima-media thickness with serum Level of perfluorinated chemicals and endothelium-platelet microparticles in adolescents and young adults. ENVIRONMENT INTERNATIONAL 2016; 94:292-299. [PMID: 27288966 DOI: 10.1016/j.envint.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 05/28/2023]
Abstract
Perfluorinated chemicals (PFCs) have been widely used in a variety of products worldwide. Our previous study has documented a close association of higher serum level of perfluorooctane sulfonate (PFOS) with an increased carotid intima-media thickness (CIMT) in a cohort of adolescents and young adults. Herein, we further investigated the association of oxidative stress, circulating endothelial microparticles (EMPs) and platelet microparticles (PMPs) with PFCs and CIMT in humans. We recruited 848 subjects (12-30years old) from a population-based sample to determine the relationship between serum levels of PFCs, EMPs (CD62E and CD31+/CD42a-), PMPs (CD62P and CD31+/CD42a+), and the urine levels of 8-hydroxydeoxyguanosine (8-OHdG) and CIMT. The results showed that CD31+/CD42a- (endothelial apoptosis marker) and CD31+/CD42a+ (platelet apoptosis marker) increased significantly across quartiles of PFOS in multiple linear regression analysis. Furthermore, the elevation of CD31+/CD42a- and CD31+/CD42a+ corresponded to the increase of the odds ratios of thicker CIMT (greater than 50th percentile) with higher serum PFOS concentration (greater than 50%) (OR=2.86, 95% C.I.=1.69-4.84, P<0.001) in logistic regression models. There was no association between PFC concentration and 8-OHdG. In conclusion, we found the positive association between PFOS and CIMT that was more evident when serum levels of EMPs (CD31+/CD42a-) and PMPs (CD31+/CD42a+) were elevated. Further studies are warranted to investigate the causal inference of PFOS exposure on endothelial cell damage and atherosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shyh-Chyi Lo
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Ta-Chen Su
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei 10020, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
26
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
27
|
Flos lonicerae extracts and chlorogenic acid protect human umbilical vein endothelial cells from the toxic damage of perfluorooctane sulphonate. Inflammation 2014; 36:767-79. [PMID: 23392856 DOI: 10.1007/s10753-013-9603-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlorogenic acid (CGA), one of the most common phenolic acids, is found in many food and traditional Chinese herbs. Various bioactivities of CGA are studied. However, little is known about these properties of Flos Lonicerae extracts, and the difference in the effect between Flos Lonicerae extracts and CGA has not been reported. CGA was identified in Flos Lonicerae extracts by HPLC and determined qualitatively by quadrupole ion trap mass spectrometry. In this study, we evaluated the effect of Flos Lonicerae extracts and CGA on inflammatory-related gene expression, adhesion molecule expression and reactive oxygen species (ROS) production in perfluorooctane sulphonate (PFOS)-treated human umbilical vein endothelial cells (HUVECs). The suppression of transcription of IL-1β, IL-6, COX-2, and P-Selectin genes with Flos Lonicerae extracts was greater than that of CGA in PFOS-treated HUVECs, while the degree of suppression on PFOS-induced expression of NOS3 and ICAM-1 was greater for CGA. Furthermore, the suppressive effect of Flos Lonicerae extracts on adhesion of monocytes onto PFOS-induced HUVECs was greater than that of CGA. In addition, Flos Lonicerae extracts and CGA were highly effective in reducing ROS although their effects were almost comparable. So, Flos Lonicerae extracts exhibited antioxidant activity and CGA was a major contributor to this activity. These results suggest that Flos Lonicerae extracts could be useful to prevent PFOS-mediated inflammatory diseases.
Collapse
|
28
|
Liu C, Wang Q, Liang K, Liu J, Zhou B, Zhang X, Liu H, Giesy JP, Yu H. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:147-57. [PMID: 23306105 DOI: 10.1016/j.aquatox.2012.12.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/22/2012] [Accepted: 12/11/2012] [Indexed: 05/04/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC(50)) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in the six receptor-centered gene networks in zebrafish embryos/larvae, and TDCPP seemed to have higher potency in changing the mRNA expression of these genes.
Collapse
Affiliation(s)
- Chunsheng Liu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment, Nanjing University, Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|