1
|
Pinheiro FC, Bortolotto VC, Araujo SM, Dahleh MMM, Neto JSS, Zeni G, Zaha A, Prigol M. Antimicrobial Effect of Diphenyl Ditelluride (PhTe) 2 in a Model of Infection by Escherichia coli in Drosophila melanogaster. Indian J Microbiol 2024; 64:1619-1626. [PMID: 39678956 PMCID: PMC11645334 DOI: 10.1007/s12088-024-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 12/17/2024] Open
Abstract
Diphenyl ditelluride (PhTe)2, an organotelluric compound with pharmacological and toxicological attributes, has shown promise in microorganism studies. Drosophila melanogaster, an alternative animal model, is gaining popularity for novel antimicrobial research due to its cost-effectiveness, versatility, and similarity to vertebrate models. Given the rising antibiotic resistance, particularly in Escherichia coli (E. coli), the exploration of novel antimicrobials is of utmost importance. In (PhTe)2 safety validation, our findings indicate an 50% lethal concentration (LC50) of 41.74 µM for (PhTe)2 following a 48-h exposure period in Drosophila melanogaster. To assess potential motor and neurological deficits, we conducted behavioral analyses employing negative geotaxis and open field tests. Our outcomes reveal alterations in exploratory behavior at concentrations exceeding 50 µM (PhTe)2 in the flies. Consequently, we have established the optimal treatment concentration for Drosophila melanogaster as 10 µM (PhTe)2. Upon safety validation, we gauged the antimicrobial potential of (PhTe)2 through an oral infection model involving axenic flies. After exposing these flies to E. coli for 18-20 h, we treated them with 10 µM of (PhTe)2 for various time spans (0, 3, 6, 12, 24, and 48 h), followed by plating and colony counting. The logarithmic bacterial load curve demonstrated the antimicrobial impact of the compound, highlighting a significant reduction in bacterial load after 3 h of exposure to 10 µM (PhTe)2, with an enhancement of antimicrobial potential lasting up to 48 h. Given these results, we state that 10 µM (PhTe)2 was safe and presented antimicrobial potential, reducing the bacterial load in Drosophila melanogaster. Graphical Abstract
Collapse
Affiliation(s)
- Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Stífani Machado Araujo
- Laboratório de BioSaúde Humana e Animal, Universidade Federal da Fronteira Sul, Realeza, PR 85770-000 Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | | | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| |
Collapse
|
2
|
Rieder GS, Braga MM, Mussulini BHM, Silva ES, Lazzarotto G, Casali EA, Oliveira DL, Franco JL, Souza DOG, Rocha JBT. Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia. Neurotox Res 2024; 42:13. [PMID: 38332435 DOI: 10.1007/s12640-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.
Collapse
Affiliation(s)
- Guilherme S Rieder
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcos M Braga
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ben Hur M Mussulini
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson S Silva
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo L Oliveira
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jeferson L Franco
- Universidade Federal Do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Diogo O G Souza
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - João Batista T Rocha
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
3
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
4
|
Yang R, Duan C, Zhang S, Guo Y, Shan X, Chen M, Yue S, Zhang Y, Liu Y. High Prolactin Concentration Induces Ovarian Granulosa Cell Oxidative Stress, Leading to Apoptosis Mediated by L-PRLR and S-PRLR. Int J Mol Sci 2023; 24:14407. [PMID: 37833858 PMCID: PMC10573079 DOI: 10.3390/ijms241914407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
High prolactin (PRL) concentration has been shown to induce the apoptosis of ovine ovarian granulosa cells (GCs), but the underlying mechanisms are unclear. This study aimed to investigate the mechanism of apoptosis induced by high PRL concentration in GCs. Trial 1: The optimal concentration of glutathion was determined according to the detected cell proliferation. The results showed that the optimal glutathione concentration was 5 μmol/mL. Trial 2: 500 ng/mL PRL was chosen as the high PRL concentration. The GCs were treated with 0 ng/mL PRL (C group), 500 ng/mL PRL (P group) or 500 ng/mL PRL, and 5 μmol/mL glutathione (P-GSH group). The results indicated that the mitochondrial respiratory chain complex (MRCC) I-V, ATP production, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and thioredoxin peroxidase (TPx) in the C group were higher than those in the P group (p < 0.05), while they were lower than those in the P-GSH group (p < 0.05). Compared to the C group, the P group exhibited elevated levels of reactive oxygen species (ROS) and apoptosis (p < 0.05) and increased expression of ATG7 and ATG5 (p < 0.05). However, MRCC I-V, ATP, SOD, A-TOC, TPx, ROS, and apoptosis were decreased after the addition of glutathione (p < 0.05). The knockdown of either L-PRLR or S-PRLR in P group GCs resulted in a significant reduction (p < 0.05) in MRCC I-V, ATP, T-AOC, SOD and TPx, while the overexpression of either receptor showed an opposite trend (p < 0.05). Our findings suggest that high PRL concentrations induce apoptotic cell death in ovine ovarian GCs by downregulating L-PRLR and S-PRLR, activating oxidative stress and autophagic pathways.
Collapse
Affiliation(s)
- Ruochen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Shuo Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100089, China;
| | - Yunxia Guo
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China;
| | - Xinyu Shan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Sicong Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (R.Y.); (C.D.); (X.S.); (M.C.); (S.Y.)
| |
Collapse
|
5
|
Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe) 2 exposure. Toxicol In Vitro 2022; 83:105404. [PMID: 35654257 DOI: 10.1016/j.tiv.2022.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
The toxicity of diphenyl ditelluride (PhTe)2 is associated with its ability to oxidize sulfhydryl groups from biological molecules. Therefore, we evaluated possible molecular mechanisms of toxicity induced by this organochalcogen in Escherichia coli (E. coli) by evaluating oxidative damage markers, relative expression of genes associated with the cellular redox state in bacteria, such as katG, sodA, sodB, soxS, and oxyR, as well as the activity of enzymes responsible for cellular redox balance. After exposure of (PhTe)2 (6, 12, and 24 μg/mL), there was a decrease in non-protein thiols (NPSH) levels, an increase in protein carbonylation and lipid peroxidation in E. coli. Intra- and extracellular reactive species (RS) was increased at concentrations of 6, 12, and 24 μg/mL. The superoxide dismutase (SOD) activity was increased at the three concentrations tested, while catalase (CAT) activity was higher at 12 and 24 μg/mL. The soxS gene showed lower expression at the three concentrations tested, while the oxyR gene was supressed at 24 μg/mL. The katG antioxidant response gene showed lower expression, and sodA and sodB were positively activated, except for sodB at 6 μg/mL. Our findings demonstrate that exposure to (PhTe)2 induced RS formation, NPSH depletion and changes in transcriptional factors regulation, characterizing it as a multi-target compound, causing disruption in cellular oxidative state, as well as molecular mechanisms associated in E. coli.
Collapse
|
6
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
7
|
Prestes ADS, Dos Santos MM, Kamdem JP, Mancini G, Schüler da Silva LC, de Bem AF, Barbosa NV. Methylglyoxal disrupts the functionality of rat liver mitochondria. Chem Biol Interact 2022; 351:109677. [PMID: 34634269 DOI: 10.1016/j.cbi.2021.109677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022]
Abstract
Methylglyoxal (MG) is a reactive metabolite derived from different physiological pathways. Its production can be harmful to cells via glycation reactions of lipids, DNA, and proteins. But, the effects of MG on mitochondrial functioning and bioenergetic responses are still elusive. Then, the effects of MG on key parameters of mitochondrial functionality were examined here. Isolated rat liver mitochondria were exposed to 0.1-10 mM of MG to determine its toxicity in the mitochondrial viability, membrane potential (Δψm), swelling and the superoxide (O2•-) production. Besides, mitochondrial oxidative phosphorylation parameters were analyzed by high-resolution respiratory (HRR) assay. In this set of experiments, routine state, PM state (pyruvate/malate), oxidative phosphorylation (OXPHOS), LEAK respiration, electron transport system (ETS) and oxygen residual (ROX) states were evaluated. HRR showed that PM state, OXPHOS CI-Linked, LEAK respiration, ETS CI/CII-Linked and ETS CII-Linked/ROX were significantly inhibited by MG exposure. MG also inhibited the complex II activity, and decreased Δψm and the viability of mitochondria. Taken together, our data indicates that MG is an inductor of mitochondrial dysfunctions and impairs important steps of respiratory chain, effects that can alter bioenergetics responses.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Pimenta, Crato, CE, Brazil
| | - Gianni Mancini
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Andreza Fabro de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
8
|
Hara T, Okazaki T, Hashiya T, Nozawa K, Yasuike S, Kurita J, Yamamoto C, Hamada N, Kaji T. Effects of Substitution on Cytotoxicity of Diphenyl Ditelluride in Cultured Vascular Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910520. [PMID: 34638861 PMCID: PMC8531998 DOI: 10.3390/ijms221910520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Among organic–inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan; (T.H.); (C.Y.)
| | - Takahiro Okazaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (T.O.); (T.H.)
| | - Tamayo Hashiya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (T.O.); (T.H.)
| | - Kyohei Nozawa
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan;
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan;
| | - Jyoji Kurita
- Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan;
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan; (T.H.); (C.Y.)
| | - Noriaki Hamada
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan;
- Correspondence: (N.H.); (T.K.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (T.O.); (T.H.)
- Correspondence: (N.H.); (T.K.)
| |
Collapse
|
9
|
Streptozotocin activates inflammation-associated signalling and antioxidant response in the lobster cockroach; Nauphoeta cinerea (Blattodea: Blaberidae). Chem Biol Interact 2021; 345:109563. [PMID: 34166651 DOI: 10.1016/j.cbi.2021.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/17/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Streptozotocin exhibits tropism to insulin-producing beta-cells in mammals and has been used to model diabetes-like phenotypes in insects. We have previously shown increased brain glucose levels and oxidative stress in STZ-treated nymphs of Nauphoeta cinerea. Here, we validate Nauphoeta cinerea as an experimental organism for studying STZ-induced metabolic disruptions by investigating the potential changes in the expression of inflammation and antioxidant related genes. Cockroaches were injected with 0.8% NaCl, 74 and 740 nmol of STZ. mRNA extracted from the head of cockroaches was used to estimate the RT-qPCR expression of inflammation and antioxidant genes. STZ-treatment upregulated the target genes of the JNK pathway (early growth factor response factor and reaper) but had no effect on PDGF-and VEGF-related factor 1. TOLL 1, the target gene of TOLL/NF-kB pathway was up regulated, while both the activator and target gene of the UPD3/JAK/STAT pathway [unpaired 3 and Suppressor of cytokine signalling at 36E] were upregulated. mRNA levels of primary antioxidants (superoxide dismutase and catalase) were increased in STZ treated nymphs but there was no effect on thioredoxins and Peroxiredoxin 4. Likewise, STZ treatment did not affect the expression of the delta class of the glutathione S-transferase gene family, but the sigma and theta classes of the GST family were upregulated. The STZ-induced N. cinerea gene expression modification demonstrates the involvement of primary antioxidants and the GST detoxification system in the cockroach oxidative stress response and buttresses the proposed crosstalk between inflammatory and redox pathways.
Collapse
|
10
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Love DT, Guo C, Nikelshparg EI, Brazhe NA, Sosnovtseva O, Hawkins CL. The role of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) in the induction of mitochondrial dysfunction in macrophages. Redox Biol 2020; 36:101602. [PMID: 32570189 PMCID: PMC7315103 DOI: 10.1016/j.redox.2020.101602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
A host of chronic inflammatory diseases are accelerated by the formation of the powerful oxidant hypochlorous acid (HOCl) by myeloperoxidase (MPO). In the presence of thiocyanate (SCN-), the production of HOCl by MPO is decreased in favour of the formation of a milder oxidant, hypothiocyanous acid (HOSCN). The role of HOSCN in disease has not been fully elucidated, though there is increasing interest in using SCN- therapeutically in different disease settings. Unlike HOCl, HOSCN can be detoxified by thioredoxin reductase, and reacts selectively with thiols to result in reversible modifications, which could potentially reduce the extent of MPO-induced damage during chronic inflammation. In this study, we show that exposure of macrophages, a key inflammatory cell type, to HOSCN results in the reversible modification of multiple mitochondrial proteins, leading to increased mitochondrial membrane permeability, decreased oxidative phosphorylation and reduced formation of ATP. The increased permeability and reduction in ATP could be reversed by pre-treatment of the macrophages with cyclosporine A, implicating a role for the mitochondrial permeability transition pore. HOSCN also drives cells to utilise fatty acids as an energetic substrate after the inhibition of oxidative phosphorylation. Raman imaging studies highlighted the ability of HOSCN to perturb the electron transport chain of mitochondria and redistribute these organelles within the cell. Taken together, these data provide new insight into the pathways by which HOSCN can induce cytotoxicity and cellular damage, which may have relevance for the development of inflammatory disease, and therapeutic strategies to reduce HOCl-induced damage by supplementation with SCN-. HOSCN induces the oxidation of mitochondrial thiol proteins and cytochromes. HOSCN alters mitochondrial permeability and ATP production via MPTP formation. HOSCN increases the capacity of cells to use fatty acids as an energetic substrate. Raman imaging shows redistribution of mitochondria after cell exposure to HOSCN.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia
| | - Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Evelina I Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
12
|
Diphenyl diselenide blunts swimming training on mitochondrial liver redox adaptation mechanisms of aged animals. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
13
|
Stefanello ST, Mizdal CR, Gonçalves DF, Hartmann DD, Dobrachinski F, de Carvalho NR, Salman SM, Sauer AC, Dornelles L, de Campos MMA, Soares FAA. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity. Bioorg Chem 2020; 98:103727. [DOI: 10.1016/j.bioorg.2020.103727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
14
|
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2510936. [PMID: 31772702 PMCID: PMC6854260 DOI: 10.1155/2019/2510936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/09/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Tellurium is a rare element that has been regarded as a toxic, nonessential element, and its biological role is not clearly established. In addition, the biological effects of elemental tellurium and some of its organic and inorganic derivatives have been studied, leading to a set of interesting and promising applications. Diphenyl ditelluride (DPDT), an organic tellurium derivate, showed antioxidant, antigenotoxic, antimutagenic, and anticancer properties. The antioxidant and prooxidant properties of DPDT are complex and depend on experimental conditions, which may explain the contradictory reports of these properties. In addition, DPDT may exert its effects through different pathways, including distinct ones to those responsible for chemotherapy resistance phenotypes: transcription factors, membrane receptors, adhesion, structural molecules, cell cycle regulatory components, and apoptosis pathways. This review aims to present recent advances in our understanding of the biological effects, therapeutic potential, and safety of DPDT treatment. Moreover, original results demonstrating the cytotoxic effects of DPDT in different mammalian cell lines and systems biology analysis are included, and emerging approaches for possible future applications are inferred.
Collapse
|
15
|
Xu X, Pu R, Li Y, Wu Z, Li C, Miao X, Yang W. Chemical Compositions of Propolis from China and the United States and their Antimicrobial Activities Against Penicillium notatum. Molecules 2019; 24:E3576. [PMID: 31590214 PMCID: PMC6803850 DOI: 10.3390/molecules24193576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
The chemical compositions of ethanol extracts of propolis from China (EEP-C) and the United States (EEP-A) and their antifungal activity against Penicillium notatum were determined. The result showed that a total of 49 compounds were detected by UPLC-Q-TOF-MS, 30 of which were present in samples from two regions. The major compounds of EEP-C and EEP-A were similar, including pinocembrin, pinobanksin-3-O-acetate, galanin, chrysin, pinobanksin, and pinobanksin-methyl ether, and both of them showed antifungal activity against P. notatum with same minimum inhibitory concentration (MIC) value of 0.8 mg·mL-1. In the presence of propolis, the mycelial growth was inhibited, the hyphae became shriveled and wrinkled, the extracellular conductivities were increased, and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were decreased. In addition, iTRAQ-based quantitative proteomic analysis of P. notatum in response to propolis revealed that a total of 341 proteins were differentially expressed, of which 88 (25.8%) were upregulated and 253 (74.2%) were downregulated. Meanwhile, the differentially expressed proteins (DEPs) involved in energy production and conversion, carbohydrate transport and metabolism, and the sterol biosynthetic pathway were identified. This study revealed that propolis could affect respiration, interfere with energy metabolism, and influence steroid biosynthesis to inhibit the growth of P. notatum.
Collapse
Affiliation(s)
- Xiaolan Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruixue Pu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Yujie Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Zhenghong Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Chunxia Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou 350002, China.
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J. Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 2018; 52:1158-1169. [DOI: 10.1080/10715762.2018.1536824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Diones Bueno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daiane Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emily Waczuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
17
|
A comparison of in vitro cytotoxicity assays in medical device regulatory studies. Regul Toxicol Pharmacol 2018; 97:24-32. [PMID: 29885342 DOI: 10.1016/j.yrtph.2018.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/05/2018] [Indexed: 11/20/2022]
Abstract
Medical device biocompatibility testing is used to evaluate the risk of adverse effects on tissues from exposure to leachates/extracts. A battery of tests is typically recommended in accordance with regulatory standards to determine if the device is biocompatible. In vitro cytotoxicity, a key element of the standards, is a required endpoint for all types of medical devices. Each validated cytotoxicity method has different methodology and acceptance criteria that could influence the selection of a specific test. In addition, some guidances are more specific than others as to the recommended test methods. For example, the International Organization for Standardization (ISO1) cites preference for quantitative methods (e.g., tetrazolium (MTT/XTT), neutral red (NR), or colony formation assays (CFA)) over qualitative methods (e.g., elution, agar overlay/diffusion, or direct), while a recent ISO standard for contact lens/lens care solutions specifically requires a qualitative direct test. Qualitative methods are described in United States Pharmacopeia (USP) while quantitative CFAs are listed in Japan guidance. The aim of this review is to compare the methodologies such as test article preparation, test conditions, and criteria for six cytotoxicity methods recommended in regulatory standards in order to inform decisions on which method(s) to select during the medical device safety evaluation.
Collapse
|
18
|
Amaral GP, Dobrachinski F, de Carvalho NR, Barcelos RP, da Silva MH, Lugokenski TH, Dias GRM, de Lima Portella R, Fachinetto R, Soares FAA. Multiple mechanistic action of Rosmarinus officinalis L. extract against ethanol effects in an acute model of intestinal damage. Biomed Pharmacother 2018; 98:454-459. [DOI: 10.1016/j.biopha.2017.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/24/2023] Open
|
19
|
Santofimia-Castaño P, Izquierdo-Alvarez A, Plaza-Davila M, Martinez-Ruiz A, Fernandez-Bermejo M, Mateos-Rodriguez JM, Salido GM, Gonzalez A. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells. J Cell Biochem 2017; 119:1122-1133. [PMID: 28703940 DOI: 10.1002/jcb.26280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca2+ concentration ([Ca2+ ]c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca2+ ]c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells.
Collapse
Affiliation(s)
| | - Alicia Izquierdo-Alvarez
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - María Plaza-Davila
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Martinez-Ruiz
- Servicio de Inmunologia, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Miguel Fernandez-Bermejo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain.,Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
20
|
Response to the Letter to the Editor: “Mitochondria isolated from the striatum of the brain exhibit a higher degree of oxidative phosphorylation coupling, which shows that they are not subject to energetic dysfunction upon acute paraquat administration”. J Bioenerg Biomembr 2016; 48:553-555. [DOI: 10.1007/s10863-016-9680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Petronilho F, Michels M, Danielski LG, Goldim MP, Florentino D, Vieira A, Mendonça MG, Tournier M, Piacentini B, Giustina AD, Leffa DD, Pereira GW, Pereira VD, Rocha JBTD. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen. Pathol Res Pract 2016; 212:755-60. [DOI: 10.1016/j.prp.2016.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
|
22
|
Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology 2016; 357-358:74-84. [DOI: 10.1016/j.tox.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
|
23
|
Zaccaria F, Wolters LP, Fonseca Guerra C, Orian L. Insights on selenium and tellurium diaryldichalcogenides: A benchmark DFT study. J Comput Chem 2016; 37:1672-80. [DOI: 10.1002/jcc.24383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Lando P. Wolters
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Laura Orian
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| |
Collapse
|
24
|
Brazilian Pampa Biome Honey Protects Against Mortality, Locomotor Deficits and Oxidative Stress Induced by Hypoxia/Reperfusion in Adult Drosophila melanogaster. Neurochem Res 2015; 41:116-29. [DOI: 10.1007/s11064-015-1744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 01/02/2023]
|
25
|
Pavón N, Correa F, Buelna-Chontal M, Hernández-Esquivel L, Chávez E. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase. Life Sci 2015; 139:108-13. [DOI: 10.1016/j.lfs.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022]
|
26
|
Ecker A, Araujo Vieira F, de Souza Prestes A, Mulling Dos Santos M, Ramos A, Dias Ferreira R, Teixeira de Macedo G, Vargas Klimaczewski C, Lopes Seeger R, Teixeira da Rocha JB, de Vargas Barbosa NB. Effect of Syzygium cumini and Bauhinia forficata aqueous-leaf extracts on oxidative and mitochondrial parameters in vitro. EXCLI JOURNAL 2015; 14:1219-31. [PMID: 27152111 PMCID: PMC4849105 DOI: 10.17179/excli2015-576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/23/2015] [Indexed: 11/10/2022]
Abstract
Aqueous-leaf extract of Syzygium cumini and Bauhinia forficata are traditionally used in the treatment of diabetes and cancer, especially in South America, Africa, and Asia. In this study, we analyzed the effects of these extracts on oxidative and mitochondrial parameters in vitro, as well as their protective activities against toxic agents. Phytochemical screenings of the extracts were carried out by HPLC analysis. The in vitro antioxidant capacities were compared by DPPH radical scavenging and Fe(2+) chelating activities. Mitochondrial parameters observed were swelling, lipid peroxidation and dehydrogenase activity. The major chemical constituent of S. cumini was rutin. In B. forficata were predominant quercetin and gallic acid. S. cumini reduced DPPH radical more than B. forficata, and showed iron chelating activity at all tested concentrations, while B. forficata had not similar property. In mitochondria, high concentrations of B. forficata alone induced a decrease in mitochondrial dehydrogenase activity, but low concentrations of this extract prevented the effect induced by Fe(2+)+H2O2. This was also observed with high concentrations of S. cumini. Both extracts partially prevented the lipid peroxidation induced by Fe(2+)/citrate. S. cumini was effective against mitochondrial swelling induced by Ca(2+), while B. forficata alone induced swelling more than Ca(2+). This study suggests that leaf extract of S. cumini might represent a useful therapeutic for the treatment of diseases related with mitochondrial dysfunctions. On the other hand, the consumption of B. forficata should be avoided because mitochondrial damages were observed, and this possibly may pose risk to human health.
Collapse
Affiliation(s)
- Assis Ecker
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Francielli Araujo Vieira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Matheus Mulling Dos Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Angelica Ramos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Rafael Dias Ferreira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Claudia Vargas Klimaczewski
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Rodrigo Lopes Seeger
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Nilda B de Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
27
|
Jorge PM, de Oliveira IM, Filippi Chiela EC, Viau CM, Saffi J, Horn F, Rosa RM, Guecheva TN, Pêgas Henriques JA. Diphenyl Ditelluride-Induced Cell Cycle Arrest and Apoptosis: A Relation with Topoisomerase I Inhibition. Basic Clin Pharmacol Toxicol 2014; 116:273-80. [DOI: 10.1111/bcpt.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Patrícia M. Jorge
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - Iuri M. de Oliveira
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | | | - Cassiana M. Viau
- Department of Basic Health Sciences; Federal University of Health Sciences of Porto Alegre (UFCSPA); Porto Alegre RS Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences; Federal University of Health Sciences of Porto Alegre (UFCSPA); Porto Alegre RS Brazil
| | - Fabiana Horn
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - Renato M. Rosa
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - Temenouga N. Guecheva
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
| | - João A. Pêgas Henriques
- Department of Biophysics; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
- Biotecnology Institute; University of Caxias do Sul (UCS); Caxias do Sul RS Brazil
| |
Collapse
|
28
|
The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells. Toxicol Lett 2014; 229:465-73. [DOI: 10.1016/j.toxlet.2014.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
29
|
Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696107. [PMID: 24587987 PMCID: PMC3921973 DOI: 10.1155/2014/696107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 02/02/2023]
Abstract
Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.
Collapse
|
30
|
Orian L, Toppo S. Organochalcogen peroxidase mimetics as potential drugs: a long story of a promise still unfulfilled. Free Radic Biol Med 2014; 66:65-74. [PMID: 23499840 DOI: 10.1016/j.freeradbiomed.2013.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/14/2022]
Abstract
Organochalcogen compounds have attracted the interest of a multitude of studies to design potential therapeutic agents mimicking the peroxidase activity of selenium-based glutathione peroxidases (GPx's). Starting from the pioneering ebselen, various compounds have been synthesized over the years, which may be traced in three major classes of molecules: cyclic selenenyl amides, diaryl diselenides, and aromatic or aliphatic monoselenides. These compounds share common features and determinants needed to exert an efficient GPx-like activity, such as polarizing groups in close proximity to selenium and steric effects. Nonetheless, the reactivity of selenium, and tellurium as well, poses serious problems for the predictability of the biological effects of these compounds in vivo when used as potential drugs. These molecules, indeed, interfere with thiols of redox-regulated proteins and enzymes, leading to unexpected biological effects. The various chemical aspects of the reaction mechanism of peroxidase mimetics are surveyed here, focusing on experimental evidence and quantum mechanics calculations of organochalcogen representatives of the various classes.
Collapse
Affiliation(s)
- Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35129 Padova, Italy.
| | - Stefano Toppo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, 35121 Padova, Italy.
| |
Collapse
|
31
|
Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: a comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride. BIOMED RESEARCH INTERNATIONAL 2013; 2013:537279. [PMID: 24350274 PMCID: PMC3856129 DOI: 10.1155/2013/537279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022]
Abstract
Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5–50 μM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 μM, and (PhTe)2 at 5–50 μM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.
Collapse
|
32
|
Santofimia-Castaño P, Salido GM, González A. Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes. DNA Cell Biol 2013; 32:147-55. [PMID: 23496767 DOI: 10.1089/dna.2012.1939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca(2+) concentration ([Ca(2+)]c), the mitochondrial free-Ca(2+) concentration ([Ca(2+)]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca(2+)]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca(2+)]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function.
Collapse
|
33
|
Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicol In Vitro 2013; 27:1433-9. [PMID: 23499633 DOI: 10.1016/j.tiv.2013.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 12/19/2022]
Abstract
This study was designed to examine the antioxidant activity in vitro of novel mono- and diselenide compounds. We compared whether the formation of p-methyl-selenol from compounds 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1,2-dip-tolyldiselenide (C4) and o-methoxy-selenol from compounds 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and 1,2-bis(2-methoxyphenyl)diselenide (C3) may be involved in their antioxidant effects. The compounds were tested against Fe(II) and sodium nitroprusside (SNP)-induced lipid peroxidation in rat brain and liver homogenates. Likewise, the antioxidant capacity of the compounds was assessed by their ability to decolorize the DPPH radical as well as the Fe(II) chelating assay through the reduction of molybdenum(VI) (Mo6+) to molybdenum(V) (Mo5+). This colorimetric assay was also used to quantify thiol peroxidase (GPx) and oxidase activity and thioredoxin reductase (TrxR) activity. The results showed that the novel selenide compounds inhibit the thiobarbituric acid reactive species (TBARS) induced by different pro-oxidants, but the monoselenides effects were significant only at concentrations higher than the concentrations of the diselenides. Similarly, the total antioxidant activity was higher in the diselenides. Moreover, GPx and TrxR activity was only observed for the diselenides, which indicates that these compounds are more stable selenol molecules than monoselenides.
Collapse
|