1
|
Mini Vijayan S, Baierl M, Göen T, Horch RE, Ludolph I, Drexler H, Kilo S. Intradermal and transdermal absorption of beta-naphthylamine and N-Phenyl-beta-naphthylamine in a viable human skin model. Toxicol In Vitro 2024; 101:105947. [PMID: 39343073 DOI: 10.1016/j.tiv.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Technical products containing N-Phenyl-beta-naphthylamine (PBNA) are contaminated with beta-naphthylamine (BNA), a known carcinogen. Both amines penetrate the skin to different degrees, but little is known about their dermal-depot formation. This study investigated the dermal penetration of PBNA and its degradation product BNA using a viable human-skin model. PBNA (259 μg) or BNA (0.52 μg) in n-hexane and industrial grease were applied to freshly excised human skin (n = 6, 0.64 cm2) for 2-72 h. After temporary/continuous and single/repeated exposure, samples were taken (stratum corneum, epidermis/dermis, receptor fluid) and analyzed for their amine content by GC-MS. Continuous exposure led to a PBNA dermal depot of ∼47 μg/cm2 over 72 h. Temporary applications also resulted in lower but consistent PBNA dermal depots. A single 2-h application resulted in a dermal depot of ∼16 μg/cm2 after 72 h, while this was ∼25 μg/0.64 cm2 with repeated applications. BNA behaved differently; with repeated 2-h applications, intradermally retained BNA initially increased 3-6 fold, then dropped to ∼200-250 ng/cm2. This incomplete decline upon repeated short-term exposure to PBNA suggests that a BNA dermal depot is formed either due to contamination of PBNA with BNA or to enzymatic conversion of PBNA to BNA. Additionally, PBNA dermal depots were saturable under the given conditions. These findings highlight the importance of understanding the dermal-exposure dynamics of potential carcinogenic compounds in industrial settings.
Collapse
Affiliation(s)
- Suvarna Mini Vijayan
- Institute and Outpatient clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Moritz Baierl
- Institute and Outpatient clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Universitätsklinikum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Universitätsklinikum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hans Drexler
- Institute and Outpatient clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sonja Kilo
- Institute and Outpatient clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany.
| |
Collapse
|
2
|
Kichou H, Bonnier F, Caritá AC, Byrne HJ, Chourpa I, Munnier E. Confocal Raman spectroscopy coupled with in vitro permeation testing to study the effects of formalin fixation on the skin barrier function of reconstructed human epidermis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124617. [PMID: 38870697 DOI: 10.1016/j.saa.2024.124617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Confocal Raman Spectroscopy is recognised as a potent tool for molecular characterisation of biological specimens. There is a growing demand for In Vitro Permeation Tests (IVPT) in the pharmaceutical and cosmetic areas, increasingly conducted using Reconstructed Human Epidermis (RHE) skin models. In this study, chemical fixation of RHE in 10 % Neutral Buffered Formalin for 24 h has been examined for storing RHE samples at 4 °C for up to 21 days. Confocal Raman Spectroscopy (CRS), combined with Principal Components Analysis, revealed the molecular-level effects of fixation, notably in protein and lipid conformation within the stratum corneum and viable epidermis. IVPT by means of high-performance liquid chromatography, using caffeine as a model compound, showed minimal impact of formalin fixation on the cumulative amount, flux, and permeability coefficient after 12 h. While the biochemical architecture is altered, the function of the model as a barrier to maintain rate-limiting diffusion of active molecules within skin layers remains intact. This study opens avenues for enhanced flexibility and utility in skin model research, promising insights into mitigating the limited shelf life of RHE models by preserving performance in fixed samples for up to 21 days.
Collapse
Affiliation(s)
- Hichem Kichou
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- LVMH Recherche, 185 Av. de Verdun, 45800, Saint-Jean-de-Braye, France
| | - Amanda C Caritá
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1, Ireland
| | - Igor Chourpa
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France.
| |
Collapse
|
3
|
Wang X, Zhang Y, Liang K, Meng X, Ma C, Wang Q. The Influence of Various Freezing-thawing Methods of Skin on Drug Permeation and Skin Barrier Function. AAPS J 2024; 26:76. [PMID: 38955873 DOI: 10.1208/s12248-024-00941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
The selection of skin is crucial for the in vitro permeation test (IVPT). The purpose of this study was to investigate the influence of different freezing-thawing processes on the barrier function of skin and the transdermal permeability of granisetron and lidocaine. Rat and hairless mouse skins were thawed at three different conditions after being frozen at -20℃ for 9 days: thawed at 4℃, room temperature (RT), and 32℃. There were no significant differences in the steady-state fluxes of drugs between fresh and thawed samples, but compared with fresh skin there were significant differences in lag time for the permeation of granisetron in rat skins thawed at RT and 32℃. Histological research and scanning electron microscopy images showed no obvious structural damage on frozen/thawed skin, while immunohistochemical staining and enzyme-linked immunosorbent assay for the tight junction (TJ) protein Cldn-1 showed significantly impaired epidermal barrier. It was concluded that the freezing-thawing process increases the diffusion rate of hydrophilic drugs partly due to the functional degradation of TJs. It's recommended that hairless, inbred strains and identical animal donors should be used, and the selected thawing method of skin should be validated prior to IVPT, especially for hydrophilic drugs.
Collapse
Affiliation(s)
- Xinying Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China
| | - Kaili Liang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China
| | - Xue Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China
| | - Chunyan Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Liaoning, 116024, People's Republic of China.
| |
Collapse
|
4
|
Chedik L, Baybekov S, Cosnier F, Marcou G, Varnek A, Champmartin C. An update of skin permeability data based on a systematic review of recent research. Sci Data 2024; 11:224. [PMID: 38383523 PMCID: PMC10881585 DOI: 10.1038/s41597-024-03026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs and cosmetics, as well as for assessing environmental and occupational chemical risks. Despite the great variability in the design of experimental conditions due to uncertain international guidelines, datasets like HuskinDB have been created to report skin absorption endpoints. This review updates available skin permeability data by rigorously compiling research published between 2012 and 2021. Inclusion and exclusion criteria have been selected to build the most harmonized and reusable dataset possible. The Generative Topographic Mapping method was applied to the present dataset and compared to HuskinDB to monitor the progress in skin permeability research and locate chemotypes of particular concern. The open-source dataset (SkinPiX) includes steady-state flux, maximum flux, lag time and permeability coefficient results for the substances tested, as well as relevant information on experimental parameters that can impact the data. It can be used to extract subsets of data for comparisons and to build predictive models.
Collapse
Affiliation(s)
- Lisa Chedik
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Frédéric Cosnier
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Catherine Champmartin
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Morin M, Runnsjö A, Ruzgas T, Engblom J, Björklund S. Effects of storage conditions on permeability and electrical impedance properties of the skin barrier. Int J Pharm 2023; 637:122891. [PMID: 36997077 DOI: 10.1016/j.ijpharm.2023.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The aim of this study was to investigate the effect of various skin preservation protocols on in vitro drug permeation, epidermal-dermal drug distribution, and electrical impedance properties of skin membranes. Acyclovir (AC) and methyl salicylate (MS) were selected as model drugs due to their different physicochemical properties and skin metabolic profiles. In particular, AC is relatively hydrophilic (logP -1.8) and not expected to be affected by skin metabolism, while MS is relatively lipophilic (logP 2.5) and susceptible to metabolism, being a substrate for esterase residing in skin. Skin from pig ears was used and freshly excised into split-thickness membranes, which were divided and immediately stored at five different storage conditions: a) 4 °C overnight (fresh control), b) 4 °C for 4 days, c and d) -20 °C for 6 weeks and one year, respectively, and e) -80 °C for 6 weeks. Based on the combined results, general trends are observed showing that fresh skin is associated with lower permeation of both model drugs and higher skin membrane electrical resistance, as compared to the other storage conditions. Interestingly, in the case of fresh skin, significantly lower amounts of MS are detected in the epidermis and dermis compartments, implying higher levels of ester hydrolysis of MS (i.e., higher esterase activity). In line with this, the concentration of salicylic acid (SA) extracted from the dermis is significantly higher for fresh skin, as compared to the other storage conditions. Nevertheless, for all storage conditions, substantial amounts of SA are detected in the receptor medium, as well as in the epidermis and dermis, implying that esterase activity is maintained to some extent in all cases. For AC, which is not expected to be affected by skin metabolism, freeze storage (protocols c-e) is observed to result in higher accumulation of AC in the epidermis, as compared to the case of fresh skin, while the AC concentration in dermis is unaffected. These observations can be rationalized primarily by the observed lower permeability of fresh skin towards this hydrophilic substance. Finally, a strong correlation between AC permeation and electrical skin resistance is shown for individual skin membranes irrespective of storage condition, while the corresponding correlation for MS is inferior. On the other hand, a strong correlation is shown for individual membranes between MS permeation and electrical skin capacitance, while a similar correlation for AC is lower. The observed correlations between drug permeability and electrical impedance open up for standardizing in vitro data for improved analysis and comparisons between permeability results obtained with skin stored at different conditions.
Collapse
|
6
|
Mojsiewicz-Pieńkowska K, Krenczkowska D, Bazar D, Wielgomas B, Cal K, Kaliszan M. Comparative study of the percutaneous permeation and bioaccumulation of the cyclic siloxane using frozen-thawed and nonfrozen ex vivo human skin. Toxicol In Vitro 2022; 82:105379. [PMID: 35561954 DOI: 10.1016/j.tiv.2022.105379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Literature shows contradictory information regarding the effect of freezing the excise skin ex vivo on the diffusion of substances into the skin. Few studies indicate that storing the human or animal skin in a frozen state decreases the barrier properties after thawing. Therefore, to understand the properties of frozen skin, we evaluated the effect of storage of ex vivo human skin (2 weeks at -20 °C) on the penetration of stratum corneum and permeation into deeper skin layers (epidermis, and dermis) as well as to the receptor fluid by octamethylcyclotetrasiloxane (D4) a representative test compound of cyclic siloxanes. The main research were preceded by checking the integrity of nonfrozen ex vivo human skin in comparison to the frozen-thawed one by using the Electrical Resistance technique (ER) and the fluorescence microscopy. Samples collected in the skin absorption experiment were analyzed by gas chromatography equipped with a flame ionization detector (GC-FID). The results of this study demonstrated that freezing of excised ex vivo human skin at -20 °C for up to 14 days does not alter the permeability of D4 in a statistically significant manner. Thus, our results confirmed the validity of using skin storage conditions for testing the penetration and permeation of xenobiotics recommended by the OECD, EMA, and WHO guidelines.
Collapse
Affiliation(s)
- Krystyna Mojsiewicz-Pieńkowska
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland.
| | - Dominika Krenczkowska
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland
| | - Dagmara Bazar
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland
| | - Krzysztof Cal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Józefa Hallera 107, 80-416 Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Faculty of Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| |
Collapse
|
7
|
Reale E, Berthet A, Wild P, Vernez D, Hopf NB. Influence of experimental parameters on in vitro human skin permeation of Bisphenol A. Toxicol In Vitro 2021; 73:105129. [PMID: 33662515 DOI: 10.1016/j.tiv.2021.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Bisphenol A (BPA) in vitro skin permeation studies have shown inconsistent results, which could be due to experimental conditions. We studied the impact of in vitro parameters on BPA skin permeation using flow-through diffusion cells with ex-vivo human skin (12 donors, 3-12 replicates). We varied skin status (viable or frozen skin) and thickness (200, 400, 800 μm), BPA concentrations (18, 250 mg/l) and vehicle volumes (10, 100 and 1000 μl/cm2). These conditions led to a wide range of BPA absorption (2%-24% after 24 h exposure), peak permeation rates (J = 0.02-1.31 μg/cm2/h), and permeability coefficients (Kp = 1.6-5.2 × 10-3 cm/h). This is the first time steady state conditions were reached for BPA aqueous solutions in vitro (1000 μl/cm2 applied at concentration 250 mg/l). A reduction of the skin thickness from 800 and 400 μm to 200 μm led to a 3-fold increase of J (P < 0.05). A reduction of the vehicle volume from 1000 to 100 led to a 2-fold decrease in J (P > 0.05). Previously frozen skin led to a 3-fold increase in J compared to viable skin (P < 0.001). We found that results from published studies were consistent when adjusting J according to experimental parameters. We propose appropriate J values for different exposure scenarios to calculate BPA internal exposures for use in risk assessment.
Collapse
Affiliation(s)
- E Reale
- Center for Primary Care and Public Health (Unisanté), affiliated to University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland
| | - A Berthet
- Center for Primary Care and Public Health (Unisanté), affiliated to University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland
| | - P Wild
- Center for Primary Care and Public Health (Unisanté), affiliated to University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; French Research and Safety Institute (INRS), 1 rue du Morvan, CS 60027, F-54519 Vandœuvre cedex, France
| | - D Vernez
- Center for Primary Care and Public Health (Unisanté), affiliated to University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland
| | - N B Hopf
- Center for Primary Care and Public Health (Unisanté), affiliated to University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland.
| |
Collapse
|
8
|
Evaluation of porcine skin layers separation methods, freezing storage and anatomical site in in vitro percutaneous absorption studies using penciclovir formulations. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Human skin permeation rates ex vivo following exposures to mixtures of glycol ethers. Toxicol Lett 2020; 335:1-10. [PMID: 33007386 DOI: 10.1016/j.toxlet.2020.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022]
Abstract
Skin exposure to cleaning products in the general and occupational population are a public health concern. Among the most frequently identified amphiphilic organic solvents in cleaning products are propylene glycol monomethyl ether (PGME) and propylene glycol n-butyl ether (PGBE). Internal dose from skin exposure may be efficiently evaluated using in vitro flow-through diffusion cells with excised human skin. Our aim in this study was two-fold; 1) characterize the permeation rates (J), time lag (Tlag), and permeation coefficients (Kp) of PGME and PGBE in human ex-vivo skin permeation assays, and 2) determine a possible mixture effect on skin permeation characteristics when applied together. Our results showed a short Tlag for PGME and was reduced further depending on the amount of PGBE in the mixture (Tlag was reduced from 2 h to 1-1.7 h) for fresh skin. PGBE Tlag slightly increased when mixed with 50 % or more PGME. Permeation rate decreased to half for both PGME and PGBE in mixture at any concentration. This substantial permeation was greater with previously frozen skin. This mixture effect could favor permeation of other compounds through human skin.
Collapse
|
10
|
Kilo S, Wick J, Mini Vijayan S, Göen T, Horch RE, Ludolph I, Drexler H. Impact of physiologically relevant temperatures on dermal absorption of active substances - an ex-vivo study in human skin. Toxicol In Vitro 2020; 68:104954. [PMID: 32738276 DOI: 10.1016/j.tiv.2020.104954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022]
Abstract
Skin temperature plays a certain role in the dermal absorption of substances, but the extent and mechanisms of skin temperatures-induced modulation in ranges caused by physiological thermoregulation or environmental conditions are largely unknown. The influence of dermal temperature on the absorption of the model lipophilic compound (anisole) and the model hydrophilic compounds (1,4-dioxane, ethanol) through human skin was investigated at three dermal temperatures (25, 32 and 39 °C) in an ex-vivo diffusion cell model. The substances were applied to the skin and transdermal penetration was monitored. All substances showed temperature dependent variations in their penetration behavior (3 h: 25-39 °C: 202-275% increase in cumulative, transdermally penetrated amounts). The relative differences in absorption in relation to temperature were greatest within 45 min after exposure (25-39 °C: 347-653% rise in cumulated penetration), although absolute amounts absorbed were small (45 min vs. 3 h: 4.5-14.5%). Regardless of blood circulation, skin temperature significantly influences the amount and kinetics of dermal absorption. Substance-dependent, temperature-related changes of the lipid layer order or the porous pathway may facilitate penetration. The early-stage modulation of transdermal penetration indicates transappendageal absorption, which may be relevant for short-term exposures. For both, toxicological evaluation and perfusion cell studies, it is important to consider the thermal influence on absorption or to perform the latter at a standardized temperature (32±1 °C).
Collapse
Affiliation(s)
- S Kilo
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany.
| | - J Wick
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - S Mini Vijayan
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - T Göen
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - R E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - I Ludolph
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| | - H Drexler
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
11
|
Schenk L, Rauma M, Fransson MN, Johanson G. Percutaneous absorption of thirty-eight organic solvents in vitro using pig skin. PLoS One 2018; 13:e0205458. [PMID: 30379962 PMCID: PMC6209206 DOI: 10.1371/journal.pone.0205458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Percutaneous absorption is highly variable between chemicals but also within chemicals depending on exposure conditions and experimental set up. We tested a larger number of organic solvents with the same experimental set up, using skin from new-born piglets and static diffusion cells. Thirty-six common organic solvents were studied neat (and 31 of them also in water dilution): acetone, acetonitrile, n-butanol 2-butanone 2-butoxyethanol, 1-butoxy-2-propanol, n-butyl acetate, butyl acrylate, cyclohexane, cyclohexanone, 1,2-dichloroethane, dichloromethane, ethanol, 2-ethoxyethanol, ethyl acetate, ethyl acrylate, ethylbenzene, furfuryl alcohol, n-hexane, 2-hexanone, 2-isopropoxyethanol, methanol, 1-methoxy-2-propanol, methyl acrylate, 3-methyl-1-butanol, methyl tertiary butyl ether, 4-metyl-2-pentanol, methyl methacrylate, 2-propanol, 2-propen-1-ol, 2-propoxyethanol, 1-propoxy-2-propanol, styrene, trichloromethane, toluene and m-xylene. In addition, a mixture of 2-methylbutyl acetate and n-pentyl acetate was tested. For most of the solvents, little or no percutaneous absorption data have been published. Lag times, steady-state fluxes and apparent permeability coefficients were obtained from the time courses of solvent appearance in the receptor medium, as measured by gas chromatography. The use of the same methodology and kind of skin resulted in small variability within experiments, underlining the need for consistent methodology for useful results for developing predictive models. Furthermore, a comparison of the neat and diluted data shows that water dilution affects all these variables and that the direction and magnitude of the effects vary between chemicals. This comparison strongly supports that prediction of percutaneous absorption of neat and water diluted chemicals requires different models.
Collapse
Affiliation(s)
- Linda Schenk
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Matias Rauma
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin N. Fransson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Johanson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Synthesis of Hybrid Tin Halide Perovskite Solar Cells with Less Hazardous Solvents: Methanol and 1,4-Dioxane. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Dennerlein K, Göen T, Zobel M, Boos AM, Drexler H, Kilo S. Dermal penetration and resorption of beta-naphthylamine and N-phenyl-beta-naphthylamine from lubricants in an ex vivo human skin model. CHEMOSPHERE 2017; 185:934-941. [PMID: 28747005 DOI: 10.1016/j.chemosphere.2017.07.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Dermal Penetration of aromatic amines (AA's), often suspected or known to be carcinogenic, can play an important role in the overall human exposure. However, information on penetration of certain AA's is poor and inconsistent. Penetration of the former lubricant additive N-phenyl-beta-naphthylamine (PBNA) and its contaminant beta-naphthylamine (BNA) a known carcinogen was investigated and the influence of formulation and co-application characterized. Percutaneous penetration of BNA and PBNA through freshly excised human skin (n = 8; 48 h) was investigated using an ex vivo diffusion cell model. Both AA's were applied in a technical-conform lubricant or dissolved in hexane. The amount of BNA and PBNA applied to skin was 0.52 and 259 μg/0.64 cm2. The analytical determination of AA's was performed by GC-MS. Both, BNA and PBNA penetrated through human skin (38 vs. 5% of applied dose). In contrast to BNA, the percutaneous penetration of PBNA continued beyond the end of exposure. Co-exposure of both AA's increased the intradermal uptake of BNA and PBNA (p < 0.05). Exposure in lubricant showed the least overall penetration (2.9 and 1.9% of applied dose). The results clearly reveal that dermal penetration of both AA's depends strongly on the mode of application. Co-application and formulation alters the penetration of the AA's.
Collapse
Affiliation(s)
- Kathrin Dennerlein
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schillerstrasse 25/29, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schillerstrasse 25/29, 91054 Erlangen, Germany
| | - Melanie Zobel
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schillerstrasse 25/29, 91054 Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans Drexler
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schillerstrasse 25/29, 91054 Erlangen, Germany
| | - Sonja Kilo
- Institute and Out-Patient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schillerstrasse 25/29, 91054 Erlangen, Germany.
| |
Collapse
|
14
|
Jacques-Jamin C, Duplan H, Rothe H, Vaillant O, Eilstein J, Grégoire S, Cubberley R, Lange D, Ellison C, Klaric M, Hewitt N, Schepky A. Comparison of the Skin Penetration of 3 Metabolically Stable Chemicals Using Fresh and Frozen Human Skin. Skin Pharmacol Physiol 2017; 30:234-245. [DOI: 10.1159/000475472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 11/19/2022]
|
15
|
Steiner A, Kugarajan K, Wullimann M, Ruty B, Kunze G. Margin of safety of pentylene glycol derived using measurements of cutaneous absorption and volatility. Regul Toxicol Pharmacol 2017; 87:106-111. [PMID: 28483712 DOI: 10.1016/j.yrtph.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
The safety assessment of pentylene glycol (PG) has been based on a bioavailability extrapolated from those of other 1,2-glycols or an assumed 100% absorption. To make a better safety assessment and an accurate calculation of the margin of safety (MoS), the skin penetration of PG present in a commercially available sunscreen was measured in pig skin at different exposure durations. The mass balance of PG decreased with increasing exposure durations, from 98% (1 h) to 29% (24 h) and the amount of PG detected in the skin wash decreased over time from 93% to 3%. The decrease in mass balance was attributed to an unexpected volatility of PG, which was confirmed in additional experiments. The maximum bioavailable amount of PG was 123 μg/cm2 after 24 h and was considered to be worst case scenario (10 mg/cm2 i.e. 5-fold the recommended application standard dose, 2 mg/cm2). MoS values for the application of a standard dose of sunscreen after 1-24 h exposure were 140-671 in adults and, if calculated for children ratios, 87-217 Based on the available toxicological data for PG in comparison to the amounts determined to be potentially bioavailable, PG in the test sun protection product SPF 50 + does not show any safety concerns for daily usage at the recommended dosage of 2 mg/cm2 or lower.
Collapse
Affiliation(s)
- A Steiner
- Nestlé Skin Health R&D, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - K Kugarajan
- Nestlé Skin Health R&D, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - M Wullimann
- Nestlé Skin Health R&D, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - B Ruty
- Nestlé Skin Health R&D, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland
| | - G Kunze
- Nestlé Skin Health R&D, Froschackerstrasse 6, CH-4622 Egerkingen, Switzerland.
| |
Collapse
|
16
|
Dennerlein K, Kiesewetter F, Kilo S, Jäger T, Göen T, Korinth G, Drexler H. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model. Toxicol Lett 2016; 248:25-33. [DOI: 10.1016/j.toxlet.2016.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/04/2015] [Accepted: 02/26/2016] [Indexed: 11/25/2022]
|
17
|
Influence of artificial sebum on the dermal absorption of chemicals in excised human skin: A proof-of-concept study. Toxicol In Vitro 2016; 33:23-8. [PMID: 26911728 DOI: 10.1016/j.tiv.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 11/24/2022]
Abstract
In an initial diffusion cell study, the influence of artificial sebum on dermal penetration and intradermal reservoir of ethanol and toluene was investigated in comparison with the effects of a skin cream (o/w- and w/o-emulsion) and untreated (control) skin. Human skin was exposed to neat ethanol and toluene for 4h, respectively. During the experiments, the penetration of the compounds was assessed in the receptor fluid. The amounts of the test compounds in the skin were determined at the end of exposure. In the control experiments, 42% of the total resorbed ethanol amounts were found in the intradermal reservoir after 4h, whereas 82% of the toluene amounts were found in the skin compartments. The treatment with artificial sebum showed no significant differences in dermal absorption of both test compounds compared to control skin. In contrast, the treatment with skin cream increased the percutaneous penetration (p<0.001) and the intradermal reservoir of ethanol ~2-fold but not of toluene. In all exposure scenarios, a relevant intradermal reservoir was formed. The results indicate that sebum does not influence the percutaneous penetration and the intradermal reservoir of epidermally applied chemicals, whereas the application of skin creams may increase the dermal penetration of the compounds.
Collapse
|
18
|
Barbero AM, Frasch HF. Effect of Frozen Human Epidermis Storage Duration and Cryoprotectant on Barrier Function Using Two Model Compounds. Skin Pharmacol Physiol 2015; 29:31-40. [PMID: 26606593 PMCID: PMC4742402 DOI: 10.1159/000441038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022]
Abstract
Skin is commonly stored frozen and then thawed prior to use for in vitro permeation experiments. Does frozen storage of skin alter its barrier property? Numerous studies have found contradictory answers to this question. In this study, the steady-state flux and lag time of diethyl phthalate (DEP) were measured for fresh human skin and skin frozen at -85°C for 1, 2, 3, 6, 9, 12, and 18 months with 10% glycerol as a cryoprotective agent. No significant differences in steady-state flux were found between fresh and previously frozen samples (p = 0.6). For lag time, a significant (p = 0.002) difference was found among all groups, but comparisons with fresh skin were not significant. Does glycerol have a cryoprotective effect? The steady-state flux and lag time of DEP and caffeine were measured through human skin stored at -85°C for up to 12 months with and without 10% glycerol. No significant differences in steady-state flux or lag time were found between samples stored with or without glycerol for either DEP or caffeine (p ≥ 0.17). These findings support the use of frozen skin to measure the passive permeation of chemicals in studies unconcerned with viability and metabolism.
Collapse
Affiliation(s)
- Ana M. Barbero
- Health Effects Laboratory, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505 USA
| | - H. Frederick Frasch
- Health Effects Laboratory, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505 USA
| |
Collapse
|
19
|
Evaluation of the effect of skin cleaning procedures on the dermal absorption of chemicals. Toxicol In Vitro 2015; 29:828-33. [PMID: 25790729 DOI: 10.1016/j.tiv.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/21/2015] [Accepted: 03/01/2015] [Indexed: 11/20/2022]
Abstract
To reduce the internal exposure, skin decontamination is the most important measure after dermal contact to chemicals. However, no harmonized skin cleaning procedure for experimental ex vivo studies is published. In our study, the impact of two skin cleaning techniques on dermal penetration kinetics and intradermal deposition of 1,4-dioxane, 5% hydrofluoric acid (HF, detected in terms of fluoride ions), and anisole was evaluated to develop a reliable ex vivo skin cleaning method using the diffusion cell technique. After exposure (duration: 3 min (HF); 1h (1,4-dioxane and anisole)) of excised human skin (n=6-8) decontamination was performed by (I) water-soaked cotton swabs or (II) direct application of water on the exposure area. The effect of skin cleaning was investigated by analysing the concentration time course of chemicals in the receptor fluid of diffusion cells and by determining the deposition in skin. Both skin cleaning procedures reduced the amount of fluoride in the skin compartments (p<0.05) and the receptor fluid (p<0.1). However, the effect of cleaning on the dermal absorption of the organic test compounds was not significant. The results demonstrate the suitability of the applied ex vivo protocol for investigating the effectiveness of skin cleaning measures following dermal exposure. In addition, data reveal that the determination of test compounds in both, skin compartments as well as receptor fluid as equivalent for the systemic uptake needs to be considered in studies assessing the effectiveness of skin decontamination procedures.
Collapse
|
20
|
Kumar A, Naguib YW, Shi YC, Cui Z. A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv 2014; 23:1495-501. [PMID: 25182303 DOI: 10.3109/10717544.2014.951746] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CONTEXT Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient's satisfaction, even with a long-term and high-frequency application, leave room for improvement. OBJECTIVE The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. MATERIALS AND METHOD In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. RESULTS AND DISCUSSION The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. CONCLUSION The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine's ability to inhibit hair growth.
Collapse
Affiliation(s)
- Amit Kumar
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and
| | - Youssef W Naguib
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and
| | - Yan-Chun Shi
- b Research Center of Molecular Biology, College of Basic Medical Sciences, Inner Mongolia Medical University , Hohhot , Inner Mongolia , China
| | - Zhengrong Cui
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and.,b Research Center of Molecular Biology, College of Basic Medical Sciences, Inner Mongolia Medical University , Hohhot , Inner Mongolia , China
| |
Collapse
|
21
|
Percutaneous absorption and distribution of organophosphates (chlorpyrifos and dichlorvos) following dermal exposure and decontamination scenarios using in vitro human skin model. Toxicol Lett 2014; 229:66-72. [DOI: 10.1016/j.toxlet.2014.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/23/2022]
|
22
|
Use of a human skin in vitro model to investigate the influence of ‘every-day’ clothing and skin surface decontamination on the percutaneous penetration of organophosphates. Toxicol Lett 2014; 229:257-64. [DOI: 10.1016/j.toxlet.2014.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
|