1
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
2
|
Benzo(a)pyrene and Cerium Dioxide Nanoparticles in Co-Exposure Impair Human Trophoblast Cell Stress Signaling. Int J Mol Sci 2023; 24:ijms24065439. [PMID: 36982514 PMCID: PMC10049531 DOI: 10.3390/ijms24065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Human placenta is a multifunctional interface between maternal and fetal blood. Studying the impact of pollutants on this organ is crucial because many xenobiotics in maternal blood can accumulate in placental cells or pass into the fetal circulation. Benzo(a)pyrene (BaP) and cerium dioxide nanoparticles (CeO2 NP), which share the same emission sources, are found in ambient air pollution and also in maternal blood. The aim of the study was to depict the main signaling pathways modulated after exposure to BaP or CeO2 NP vs. co-exposure on both chorionic villi explants and villous cytotrophoblasts isolated from human term placenta. At nontoxic doses of pollutants, BaP is bioactivated by AhR xenobiotic metabolizing enzymes, leading to DNA damage with an increase in γ-H2AX, the stabilization of stress transcription factor p53, and the induction of its target p21. These effects are reproduced in co-exposure with CeO2 NP, except for the increase in γ-H2AX, which suggests a modulation of the genotoxic effect of BaP by CeO2 NP. Moreover, CeO2 NP in individual and co-exposure lead to a decrease in Prx-SO3, suggesting an antioxidant effect. This study is the first to identify the signaling pathways modulated after co-exposure to these two pollutants, which are common in the environment.
Collapse
|
3
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Rat P, Leproux P, Fouyet S, Olivier E. Forskolin Induces Endocrine Disturbance in Human JEG-3 Placental Cells. TOXICS 2022; 10:toxics10070355. [PMID: 35878261 PMCID: PMC9317975 DOI: 10.3390/toxics10070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Forskolin, used in folk medicine since ancient times, is now available as a dietary supplement, with an indication as a fat burner and appetite suppressant. However, the safety of forskolin is poorly documented especially for pregnant women. The question that we raised is what about the safety of forskolin in pregnant women? As the placenta, an endocrine organ, is the key organ of pregnancy, we evaluated the in vitro placental toxicity of forskolin. We focused first on the activation of a P2X7 degenerative receptor as a key biomarker for placental toxicity, and second on steroid and peptide hormonal secretion. We observed that forskolin activated P2X7 receptors and disturbed estradiol, progesterone, hPL and hyperglycosylated hCG secretion in human placental JEG-Tox cells. To the best of our knowledge, we highlighted, for the first time, that forskolin induced endocrine disturbance in placental cells. Forskolin does not appear to be a safe product for pregnant women and restrictions should be taken.
Collapse
Affiliation(s)
- Patrice Rat
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Pascale Leproux
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Sophie Fouyet
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Léa Nature, 17180 Périgny, France
| | - Elodie Olivier
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Correspondence:
| |
Collapse
|
5
|
Pregnant Women and Endocrine Disruptors: Role of P2X7 Receptor and Mitochondrial Alterations in Placental Cell Disorders. Cells 2022; 11:cells11030495. [PMID: 35159304 PMCID: PMC8834275 DOI: 10.3390/cells11030495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
In pregnant women, the lungs, skin and placenta are exposed daily to endocrine-disrupting chemicals (EDCs). EDCs induce multiple adverse effects, not only on endocrine organs, but also on non-endocrine organs, with the P2X7 cell death receptor being potentially the common key element. Our objective was first to investigate mechanisms of EDCs toxicity in both endocrine and non-endocrine cells through P2X7 receptor activation, and second, to compare the level of activation in lung, skin and placental cells. In addition, apoptosis in placental cells was studied because the placenta is the most exposed organ to EDCs and has essential endocrine functions. A total of nine EDCs were evaluated on three human cell models. We observed that the P2X7 receptor was not activated by EDCs in lung non-endocrine cells but was activated in skin and placenta cells, with the highest activation in placenta cells. P2X7 receptor activation and apoptosis are pathways shared by all tested EDCs in endocrine placental cells. P2X7 receptor activation along with apoptosis induction could be key elements in understanding endocrine placental and skin disorders induced by EDCs.
Collapse
|
6
|
Fanali LZ, De Oliveira C, Sturve J. Enzymatic, morphological, and genotoxic effects of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53926-53935. [PMID: 34036510 DOI: 10.1007/s11356-021-14583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Fish have defense systems that are capable of repairing damages caused by xenobiotics like benzo[a]pyrene (BaP), so the aims of this study were to identify BaP toxicity in melanomacrophages (MMs) cytoskeleton, evaluate the melanin area in MMs, and analyze genotoxicity. Rainbow trout juveniles (n = 24) were split in 48h and 7d treatments that received 2 mg/kg of BaP. After the experiment, blood samples were collected and liver was removed, to proceed with the analysis: EROD activity, MMs melanin area quantification, melanosomes movements, and a genotoxicity test. The results revealed increased in EROD activity after 48-h and 7-day BaP exposure. The group 7d displayed a reduction in MMs pigmented area, melanosomes aggregation, in addition to an increased frequency of micronucleus. By means of the EROD assay, it was possible to confirm the activation of BaP biotransformation system. The impairment of the melanosomes' movements possibly by an inactivation of the protein responsible for the pigment dispersion consequently affects the melanin area and thus might negatively impact the MMs detoxification capacity. In addition to this cytotoxicity, the increased frequency of micronucleus might also indicate the genotoxicity of BaP in this important fish species.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Classius De Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
7
|
Fanali LZ, Sturve J, de Oliveira C. Exposure of Physalaemus cuvieri (Anura) to benzo[a]pyrene and α-naphthoflavone: Morphofunctional effects on hepatic melanomacrophages and erythrocytes abnormalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117526. [PMID: 34380224 DOI: 10.1016/j.envpol.2021.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a high-risk contaminant of elevated toxicity. Its biotransformation process occurs as the expression of CYP1A1 increases and produces toxic metabolites. In turn, α-naphthoflavone (aNF) represents an inhibitor of CYP1A1, preventing BaP metabolism. Toxicological studies in anurans show alterations in the melanomacrophage (MM) detoxification cell after exposure to xenobiotics. In this study, the production of melanin by MMs was evaluated, as were morphological alterations in the cytoskeleton, phagocytosis and the genotoxicity effects after exposure of an anuran species to BaP and aNF. Physalaemus cuvieri received subcutaneous injections of 2 mg/kg and/or 20 mg/kg aNF. For phagocytosis analyses, animals received an intraperitoneal injection with 0.4% trypan blue. The results revealed that melanin synthesis increased by 503.2% in animals exposed to BaP after 48 h, which was related to the antioxidant action of melanin, whereas the decreased in synthesis of 25.6% with the BaP + aNF interaction resulted in high toxicity to MMs and cell degeneration. The phagocytic activity reduced to 37.6% in animals exposed to BaP, characterizing a functional impairment; however, the BaP + aNF interaction led to the restoration of phagocytosis, reaching 419.23%. The decreased rate or absence of abnormalities may be explained by the fact that only the less damaged erythrocytes remained in the bloodstream, whereas the most damaged cells died. In conclusion, BaP and aNF are toxic to P. cuvieri, bringing risks to herpetofauna.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg 405 30, Box 463, Sweden
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
8
|
Yu L, Zhang L, Duan H, Zhao R, Xiao Y, Guo M, Zhao J, Zhang H, Chen W, Tian F. The Protection of Lactiplantibacillus plantarum CCFM8661 Against Benzopyrene-Induced Toxicity via Regulation of the Gut Microbiota. Front Immunol 2021; 12:736129. [PMID: 34447391 PMCID: PMC8383074 DOI: 10.3389/fimmu.2021.736129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023] Open
Abstract
The present study evaluated the protection of Lactiplantibacillus plantarum CCFM8661, a candidate probiotic with excellent benzopyrene (B[a]P)-binding capacity in vitro, against B[a]P-induced toxicity in the colon and brain of mice. Mice that received B[a]P alone served as the model group. Each mouse in the L. plantarum treatment groups were administered 2×109 colony forming unit (CFU) of L. plantarum strains once daily, followed by an oral dose of B[a]P at 50 mg/kg body weight. Behavior, biochemical indicators in the colon and brain tissue, and the gut microbiota composition and short-chain fatty acid (SCFA) levels in the gut were investigated. Compared to the treatment in the model group, CCFM8661 treatment effectively reduced oxidative stress in the brain, improved behavioral performance, increased intestinal barrier integrity, and alleviated histopathological changes in mice. Moreover, CCFM8661 increased the gut microbiota diversity and abundance of Ruminococcus and Lachnospiraceae and reduced the abundance of pro-inflammatory Turicibacter spp. Additionally, the production of SCFAs was significantly increased by L. plantarum CCFM8661. Our results suggest that CCFM8661 is effective against acute B[a]P-induced toxicity in mice and that it can be considered as an effective and easy dietary intervention against B[a]P toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Lingyu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Bisphenol A, Bisphenol F, and Bisphenol S: The Bad and the Ugly. Where Is the Good? Life (Basel) 2021; 11:life11040314. [PMID: 33916708 PMCID: PMC8066465 DOI: 10.3390/life11040314] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Bisphenol A (BPA), a reprotoxic and endocrine-disrupting chemical, has been substituted by alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) in the plastic industry. Despite their detection in placenta and amniotic fluids, the effects of bisphenols on human placental cells have not been characterized. Our objective was to explore in vitro and to compare the toxicity of BPA to its substitutes BPF and BPS to highlight their potential risks for placenta and then pregnancy. Methods: Human placenta cells (JEG-Tox cells) were incubated with BPA, BPF, and BPS for 72 h. Cell viability, cell death, and degenerative P2X7 receptor and caspases activation, and chromatin condensation were assessed using microplate cytometry and fluorescence microscopy. Results: Incubation with BPA, BPF, or BPS was associated with P2X7 receptor activation and chromatin condensation. BPA and BPF induced more caspase-1, caspase-9, and caspase-3 activation than BPS. Only BPF enhanced caspase-8 activity. Conclusions: BPA, BPF, and BPS are all toxic to human placental cells, with the P2X7 receptor being a common key element. BPA substitution by BPF and BPS does not appear to be a safe alternative for human health, particularly for pregnant women and their fetuses.
Collapse
|
10
|
Dutot M, Olivier E, Fouyet S, Magny R, Hammad K, Roulland E, Rat P, Fagon R. In Vitro Chemopreventive Potential of Phlorotannins-Rich Extract from Brown Algae by Inhibition of Benzo[a]pyrene-Induced P2X7 Activation and Toxic Effects. Mar Drugs 2021; 19:34. [PMID: 33466689 PMCID: PMC7828825 DOI: 10.3390/md19010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phlorotannins are polyphenols occurring exclusively in some species of brown algae, known for numerous biological activities, e.g., antioxidant, antiproliferative, antidiabetic, and antiallergic properties. Their effects on the response of human lung cells to benzo[a]pyrene (B[a]P) has not been characterized. Our objective was to in vitro evaluate the effects of a phlorotannin-rich extract obtained from the brown algae Ascophyllum nodosum and Fucus vesiculosus on B[a]P cytotoxic effects. The A549 cell line was incubated with B[a]P for 48 and 72 h in the presence or absence of the brown algae extract. Cytochrome P450 activity, activation of P2X7 receptor, F-actin disorganization, and loss of E-cadherin expression were assessed using microplate cytometry and fluorescence microscopy. Relative to control, incubation with the brown algae extract was associated with lower B[a]P-induced CYP1 activity, lower P2X7 receptor activation, and lower reactive oxygen species production. The brown algae extract inhibited the alterations of F-actin arrangement and the downregulation of E-cadherin expression. We identified a phlorotannins-rich extract that could be deeper investigated as a cancer chemopreventive agent to block B[a]P-mediated carcinogenesis.
Collapse
Affiliation(s)
- Mélody Dutot
- Recherche & Développement, Yslab, 29000 Quimper, France;
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Elodie Olivier
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Sophie Fouyet
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Romain Magny
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Karim Hammad
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Emmanuel Roulland
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Patrice Rat
- Faculté de Pharmacie de Paris, UMR CNRS 8038, Université de Paris, 75006 Paris, France; (E.O.); (S.F.); (R.M.); (K.H.); (E.R.); (P.R.)
| | - Roxane Fagon
- Recherche & Développement, Yslab, 29000 Quimper, France;
| |
Collapse
|
11
|
Fanali LZ, Franco-Belussi L, Bonini-Domingos CR, de Oliveira C. Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:93-102. [PMID: 29477119 DOI: 10.1016/j.envpol.2018.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 02/09/2018] [Indexed: 05/14/2023]
Abstract
Benzo[a]pyrene (BaP) is a bio-accumulative toxic compound found in the atmosphere, water, and soil that may affect the life cycle of amphibians. In this study, a few contamination biomarkers, such as hepatic melanomacrophages (MMs), mast cells, erythrocyte micronuclei (MN) and white blood cells were used to determine how BaP acts in these cells in the anurans Physalaemus cuvieri and Leptodactylus fuscus. Animals of both species were divided into three treatment groups: 1 day, 7 days and 13 days, subcutaneously injected 2 mg/kg BaP diluted in mineral oil and control group with only mineral oil. After 7 days, BaP caused the frequency of MN to increase in both species while reducing melanin area. The micronucleus frequency increased due to the genotoxicity of BaP, while the decreasing melanin area may be related to the inhibition of tyrosinase activity, an enzyme responsible for regulating melanogenesis, decreasing the synthesis of melanin. The mast cell density increased in all groups and in both species as a response to the inflammatory action of BaP. These cells respond to nonspecific inflammatory effects leading, therefore, to this response in all treatments. The percentage of leukocytes remained unchanged probably due to great intraspecific variability. Additionally, the leukocyte profiles of both species were characterized and the differences were attributed to extrinsic factors. In short, BaP can affect the integrity of several organs and tissues, and cell functions leading to the conclusion that this compound is hepatotoxic, genotoxic and immunotoxic for anurans.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil; Graduate Program in Biotechnology and Environmental monitoring, CCTS, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil
| | | | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
12
|
Mohammadi S, Domeno C, Nerin I, Aznar M, Samper P, Khayatian G, Nerin C. Toxic compounds from tobacco in placenta samples analyzed by UPLC-QTOF-MS. J Pharm Biomed Anal 2017; 145:331-338. [PMID: 28710994 DOI: 10.1016/j.jpba.2017.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines (TSNAs) and aromatic amines are carcinogens present in cigarette smoke. These compounds are distributed in the human body and they could be transferred to the foetus during the pregnancy. Placenta is the main barrier to these toxic compounds and its study is the objective of this work. A method based on solid-phase extraction (SPE) with ultra-performance liquid chromatography-tandem quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) has been examined and optimized for the analysis of 9 target analytes (4 tobacco-specific nitrosamines and some of their metabolites, 3 aromatic amines, nicotine and cotinine) in 26 placenta samples from smoking and non-smoking women. Limits of detection (LODs) were in the range of 3-27ng/g of placenta. Nicotine, cotinine, N-nitrosoanatabine (NAT) and 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone (NNK) metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were detected in the placenta samples of smoking woman. Nicotine was detected in 3 out of 8 placentas from smoking women, always below the limit of quantification (88ng/g). This could be expected, as the half-life of nicotine in the body is limited to about 0.5-3h. Cotinine, the main metabolite from nicotine, was detected in all placentas from smoking women at concentrations between 17.2 and 61.8ng/g, reaching the highest values for those women that smoked the highest number of cigarettes. NAT and NNAL were detected in all placentas from smoking women, always below the limit of quantification (40ng/g and 33ng/g respectively).
Collapse
Affiliation(s)
- Somayeh Mohammadi
- Department of Analytical Chemistry, Instituto de Investigación en Ingenieria de Aragon (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, 66177-15175 Sanandaj, Iran
| | - Celia Domeno
- Department of Analytical Chemistry, Instituto de Investigación en Ingenieria de Aragon (I3A), University of Zaragoza, Zaragoza, 50018, Spain
| | - Isabel Nerin
- Smoking Cessation Unit, Department of Medicine, Psychiatry and Dermatology, Faculty of Medicine, University of Zaragoza, Zaragoza, 50009, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, Instituto de Investigación en Ingenieria de Aragon (I3A), University of Zaragoza, Zaragoza, 50018, Spain
| | - Pilar Samper
- Department of Pediatrics, Radiology and Physical Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza 50009, Spain
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, 66177-15175 Sanandaj, Iran
| | - Cristina Nerin
- Department of Analytical Chemistry, Instituto de Investigación en Ingenieria de Aragon (I3A), University of Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
13
|
Drwal E, Rak A, Grochowalski A, Milewicz T, Gregoraszczuk EL. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol Lett 2017; 280:10-19. [DOI: 10.1016/j.toxlet.2017.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
|
14
|
Filipak Neto F, Cardoso da Silva L, Liebel S, Voigt CL, Oliveira Ribeiro CAD. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol Mech Methods 2017; 28:69-78. [PMID: 28721743 DOI: 10.1080/15376516.2017.1357778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml-1) and mixture of PAH (30 and 300 ng ml-1), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.
Collapse
Affiliation(s)
- Francisco Filipak Neto
- a Departamento de Biologia Celular , Universidade Federal do Paraná , Curitiba , PR Brazil
| | | | - Samuel Liebel
- a Departamento de Biologia Celular , Universidade Federal do Paraná , Curitiba , PR Brazil
| | - Carmen Lúcia Voigt
- b Programa Associado de Pós-Graduação em Química , Universidade Estadual de Ponta Grossa , Ponta Grossa , PR Brazil
| | | |
Collapse
|
15
|
Rat P, Olivier E, Tanter C, Wakx A, Dutot M. A fast and reproducible cell- and 96-well plate-based method for the evaluation of P2X7 receptor activation using YO-PRO-1 fluorescent dye. J Biol Methods 2017; 4:e64. [PMID: 31453224 PMCID: PMC6708926 DOI: 10.14440/jbm.2017.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
The YO-PRO-1 assay provides a quantitative estimation of P2X7 receptor activation. P2X7 receptor is associated to pathological conditions including infectious, inflammatory, neurological, musculoskeletal disorders, pain and cancer. Most primary cells and cell lines from diverse origin may be used thanks to the ubiquitous distribution of P2X7 receptor. To study the activation of P2X7 receptor by chemicals or biological agents, we established a microplate-based cytometry protocol to accurately and rapidly quantify the activation of P2X7 receptor that leads to the formation of large pores in cell membranes. The YO-PRO-1 assay is based on the ability of cells to incorporate and bind YO-PRO-1 dye to DNA after activation of P2X7 receptor through pore formation. Cells are seeded in 96-well plates and incubated with the compound being tested for the appropriate time. The microplate is then incubated for 10 min with YO-PRO-1 staining solution. After the 10 min staining time, fluorescence signal is read using a microplate reader in 1 min. This procedure is easier and requires less handling steps than flow cytometry. 96-well plate based YO-PRO-1 assay is a reproducible and fast method to study both P2X7 receptor activation by toxic agents at subnecrotic concentrations and P2X7 receptor inhibition by antagonists.
Collapse
Affiliation(s)
- Patrice Rat
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Elodie Olivier
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Soliance-Givaudan, Route de Bazancourt, 51110 Pomacle, France
| | - Caroline Tanter
- Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| | - Anaïs Wakx
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mélody Dutot
- UMR 8638 CNRS COMETE, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.,Recherche et Développement, Laboratoire d'Evaluation Physiologique, Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France
| |
Collapse
|