1
|
Shah SB, Wang Y, Anwar N, Abbas SZ, Khan KA, Wang SM, Ullah MW. Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 2024; 108:25. [PMID: 38157005 DOI: 10.1007/s00253-023-12905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant; however, it is a persistent organic pollutant as well as affects the human thyroid hormones and causes cancer. However, the degradation of HBCD has received little attention from researchers. Due to its bioaccumulative and hazardous properties, an appropriate strategy for its remediation is required. In this study, we investigated the biodegradation of HBCD using Shewanella oneidensis MR-1 under optimized conditions. The Box-Behnken design (BBD) was implemented for the optimization of the physical degradation parameters of HBCD. S. oneidensis MR-1 showed the best degradation performance at a temperature of 30 °C, pH 7, and agitation speed of 115 rpm, with an HBCD concentration of 1125 μg/L in mineral salt medium (MSM). The strain tolerated up to 2000 μg/L HBCD. Gas chromatography-mass spectrometry analysis identified three intermediates, including 2-bromo dodecane, 2,7,10-trimethyldodecane, and 4-methyl-1-decene. The results provide an insightful understanding of the biodegradation of HBCD by S. oneidensis MR-1 under optimized conditions and could pave the way for further eco-friendly applications. KEY POINTS: • HBCD biodegradation by Shewanella oneidensis • Optimization of HBCD biodegradation by the Box-Behnken analysis • Identification of useful metabolites from HBCD degradation.
Collapse
Affiliation(s)
- Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yiting Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Naveed Anwar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Syed Zaghum Abbas
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Song-Mei Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Park K, Kwak IS. Modulating responses of indicator genes in cellular homeostasis, immune defense and apoptotic process in the Macrophthalmus japonicus exposed to di(2-ethylhexyl) phthalate as a plastic additive. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104456. [PMID: 38657882 DOI: 10.1016/j.etap.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
3
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
4
|
Repková A, Mišľanová C, Hrabčáková J, Masár M, Slezáková Z, Žemlička L, Valachovičová M. Relationship between Eating Habits and 4-Nonylphenol Concentration in Breast Milk of Women in Slovakia. Life (Basel) 2023; 13:2361. [PMID: 38137962 PMCID: PMC10744535 DOI: 10.3390/life13122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
4-Nonylphenol belongs to the alkylphenol group of chemicals, and its high occurrence in the environment can cause an adverse effect on human health. Breast milk can serve as a marker to take measure of human exposure to these chemicals through different routes of exposure. In this work, the influence of selected factors (the kind of water drank by the mothers; the consumption of fish, pork, and beef; wearing gloves; using nail polish, gel nails, vitamins, and medication) on the concentration on 4-nonylphenol in 89 breast milk samples was studied. The concentrations of nonylphenol in breast milk were determined by HPLC with fluorescence detection. The lowest and highest concentrations of 4-nonylphenol in breast milk were 0.97 ng/mL and 4.37 ng/mL, respectively. Statistical significance was observed for the consumption of pork (p = 0.048) and fish (0.041) in relation to the 4-nonylphenol concentration. Certain parameters (use of gel nails, beef consumption, and vitamin supplementation) were at the border of statistical significance (p = 0.06). Other parameters did not show any statistical significance. The results showed that breast milk in Slovakia does not contain a harmful dose of 4-nonylphenol and does not cause health problems. But it is necessary to continue this research and perform extended screening on a larger number of samples.
Collapse
Affiliation(s)
- Adriana Repková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Janka Hrabčáková
- Department of Midwifery, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia; (A.R.); (J.H.)
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia;
| | - Zuzana Slezáková
- Department of Nursing, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| | - Lukáš Žemlička
- Department of Nutrition and Food Quality Assessment, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology STU, 812 37 Bratislava, Slovakia;
| | - Martina Valachovičová
- Institute of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, 833 03 Bratislava, Slovakia;
| |
Collapse
|
5
|
Park K, Moon BS, Kwak IS. Responses of multifunctional immune complement component 1q (C1q) and apoptosis-related genes in Macrophthalmus japonicus tissues and human cells following exposure to environmental pollutants. Cell Stress Chaperones 2023; 28:959-968. [PMID: 37880562 PMCID: PMC10746657 DOI: 10.1007/s12192-023-01389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Apoptosis is a key defense process for multiple immune system functions, playing a central role in maintaining homeostasis and cell development. The purpose of this study was to evaluate the effects of environmental pollutant exposure on immune-related apoptotic pathways in crab tissues and human cells. To do this, we characterized the multifunctional immune complement component 1q (C1q) gene and analyzed C1q expression in Macrophthalmus japonicus crabs after exposure to di(2-ethylhexyl) phthalate (DEHP) or hexabromocyclododecanes (HBCDs). Moreover, the responses of apoptotic signal-related genes were observed in M. japonicus tissues and human cell lines (HEK293T and HCT116). C1q gene expression was downregulated in the gills and hepatopancreas of M. japonicus after exposure to DEHP or HBCD. Pollutant exposure also increased antioxidant enzyme activities and altered transcription of 15 apoptotic signaling genes in M. japonicus. However, patterns in apoptotic signaling in response to these pollutants differed in human cells. HBCD exposure generated an apoptotic signal (cleaved caspase-3) and inhibited cell growth in both cell lines, whereas DEHP exposure did not produce such a response. These results suggest that exposure to environmental pollutants induced different levels of immune-related apoptosis depending on the cell or tissue type and that this induction of apoptotic signaling may trigger an initiation of carcinogenesis in M. japonicus and in humans as consumers.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea.
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
6
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
7
|
Zhang NJ, Zhang Y, Yin S, Ruan DJ, He N, Chen X, Yang XF. Nonylphenol Promoted Epithelial-Mesenchymal Transition in Colorectal Cancer Cells by Upregulating the Expression of Regulator of Cell Cycle. Chem Res Toxicol 2022; 35:1533-1540. [PMID: 36074022 PMCID: PMC9491325 DOI: 10.1021/acs.chemrestox.2c00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Nonylphenol (NP) is a widely used chemical, which has been considered a kind of endocrine-disrupting chemical and is involved in the occurrence and development of many types of cancers. Our recent studies demonstrated that NP exposure is related to colorectal cancer (CRC) progression. In this study, we also found epithelial-mesenchymal transition (EMT) promoted by NP treatment in CRC cells. However, the mechanism of NP on tumor metastasis is still unclear. In this study, we focused on the effect of the regulator of cell cycle (RGCC) induced by NP treatment. The cancer genome atlas (TCGA) analysis suggested that the expression of RGCC increased in CRC tissues, and our clinical samples showed that the expression of RGCC in tumor tissues is positively correlated with the serum level of NP in CRC patients. Further studies revealed that overexpression of RGCC could enhance the NP-induced EMT process in CRC cells and activate ERK signaling pathways. Inhibiting ERK signaling by ERK inhibitors or the knockdown of RGCC could attenuate the NP-induced EMT process. In addition, both RGCC overexpression and NP treatment could activate ERK pathways and attenuate the effect of ERK inhibitors on the EMT process in CRC cells. Altogether, this study demonstrated that NP could induce cell invasion and migration by increasing the expression of RGCC to enhance the EMT process, which might be through the activation of ERK signaling pathways. This finding supported a potential target for studying NP exposure-related colorectal cancers.
Collapse
Affiliation(s)
- Nian-jie Zhang
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Yuanwei Zhang
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Shuo Yin
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Du-ji Ruan
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Nian He
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Xu Chen
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| | - Xue-feng Yang
- Department of Gastrointestinal
Surgery, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
8
|
Xu J, Li S, Yang X, Wang H, Ma L, Shen Y, Yu J. Mechanism of nonylphenol induced gastric inflammation through NF-κB/NLRP3 signaling pathway. Toxicology 2022; 479:153294. [PMID: 35998786 DOI: 10.1016/j.tox.2022.153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Studies have found that the intake of environmental endocrine disruptors was positively correlated with the occurrence of gastric diseases. The aim of this study was to determine whether nonylphenol (NP) exposure can induce gastric inflammation and whether its mechanism was related to NF-κB/NLRP3 signaling pathway. In vivo, male SD rats were randomly divided into 4 groups (12 rats/group): control group (corn oil), NP low (0.4mg/kg), medium (4mg/kg), and high (40mg/kg) dose groups. After 33 weeks of NP chronic exposure, it was found pathological changes in gastric tissues, increase the release of inflammatory factors, and effects expressions of genes related to the NF-κB/NLRP3 signaling pathway. In vitro, the GES-1 cell experiments, which included four groups: control (0 µmol/L NP), L (2.5 µmol/L NP), M (40 µmol/L NP), and H (60 µmol/L NP), confirmed that NP increased the release of inflammatory factors in the cells, and up-regulated the expression of proteins related to NF-κB/NLRP3 signaling pathway. Furthermore, when pyrrolidinedithiocarbamate ammonium (PDTC) blocked the NF-κB signaling pathway, it was found that the expression of related proteins in the NF-κB/NLRP3 signaling pathway was decreased, and the release of inflammatory factors in GES-1 cells caused by NP was also attenuated. The results of this study indicated that NP can induce inflammation in the stomach in vivo and in vitro, and its mechanism was related to the NF-κB/NLRP3 signaling pathway. These findings provided a new perspective on the mechanism of inflammatory response induced by exposure to environmental endocrine disruptors. Also, these findings indicated that therapeutic strategies for the NF-κB/NLRP3 signaling pathway may be new methods to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Haibo Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Yuan Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China.
| |
Collapse
|
9
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042064. [PMID: 35206262 PMCID: PMC8871977 DOI: 10.3390/ijerph19042064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Since environmental pollutants are ubiquitous and many of them are resistant to degradation, we are exposed to many of them on a daily basis. Notably, these pollutants can have harmful effects on our health and be linked to the development of disease. Epidemiological evidence together with a better understanding of the mechanisms that link toxic substances with the development of diseases, suggest that exposure to some environmental pollutants can lead to an increased risk of developing cancer. Furthermore, several studies have raised the role of low-dose exposure to environmental pollutants in cancer progression. However, little is known about how these compounds influence the treatments given to cancer patients. In this work, we present a series of evidences suggesting that environmental pollutants such as bisphenol A (BPA), benzo[a]pyrene (BaP), persistent organic pollutants (POPs), aluminum chloride (AlCl3), and airborne particulate matter may reduce the efficacy of some common chemotherapeutic drugs used in different types of cancer. We discuss the potential underlying molecular mechanisms that lead to the generation of this chemoresistance, such as apoptosis evasion, DNA damage repair, activation of pro-cancer signaling pathways, drug efflux and action of antioxidant enzymes, among others.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Correspondence: (F.A.L.-R.); (H.B.S.)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, BMC Box 593, Husargatan 3, 75124 Uppsala, Sweden;
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str. Moscow, 119991 Moscow, Russia
- Correspondence: (F.A.L.-R.); (H.B.S.)
| |
Collapse
|
10
|
Li S, Zheng M, Yang X, Zhang J, Xu J, Yu J. Effect of nonylphenol on the colonic mucosa in rats and intervention with zinc-selenium green tea ( Camellia sinensis). Toxicol Res (Camb) 2021; 11:122-133. [PMID: 35237417 PMCID: PMC8882797 DOI: 10.1093/toxres/tfab119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/23/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
To investigate the effect of nonylphenol (NP) exposure on the colonic mucosa in rats, and the protective effects of Guizhou zinc-selenium tea (Zn-Se tea) on the damage induced by NP, sixty Sprague-Dawley rats were randomly divided into 6 groups (n = 10 in each group): control group (corn oil), and rats gavaged with NP at the doses of 0.4 mg/kg/d (Low NP group), 4 mg/kg/d (Medium NP group), 40 mg/kg/d (High NP group), and 40 mg/kg NP combined with green tea group at the doses of 0.2 g/ml (NP + GT group) and 0.2 g/ml Zn-Se tea group (NP + ZST group). NP at 40 mg/kg/d was administered to the tea groups for 3 months, followed by NP + green tea and NP + Zn-Se tea for 4 months, and the rest of the groups were gavaged for 7 months. With the increase of NP concentration, NP accumulation in colon gradually increased (P < 0.05), colonic villi shortened, tight junctions between cells widened, intestinal integrity was impaired, and goblet cells, intraepithelial lymphocytes and mast cells were significantly lower in NP high-dose group than in control group (P < 0.05). Meanwhile, the protein expression of Caspase-1, IL-1β and Pro-IL-1β in NP high-dose group was significantly higher than that in control group (P < 0.05). Zn-Se tea increased the number of goblet cells in colon and decreased the accumulation of NP in colon (P < 0.05); Zn-Se tea and common green tea decreased the expression of Caspase-1 and Pro-IL-1β protein (P < 0.05). NP exposure can destroy intestinal morphology, reduce the number of intestinal immune cells, reduce intestinal immunity and increase the release of inflammatory factors; Guizhou Zn-Se tea has a certain protective effect on colon damage caused by NP.
Collapse
Affiliation(s)
| | | | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Jianling Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| | - Jie Yu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| |
Collapse
|
11
|
Nguyen PD, Le TMT, Vo TKQ, Nguyen PT, Vo TDH, Dang BT, Son NT, Nguyen DD, Bui XT. Submerged membrane filtration process coupled with powdered activated carbon for nonylphenol ethoxylates removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1793-1803. [PMID: 34662313 DOI: 10.2166/wst.2021.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A combination of a submerged membrane filtration system and powdered activated carbon (PAC) was investigated for nonylphenol ethoxylates removal. Both filtration flux and initial powdered activated carbon dosage had significant effects on the micropollutants removal efficiency. The best performance was achieved under the filtration flux of 20 L/m2.h and the initial powdered activated carbon of 50 mg/L. The removal efficiencies of nonylphenol ethoxylates was obtained at 75±5% in the first 60 hours, and then decreased at 55±7% and 23±11% in the following hours, respectively. As observed, over 65% of dissolved organic carbon mass adsorbed into powdered activated carbon that was suspended in the bulk phase, and the remainder was adsorbed into powdered activated carbon that deposited on the membrane surface. It reveals that the combination between submerged membrane filtration and PAC could be an effective solution for enhancing removal of micropollutants from water.
Collapse
Affiliation(s)
- Phuoc-Dan Nguyen
- Asian Center for Water Research (CARE-RESCIF), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam E-mail:
| | - Thi-Minh-Tam Le
- Asian Center for Water Research (CARE-RESCIF), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Quyen Vo
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh city 700000, Vietnam
| | - Phuong-Thao Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam E-mail: ; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Thi-Dieu-Hien Vo
- Asian Center for Water Research (CARE-RESCIF), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Vietnam
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
| | - Nguyen-Thanh Son
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam E-mail: ; Center for Space and Remote Sensing Research, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Dinh Duc Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam E-mail: ; Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam E-mail: ; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
De Falco M, Laforgia V. Combined Effects of Different Endocrine-Disrupting Chemicals (EDCs) on Prostate Gland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9772. [PMID: 34574693 PMCID: PMC8471191 DOI: 10.3390/ijerph18189772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) belong to a heterogeneous class of environmental pollutants widely diffused in different aquatic and terrestrial habitats. This implies that humans and animals are continuously exposed to EDCs from different matrices and sources. Moreover, pollution derived from anthropic and industrial activities leads to combined exposure to substances with multiple mechanisms of action on the endocrine system and correlated cell and tissue targets. For this reason, specific organs, such as the prostate gland, which physiologically are under the control of hormones like androgens and estrogens, are particularly sensitive to EDC stimulation. It is now well known that an imbalance in hormonal regulation can cause the onset of various prostate diseases, from benign prostate hyperplasia to prostate cancer. In this review, starting with the description of normal prostate gland anatomy and embryology, we summarize recent studies reporting on how the multiple and simultaneous exposure to estrogenic and anti-androgenic compounds belonging to EDCs are responsible for an increase in prostate disease incidence in the human population.
Collapse
Affiliation(s)
- Maria De Falco
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
13
|
Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:753-768. [PMID: 32704083 DOI: 10.1038/s41370-020-0253-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Collapse
Affiliation(s)
- R Prichystalova
- Faculty of Safety Engineering, Technical University of Ostrava, Ostrava, Czech Republic
| | - E Caron-Beaudoin
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
| | - L Richardson
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - E Dirkx
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - A Amadou
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environement, Lyon, France
| | - T Zavodna
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - R Cihak
- Výzkumný ústav organických syntéz a.s., Centre for Ecology, Toxicology and Analytics, Rybitví, Czech Republic
| | - V Cogliano
- National Center for Environmental Health Hazard Assessment, US Environmental Protection Agency, Washington, DC, USA
| | - J Hynes
- JH Tox Consulting, Maastricht, Netherlands
| | - L Pelland-St-Pierre
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - M A Verner
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, QC, Canada
| | - M van Tongeren
- Faculty of Science and Engineering, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| | - V Ho
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada.
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
15
|
Oncogenic Potential of Bisphenol A and Common Environmental Contaminants in Human Mammary Epithelial Cells. Int J Mol Sci 2020; 21:ijms21103735. [PMID: 32466334 PMCID: PMC7279350 DOI: 10.3390/ijms21103735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
There is an ample epidemiological evidence to support the role of environmental contaminants such as bisphenol A (BPA) in breast cancer development but the molecular mechanisms of their action are still not fully understood. Therefore, we sought to analyze the effects of three common contaminants (BPA; 4-tert-octylphenol, OP; hexabromocyclododecane, HBCD) on mammary epithelial cell (HME1) and MCF7 breast cancer cell line. We also supplied some data on methoxychlor, MXC; 4-nonylphenol, NP; and 2-amino-1-methyl-6-phenylimidazo [4–b] pyridine, PhIP. We focused on testing the prolonged (two months) exposure to low nano-molar concentrations (0.0015–0.0048 nM) presumed to be oncogenic and found that they induced DNA damage (evidenced by upregulation of pH2A.X, pCHK1, pCHK2, p-P53) and disrupted the cell cycle. Some agents induced epigenetic (methylation) changes of tumor suppressor genes TIMP3, CHFR, ESR1, IGSF4, CDH13, and GSTP1. Obviously, the accumulation of these molecular alterations is an essential base for cancer development. Consistent with this, we observed that these agents increased cellular invasiveness through collagen. Cellular abilities to form colonies in soft agar were increased for MCF7. Toxic agents induced phosphorylation of protein kinase such as EGFR, CREB, STAT6, c-Jun, STAT3, HSP6, HSP27, AMPKα1, FAK, p53, GSK-3α/β, and P70S6 in HME1. Most of these proteins are involved in potential oncogenic pathways. Overall, these data clarify the molecular alterations that can be induced by some common environmental contaminants in mammary epithelial cells which could be a foundation to understand environmental carcinogenesis.
Collapse
|
16
|
Noorimotlagh Z, Mirzaee SA, Martinez SS, Rachoń D, Hoseinzadeh M, Jaafarzadeh N. Environmental exposure to nonylphenol and cancer progression Risk-A systematic review. ENVIRONMENTAL RESEARCH 2020; 184:109263. [PMID: 32113025 DOI: 10.1016/j.envres.2020.109263] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 05/26/2023]
Abstract
Environmental exposure to nonylphenol (NP) can adversely affect human and wildlife health. A systematic review was conducted to evaluate the relationship between environmental NP exposure and cancer progression risk. Literature surveys were conducted within several international databases using appropriate keywords. A comprehensive search yielded 58 eligible studies involving a wide range of adverse effects, exposure assessment methods, study designs, and experimental models. Most studies reported that NP strongly induced breast cancer progression in intended experiments. Positive associations between NP exposure and ovarian, uterine, pituitary, and testicular cancers were also reported. Although some studies reported no relation between environmental NP exposure and tumour and/or cancer progression, NP (a known endocrine disrupting chemical) induced action mechanisms in multiple experimental models and may interfere with/hyper-activate oestrogen signalling. Secretion of oestrogen and development of reproductive tissues like breasts, uteruses, and ovaries showed strong associations with possible neoplasia (i.e., uncontrolled development of tumours and/or malignant cancers). Findings of this study are important for informing policymakers to pass legislation limiting the use of environmental contaminants such as NP before all adverse effects of exposure have been determined.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Biotechnology and Medical Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Seyyed Abbas Mirzaee
- Biotechnology and Medical Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Susana Silva Martinez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Mehran Hoseinzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neemat Jaafarzadeh
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Sayed AEDH, Kotb AM, Oda S, Kashiwada S, Mitani H. Protective effect of p53 knockout on 4-nonylphenol-induced nephrotoxicity in medaka (Oryzias latipes). CHEMOSPHERE 2019; 236:124314. [PMID: 31310970 DOI: 10.1016/j.chemosphere.2019.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
In the past few decades, environmental pollutants have become common because of misused nonionic surfactants and detergents. Nonylphenol ethoxylates (NPs) are one of the most important contaminants of water. Therefore, the present study aimed to investigate the protective blocking effect of apoptosis (deficient P53 gene) on 4-nonylphenol (4-NP)-induced nephrotoxicity of medaka (Oryzias latipes). We divided 36 fish into six groups: two different control groups of wild type (Wt; Hd-rR) control and p53 (-/-) control, and four different treated with 4-nonylphenol (50 μg/L and 100 μg/L) for 15 days. Histology, immunochemistry, and TUNEL assays confirmed that 4-NP causes nephrotoxicity. Our results showed that 4-NP administration significantly disturbed the kidney structure and function and 4-NP-treated fish showed dilated glomerular vessels, had less glomerular cellular content, decreased expression of glomerular proteins, and an increased level of apoptosis compared with a Wt control group (P < 0.05). As p53 is an apoptotic inducer, some protection in p53-deficient medaka was found as nephrotoxic effects of 4-NP were minimized significantly. Our study demonstrated for the first time to our knowledge that 4-NP induces apoptosis, causing nephrotoxicity in medaka. We found that blocking apoptosis blocking was able to protect the kidney from the toxic effects of 4-NP.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71516 Assiut, Egypt
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
18
|
Ghosh K, Chatterjee B, Maheswari U, Athifa M, Kanade SR. 4-Nonylphenol-enhanced EZH2 and RNF2 expression, H3K27me3 and H2AK119ub1 marks resulting in silencing of p21CDKN1A in vitro. Epigenomics 2019; 11:899-916. [PMID: 31144530 DOI: 10.2217/epi-2018-0175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To examine the impact of 4-nonylphenol (4-NP), on the expression of polycomb repressive complexes and cellular proliferation. Materials & methods: Cell proliferation assays, quantitative PCR, Western blotting, luciferase reporter assay, chromatin immunoprecipitation-quantitative PCR were used for the study. Results: The 4-NP at 100 nM concentration significantly increased proliferation of MCF-7 cells. It enhanced the expression of RNF2-BMI1 and EZH2-SUZ12 and concomitantly increased H2AK119ub1 and H3K27me3 repressive marks at p21 proximal promoter resulting in its reduced expression. Selective inhibition of RNF2 or EZH2 reverted the 4-NP action. The phospho-CREB, SP1 and E2F-1 are enriched at proximal promoter of RNF2 and EZH2 and cyclin D1, but not p21. Conclusion: The 4-NP-mediated upregulation of RNF2 and EZH2 resulted in epigenetic silencing of p21.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry & Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Biji Chatterjee
- Department of Biochemistry & Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Uma Maheswari
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Mariyam Athifa
- Department of Biochemistry & Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Santosh R Kanade
- Department of Biochemistry & Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India.,Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C R Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| |
Collapse
|
19
|
Xie M, Liang JL, Huang HD, Wang MJ, Zhang T, Yang XF. Low Doses of Nonylphenol Promote Growth of Colon Cancer Cells through Activation of ERK1/2 via G Protein‒Coupled Receptor 30. Cancer Res Treat 2019; 51:1620-1631. [PMID: 31096733 PMCID: PMC6790866 DOI: 10.4143/crt.2018.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/12/2019] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Nonylphenol (NP) is an endocrine disruptor found in products such as cleaners, plastics, and detergents. It exerts actions similar to endogenous 17β-estradiol (E2) and is reported to influence various cancers. However, its role in colon cancer remains elusive. Materials and Methods Colon cancer cell lines COLO 205 and SW480 were employed in our study. The cells were treated with NP or E2 followed by measurement of apoptosis and proliferation using flow cytometry and MTT assays, respectively. G protein-coupled estrogen receptor 30 (GPR30) expression was visualized using immunofluorescence and Western blot. To investigate the underlying mechanism, the expression levels of GPR30, p-protein kinase A (PKA), c-myc, cyclin D1, and ERK1/2 were analyzed using Western blot. Meanwhile, the GPR30 antagonist G15 was utilized to validate the role of GPR30 in colon cancer progression. Finally, the effect of a GPR30 inhibitor on tumor growth was determined in vivo using tumor xenograft mouse models. RESULTS NP facilitated the proliferation of colon cancer cells and induced apoptosis failure in vitro. Western blot revealed increased GPR30 expression levels in response to NP treatment. Cyclin D1, p-PKA, c-myc, and proliferating cell nuclear antigen, proteins that regulate the cell cycle, were all upregulated by NP, and NP-mediated ERK1/2 activation and subsequent cell proliferation were abrogated by the GPR30 inhibitor G15. Moreover, colon cancer mice that received G15 administration demonstrated impaired tumor growth in vivo. CONCLUSION Low dose NP promotes the growth of colon tumors through GPR30-mediated activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jin-Long Liang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Han-Dong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Mai-Jian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xue-Feng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| |
Collapse
|
20
|
Yang X, Huang H, Wang M, Zheng X, Xie M, Xu J. Nonylphenol promotes the proliferation of colorectal cancer COLO205 cells by upregulating the expression of protein kinase C ζ. Oncol Lett 2019; 17:2498-2506. [PMID: 30675313 DOI: 10.3892/ol.2018.9846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have indicated the potential role of estrogen in the development and prognosis of colorectal cancer (CRC). Nonylpheno (NP) is an endocrine-disrupting chemical, which may influence the development of estrogen-dependent types of cancer. However, the molecular mechanism of NP in the development of CRCs remains unclear. In the present study, various concentrations of NP were used to treat COLO205 CRC cells, and the expression of protein kinase C ζ (PKCζ) was knocked down using PKCζ small interfering RNA. The effects of NP in various concentrations on the cell cycle and apoptosis of COLO205 cells were examined, and the change in the expression level of PKCζ was analyzed. The results indicated that NP may significantly induce proliferation of COLO205 CRC cells, and significantly reduce cell apoptosis. However, suppression of PKCζ expression may inhibit proliferation, while NP could reduce this inhibition. The results of a western blot analysis indicated that the expression level of cyclin D1 and E were significantly increased following NP treatment, and the expression of p27 was significantly decreased. The phosphorylation of PKCζ and extracellular-signal-regulated kinase (ERK)1/2 was significantly increased following NP treatment in a dose-dependent manner. Overall, NP induced human CRC COLO205 cell proliferation and inhibited the apoptotic rate of COLO205 cells by increasing the activity of PKCζ and ERK1/2.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Handong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Maijian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xingbin Zheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
21
|
Tassinari M, Cimino-Reale G, Nadai M, Doria F, Butovskaya E, Recagni M, Freccero M, Zaffaroni N, Richter SN, Folini M. Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. J Med Chem 2018; 61:8625-8638. [PMID: 30188709 DOI: 10.1021/acs.jmedchem.8b00502] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stabilization of the G-quadruplexes (G4s) within the androgen receptor (AR) gene promoter to block transcription may represent an innovative approach to interfere with aberrant AR signaling in castration resistant prostate cancer (CRPC). A library of differently functionalized naphthalene diimides (NDIs) was screened for their ability to stabilize AR G4s: the core-extended NDI (7) stood out as the most promising ligand. AR-positive cells were remarkably sensitive to 7 in comparison to AR-negative CRCP or normal prostate epithelial cells; 7 induced remarkable impairment of AR mRNA and protein amounts and significant perturbations in the expression levels of KLK3 and of genes involved in the activation of AR program via feedback mechanisms. Moreover, 7 synergistically interacted with Enzalutamide, an inhibitor of AR signaling used in second-line therapies. Overall, our data show that stabilization of AR G4s may represent an alternative treatment options for CRPC and other malignancies relying on aberrant androgen signaling.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Matteo Nadai
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Filippo Doria
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Elena Butovskaya
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marta Recagni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Mauro Freccero
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marco Folini
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| |
Collapse
|
22
|
Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AWS, Easley CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. iScience 2018; 3:161-176. [PMID: 29901031 PMCID: PMC5994764 DOI: 10.1016/j.isci.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts.
Collapse
Affiliation(s)
- Alyse N Steves
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Danielle Clarkson-Townsend
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brittany J Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Adam C Turry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - W Michael Caudle
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA.
| |
Collapse
|
23
|
Quagliariello V, Rossetti S, Cavaliere C, Di Palo R, Lamantia E, Castaldo L, Nocerino F, Ametrano G, Cappuccio F, Malzone G, Montanari M, Vanacore D, Romano FJ, Piscitelli R, Iovane G, Pepe MF, Berretta M, D'Aniello C, Perdonà S, Muto P, Botti G, Ciliberto G, Veneziani BM, De Falco F, Maiolino P, Caraglia M, Montella M, Iaffaioli RV, Facchini G. Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiological evidences. Oncotarget 2018; 8:30606-30616. [PMID: 28389628 PMCID: PMC5444769 DOI: 10.18632/oncotarget.16725] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 01/18/2023] Open
Abstract
This review summarizes the main pathophysiological basis of the relationship between metabolic syndrome, endocrine disruptor exposure and prostate cancer that is the most common cancer among men in industrialized countries. Metabolic syndrome is a cluster of metabolic and hormonal factors having a central role in the initiation and recurrence of many western chronic diseases including hormonal-related cancers and it is considered as the worlds leading health problem in the coming years. Many biological factors correlate metabolic syndrome to prostate cancer and this review is aimed to focus, principally, on growth factors, cytokines, adipokines, central obesity, endocrine abnormalities and exposure to specific endocrine disruptors, a cluster of chemicals, to which we are daily exposed, with a hormone-like structure influencing oncogenes, tumor suppressors and proteins with a key role in metabolism, cell survival and chemo-resistance of prostate cancer cells. Finally, this review will analyze, from a molecular point of view, how specific foods could reduce the relative risk of incidence and recurrence of prostate cancer or inhibit the biological effects of endocrine disruptors on prostate cancer cells. On the basis of these considerations, prostate cancer remains a great health problem in terms of incidence and prevalence and interventional studies based on the treatment of metabolic syndrome in cancer patients, minimizing exposure to endocrine disruptors, could be a key point in the overall management of this disease.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy.,Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Rossella Di Palo
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Elvira Lamantia
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Flavia Nocerino
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gabriella Malzone
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Daniela Vanacore
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Francesco De Falco
- Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Napoli, Italy
| | - Rosario Vincenzo Iaffaioli
- Medical Oncology, Abdominal Department, National Cancer Institute G. Pascale Foundation, Napoli, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0 - Linea progettuale 14 per l'implementazione della prevenzione e diagnosi precoce del tumore alla prostata e testicolo - Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy.,Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, Naples, Italy
| |
Collapse
|
24
|
Ho H, Watanabe T. The Roles of Three Types of Knowledge and Perceived Uncertainty in Explaining Risk Perception, Acceptability, and Self-Protective Response-A Case Study on Endocrine Disrupting Surfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E296. [PMID: 29419790 PMCID: PMC5858365 DOI: 10.3390/ijerph15020296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 01/06/2023]
Abstract
The ubiquitous surfactants nonylphenol (NP) and its ethoxylates (NPEOs), which are known as endocrine disrupters, have appeared in the lists of restricted chemical substances, monitoring programs, and environmental quality standards of many countries due to their adverse effects. Recent studies have reported alarming levels of NP, as the final metabolite of NPEOs, in Vietnamese urban waters, whilst response to this issue is negligible. With the aim of addressing how the public perceives and expects to avoid the risk of endocrine disrupting surfactants (EDSs), the study tested the hypothesized roles of specific knowledge, general knowledge, and perceived uncertainty using structural equation modelling. The findings revealed that different types of knowledge played certain roles in explaining risk perception, risk acceptability, and self-protective response, which are distinguished by experience amongst the public. Evidence of the mediating role that perceived uncertainty may play in the decrease of risk perception and the increase of risk unacceptance has been provided. The insights gained from the study may help answer why the public are in favor of taking non-diet-related self-protective measures rather than changing their dietary habits, which illustrates a comparison with the basis of health belief model. The needs for building cognitive capacity amongst the public, particularly pregnant women and young mothers, and risk communication concerning endocrine disrupting contamination linked to reproductive health are highlighted.
Collapse
Affiliation(s)
- Hien Ho
- Graduate School of Engineering, Kochi University of Technology, Tosayamada, Kami City, Kochi 782-8502, Japan.
| | - Tsunemi Watanabe
- School of Economics and Management, Kochi University of Technology, 2-22 Eikokuji, Kochi City, Kochi 780-8515, Japan.
| |
Collapse
|
25
|
Yang X, Huang H, Wang M, Zheng X, Xu J, Xie M. Effect of nonylphenol on the regulation of cell growth in colorectal cancer cells. Mol Med Rep 2017; 16:2211-2216. [PMID: 28656208 DOI: 10.3892/mmr.2017.6817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/06/2017] [Indexed: 11/06/2022] Open
Abstract
Nonylphenol (NP) is a well-known endocrine-disrupting chemical (EDC), which can enhance the progression of cancer by functioning as an estrogen‑like factor. In the present study, the effects of different concentrations of NP on COLO205 colorectal cancer (CRC) cells were examined. The results of flow cytometric analysis revealed that NP significantly decreased the proportion of cells in the G0/G1 phase in a dose‑dependent manner, which was accompanied by a marginal increase in the proportions of cells in S and G2/M phases. NP did not induce apoptosis, whereas estradiol (E2) did induce apoptosis. To elucidate the mechanisms underlying the action of NP on COLO205 cells, the transcriptional levels of extracellular signal‑regulated kinase (ERK)1, ERK2 and phosphoinositide 3‑kinase (PI3K) were assessed using reverse transcription‑quantitative polymerase chain reaction analysis. The expressions levels of ERK1, ERK2 and PI3K were increased by treatment with NP in a dose‑dependent manner. On examining protein levels, the expression of PI3K p38 was increased by NP and E2, and the expression of ERK1/2 was increased by NP. The phosphorylation of the ERK protein was significantly increased by treatment with NP at a high concentration (10‑4 M; P<0.01), but significantly decreased by E2 (P<0.01). Two key proteins in the transforming growth factor (TGF)β pathway (c‑Fos and SnoN) were selected for analysis using western blot analysis in the COLO205 cells treated with NP and E2. The expression levels of c‑Fos and SnoN were significantly increased by treatment with E2 (10‑7 M; P<0.01) and NP (10‑7‑10‑4 M; P<0.01). Taken together, these results indicated that NP affected the development of CRC via the ERK signaling pathway and TGFβ pathway.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Handong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Maijian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xingbin Zheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
26
|
Lee JW, Han HK, Park S, Moon EY. Nonylphenol increases tumor formation and growth by suppressing gender-independent lymphocyte proliferation and macrophage activation. ENVIRONMENTAL TOXICOLOGY 2017; 32:1679-1687. [PMID: 28168795 DOI: 10.1002/tox.22385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Nonylphenol (NP) is a well-known endocrine disruptor that influences sexual and reproductive development. Here, we investigated whether NP affects immune responses that are associated with tumor initiation and progression. When spleen cells were incubated with lipopolysaccharide (LPS) and concanavalin A in the presence of 10-4 M NP, the proliferation of B and T lymphocytes was reduced compared with that in controls, in a gender-independent fashion. While 10-4 M NP also decreased the production of nitric oxide (NO) in LPS-stimulated bone marrow-derived macrophages (BMDMs), no changes in NO production were detected following treatment with 10-5 M NP. LPS-stimulated expression of iNOS, COX2, IL-6 and TNF-α in BMDMs was reduced after 6 or 18 hours of incubation with 10-5 M NP. Furthermore, when mice were pre-exposed to NP for 7 days prior to the injection of B16F10 melanoma cells, the rates of tumor nodule formation and relative tumor growth were higher than those in the control group. In vivo immunosuppressive effect was also clarified by the inhibition of proliferation in B/T lymphocyte and cytokine production in peritoneal macrophages from the mice pretreated with NP for 7 days. Taken together, these data demonstrate that NP could affect the immune responses of lymphocytes and macrophages, leading to the suppression of their tumor-preventing ability. This suggests that individuals at high risk for tumor development should avoid frequent exposure to NP and other endocrine disruptors.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hae-Kyoung Han
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Sojin Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
27
|
Distribution and Removal of Nonylphenol Ethoxylates and Nonylphenol from Textile Wastewater—A Comparison of a Cotton and a Synthetic Fiber Factory in Vietnam. WATER 2017. [DOI: 10.3390/w9060386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Forte M, Di Lorenzo M, Carrizzo A, Valiante S, Vecchione C, Laforgia V, De Falco M. Nonylphenol effects on human prostate non tumorigenic cells. Toxicology 2016; 357-358:21-32. [DOI: 10.1016/j.tox.2016.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|