1
|
Hu XF, Loan A, Chan HM. Re-thinking the link between exposure to mercury and blood pressure. Arch Toxicol 2025; 99:481-512. [PMID: 39804370 PMCID: PMC11775068 DOI: 10.1007/s00204-024-03919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Hypertension or high blood pressure (BP) is a prevalent and manageable chronic condition which is a significant contributor to the total global disease burden. Environmental chemicals, including mercury (Hg), may contribute to hypertension onset and development. Hg is a global health concern, listed by the World Health Organization (WHO) as a top ten chemical of public health concern. Most people are exposed to some level of Hg, with vulnerable groups, including Indigenous peoples and small-scale gold miners, at a higher risk for exposure. We published a systematic review and meta-analysis in 2018 showing a dose-response relationship between Hg exposure and hypertension. This critical review summarizes the biological effects of Hg (both organic and inorganic form) on the underlying mechanisms that may facilitate the onset and development of hypertension and related health outcomes and updates the association between Hg exposure (total Hg concentrations in hair) and BP outcomes. We also evaluated the weight of evidence using the Bradford Hill criteria. There is a strong dose-response relationship between Hg (both organic and inorganic) exposure and BP in animal studies and convincing evidence that Hg contributes to hypertension by causing structural and functional changes, vascular reactivity, vasoconstriction, atherosclerosis, dyslipidemia, and thrombosis. The underlying mechanisms are vast and include impairments in antioxidant defense mechanisms, increased ROS production, endothelial dysfunction, and alteration of the renin-angiotensin system. We found additional 16 recent epidemiological studies that have reported the relationship between Hg exposure and hypertension in the last 5 years. Strong evidence from epidemiological studies shows a positive association between Hg exposure and the risk of hypertension and elevated BP. The association is mixed at lower exposure levels but suggests that Hg can affect BP even at low doses when co-exposed with other metals. Further research is needed to develop robust conversion factors among different biomarkers and standardized measures of Hg exposure. Regulatory agencies should consider adopting a 2 µg/g hair Hg level as a cut-off for public health regulation, especially for adults older than child-bearing age.
Collapse
Affiliation(s)
- Xue Feng Hu
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Allison Loan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Hing Man Chan
- Chemical and Environmental Toxicology Program, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
3
|
Basuthakur P, Roy A, Patra CR, Chakravarty S. Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion injury in cardiomyocytes. BIOMATERIALS ADVANCES 2023; 153:213531. [PMID: 37429046 DOI: 10.1016/j.bioadv.2023.213531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Myocardial hypoxia reperfusion (H/R) injury is the paradoxical exacerbation of myocardial damage, caused by the sudden restoration of blood flow to hypoxia affected myocardium. It is a critical contributor of acute myocardial infarction, which can lead to cardiac failure. Despite the current pharmacological advancements, clinical translation of cardioprotective therapies have proven challenging. As a result, researchers are looking for alternative approaches to counter the disease. In this regard, nanotechnology, with its versatile applications in biology and medicine, can confer broad prospects for treatment of myocardial H/R injury. Herein, we attempted to explore whether a well-established pro-angiogenic nanoparticle, terbium hydroxide nanorods (THNR) can ameliorate myocardial H/R injury. For this study, in vitro H/R-injury model was established in rat cardiomyocytes (H9c2 cells). Our investigations demonstrated that THNR enhance cardiomyocyte survival against H/R-induced cell death. This pro-survival effect of THNR is associated with reduction of oxidative stress, lipid peroxidation, calcium overload, restoration of cytoskeletal integrity and mitochondrial membrane potential as well as augmentation of cellular anti-oxidant enzymes such as glutathione-s-transferase (GST) and superoxide dismutase (SOD) to counter H/R injury. Molecular analysis revealed that the above observations are traceable to the predominant activation of PI3K-AKT-mTOR and ERK-MEK signalling pathways by THNR. Concurrently, THNR also exhibit apoptosis inhibitory effects mainly by suppression of pro-apoptotic proteins like Cytochrome C, Caspase 3, Bax and p53 with simultaneous restoration of anti-apoptotic protein, Bcl-2 and Survivin. Thus, considering the above attributes, we firmly believe that THNR have the potential to be developed as an alternative approach for amelioration of H/R injury in cardiomyocytes.
Collapse
Affiliation(s)
- Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Xu Y, Chen R, Zeng Q. Ferroptosis As a Mechanism for Health Effects of Essential Trace Elements and Potentially Toxic Trace Elements. Biol Trace Elem Res 2022:10.1007/s12011-022-03523-w. [PMID: 36575272 DOI: 10.1007/s12011-022-03523-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Ferroptosis is a unique form of programmed cell death driven by iron-dependent phospholipid peroxidation that was proposed in recent years. It plays an important role in processes of various trace element-related diseases and is regulated by redox homeostasis and various cellular metabolic pathways (iron, amino acids, lipids, sugars), as well as disease-related signaling pathways. Some limited pioneering studies have demonstrated ferroptosis as a mechanism for the health effects of essential trace elements and potentially toxic trace elements, with crosstalk among them. The aim of this review is to bring together research articles and identify key direct and indirect evidence regarding essential trace elements (iron, selenium, zinc, copper, chromium, manganese) and potentially toxic trace elements (arsenic, aluminum, mercury) and their possible roles in ferroptosis. Our review may help determine future research priorities and opportunities.
Collapse
Affiliation(s)
- Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| | - Ruobi Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
6
|
Determination of stability constants of mercury(II) by garlic organosulfur ligands with differential pulse voltammetry. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Martins AC, Santos AAD, Lopes ACBA, Skalny AV, Aschner M, Tinkov AA, Paoliello MMB. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr Hypertens Rev 2021; 17:14-26. [PMID: 33475076 DOI: 10.2174/1573402117666210121102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alessanda A D Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ana C B A Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Anatoly V Skalny
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alexey A Tinkov
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
8
|
Silva JL, Leocádio PCL, Reis JM, Campos GP, Capettini LSA, Foureaux G, Ferreira AJ, Windmöller CC, Santos FA, Oriá RB, Crespo-López ME, Alvarez-Leite JI. Oral methylmercury intoxication aggravates cardiovascular risk factors and accelerates atherosclerosis lesion development in ApoE knockout and C57BL/6 mice. Toxicol Res 2020; 37:311-321. [PMID: 34295795 DOI: 10.1007/s43188-020-00066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Methylmercury (MeHg) intoxication is associated with hypertension, hypercholesterolemia, and atherosclerosis by mechanisms that are not yet fully understood. We investigated the effects of MeHg intoxication in atherosclerosis-prone (ApoE-KO) and resistant C57BL/6 mice. Mice were submitted to carotid stenosis surgery (to induce atherosclerosis faster) and received water or MeHg solution (20 mg/L) for 15 days. Tail plethysmography was performed before and after MeHg exposure. Food and MeHg solution intakes were monitored weekly. On the 15th day, mice were submitted to intravital fluorescence microscopy of mesenteric vasculature to observe in vivo leukocyte rolling and adhesion. Results showed that despite the high hair and liver Hg concentrations in the MeHg group, food and water (or MeHg solution) consumption and liver function marker levels were similar to those in controls. MeHg exposure increased total cholesterol, the atherogenic (non-HDL) fraction and systolic and diastolic blood pressure. MeHg exposure also induced inflammation, as seen by the increased rolling and adhered leukocytes in the mesenteric vasculature. Atherosclerosis lesions were more extensive in the aorta and carotid sites of MeHg-ApoE knockout mice. Surprisingly, MeHg exposure also induced atherosclerosis lesions in C57BL/6 mice, which are resistant to atherosclerosis formation. We concluded that MeHg intoxication might represent a risk for cardiovascular diseases since it accelerates atherogenesis by exacerbating several independent risk factors.
Collapse
Affiliation(s)
- Janayne L Silva
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| | - Paola C L Leocádio
- Departamento de Nutrição e Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Jonas M Reis
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| | - Gianne P Campos
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Luciano S A Capettini
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Giselle Foureaux
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Anderson J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Cláudia C Windmöller
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Flávia A Santos
- Departamento de Morfologia, Universidade Federal Do Ceará, Fortaleza, Ceará Brazil
| | - Reinaldo B Oriá
- Departamento de Morfologia, Universidade Federal Do Ceará, Fortaleza, Ceará Brazil
| | - Maria E Crespo-López
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará Brazil
| | - Jacqueline I Alvarez-Leite
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| |
Collapse
|
9
|
Albasher G, Alkahtani S, Alarifi S. Berberine mitigates oxidative damage associated with testicular impairment following mercury chloride intoxication. J Food Biochem 2020; 44:e13385. [PMID: 33460233 DOI: 10.1111/jfbc.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
In this study, we assessed the protective effect of berberine (BBR) against mercuric chloride (HgCl2)-induced reproductive impairment. Twenty-eight adult male Wistar albino rats were placed into four equal groups: control, BBR, HgCl2, and BBR + HgCl2. All the treatments were orally administered for seven consecutive days. The rats exposed to HgCl2 showed a marked decrease in testosterone accompanied by an increase in lipid peroxidation (LPO) and nitric oxide (NO). Additionally, HgCl2 decreased glutathione (GSH) content, deactivated catalase (CAT) and glutathione reductase (GR), and suppressed the activities and mRNA expression of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testicular tissue. In addition, histological deformations and testicular cell loss were recorded, as evidenced by the upregulation of caspase-3 following HgCl2 intoxication. Notably, BBR administration reversed the testicular impairments associated with HgCl2 exposure. These findings suggest that BBR protected the testicular tissue following HgCl2 exposure through inhibiting the disturbance in the testosterone level and enhanced the antioxidant capacity. PRACTICAL APPLICATIONS: Heavy metals are naturally existing metallic elements in the earth's crust. These trace metals have the potential to cause multiple adverse reactions to the living systems, even at low exposure doses. Human exposure may also result from industrial, agricultural, and domestic activities. Berberine (BBR, a naturally occurring quaternary benzylisoquinoline alkaloid) is a protoberberine and is the representative main active ingredient in all parts of Berberis species. BBR has been used widely in folk medicine worldwide for its multiple pharmacological and therapeutic activities; for example, in the treatment of digestive and reproductive system disorders, microorganism infections, hemorrhage and wound healing, and cardiovascular and ophthalmic diseases. We found that BBR administration was able to abrogate significantly the reproductive toxicity associated with Hg intoxication. This protective effect comes from its strong antioxidant, anti-inflammatory, and antiapoptotic activities; suggesting that BBR may be applied to alleviate reproductive toxicity associated with Hg intoxication.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Farkhondeh T, Afshari R, Mehrpour O, Samarghandian S. Mercury and Atherosclerosis: Cell Biology, Pathophysiology, and Epidemiological Studies. Biol Trace Elem Res 2020; 196:27-36. [PMID: 31529242 DOI: 10.1007/s12011-019-01899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Today atherosclerosis is considered as a main cause of death in the worldwide. There is a significant association between heavy metal exposure and atherosclerosis. In this study, we discussed the scientific literature about the effect of mercury on the pathogenesis of atherosclerosis. We also considered the epidemiological studies on mercury as a risk factor for atherosclerosis. Web of Science, Google Scholar, Medline, PubMed, and Scopus were searched by using the following keywords to 2019: (cardiovascular diseases OR atherosclerosis OR endothelial dysfunction) AND (mercury). Mercury has the potential to act as one of the novel risk factors for atherosclerosis development. The findings have indicated the role of mercury in the pathogenesis of atherosclerosis, vascular endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia. Mercury can induce atherosclerosis indirectly via increasing the total cholesterol, triglycerides, and LDL-C levels as well as decreasing the HDL-C level. Mercury can be considered as a risk factor in the atherosclerosis progression. However, more studies are required to find the exact mechanisms involved in the pathogenesis of atherosclerosis induced by mercury.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Afshari
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Omid Mehrpour
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Liu S, Tsui MTK, Lee E, Fowler J, Jia Z. Uptake, efflux, and toxicity of inorganic and methyl mercury in the endothelial cells (EA.hy926). Sci Rep 2020; 10:9023. [PMID: 32488074 PMCID: PMC7265296 DOI: 10.1038/s41598-020-66444-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease (CVD) is the major cause of morbidity, mortality, and health care costs in the United States, and possibly around the world. Among the various risk factors of CVD, environmental and dietary exposures to mercury (Hg), a highly toxic metal traditionally regarded as a neurotoxin, has been recently suggested as a potential contributor towards human atherosclerotic development. In this study, we investigated the toxicity, type of cell death, dose-dependent uptake, and efflux of inorganic HgII (as HgCl2) and methylmercury or MeHg (as CH3HgCl) in EA.hy926 endothelial cells, as these two forms of Hg are often reported to be present in human blood among the general populations (~20–30% as HgII and ~70–80% as MeHg). Our results showed that HgII is more toxic than MeHg to the endothelial cells, owing to the higher uptake into the cytoplasm and perhaps importantly lower efflux of HgII by the cells, thus the “net” accumulation by the endothelial cells is higher for HgII than MeHg when exposed to the same Hg levels in the media. Furthermore, both HgII and MeHg were found to induce apoptotic and necrotic cell death. This study has important implications for the contributions of these two common Hg species to the development of atherosclerosis, an important process leading to CVD.
Collapse
Affiliation(s)
- Songnian Liu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| | - Elizabeth Lee
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Josh Fowler
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
12
|
Patwa J, Flora SJS. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int J Mol Sci 2020; 21:ijms21113862. [PMID: 32485831 PMCID: PMC7313017 DOI: 10.3390/ijms21113862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Heavy metals are considered a continuous threat to humanity, as they cannot be eradicated. Prolonged exposure to heavy metals/metalloids in humans has been associated with several health risks, including neurodegeneration, vascular dysfunction, metabolic disorders, cancer, etc. Small blood vessels are highly vulnerable to heavy metals as they are directly exposed to the blood circulatory system, which has comparatively higher concentration of heavy metals than other organs. Cerebral small vessel disease (CSVD) is an umbrella term used to describe various pathological processes that affect the cerebral small blood vessels and is accepted as a primary contributor in associated disorders, such as dementia, cognitive disabilities, mood disorder, and ischemic, as well as a hemorrhagic stroke. In this review, we discuss the possible implication of heavy metals/metalloid exposure in CSVD and its associated disorders based on in-vitro, preclinical, and clinical evidences. We briefly discuss the CSVD, prevalence, epidemiology, and risk factors for development such as genetic, traditional, and environmental factors. Toxic effects of specific heavy metal/metalloid intoxication (As, Cd, Pb, Hg, and Cu) in the small vessel associated endothelium and vascular dysfunction too have been reviewed. An attempt has been made to highlight the possible molecular mechanism involved in the pathophysiology, such as oxidative stress, inflammatory pathway, matrix metalloproteinases (MMPs) expression, and amyloid angiopathy in the CSVD and related disorders. Finally, we discussed the role of cellular antioxidant defense enzymes to neutralize the toxic effect, and also highlighted the potential reversal strategies to combat heavy metal-induced vascular changes. In conclusion, heavy metals in small vessels are strongly associated with the development as well as the progression of CSVD. Chelation therapy may be an effective strategy to reduce the toxic metal load and the associated complications.
Collapse
|
13
|
Liu W, Yang T, Xu Z, Xu B, Deng Y. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic Res 2018; 53:26-44. [DOI: 10.1080/10715762.2018.1546852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
14
|
Wang L, Kang Y, Liang S, Chen D, Zhang Q, Zeng L, Luo J, Jiang F. Synergistic effect of co-exposure to cadmium (II) and 4-n-nonylphenol on growth inhibition and oxidative stress of Chlorella sorokiniana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:145-153. [PMID: 29459164 DOI: 10.1016/j.ecoenv.2018.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/03/2018] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
Toxicological effect of freshwater algae co-exposure to Cd and 4-n-nonylphenol (4-n-NP) was seldom reported. In the present study, Chlorella sorokiniana was selected for testing the single and combined effect of Cd and 4-n-NP by detecting the growth inhibition and oxidative stress after exposure for 48 h, 72 h, and 96 h. The combined effects were evaluated by using toxic units (TU) method and concentration addition(CA)model. The synergistic effect of mixture on algal growth inhibition was both observed at 48 h and 72 h, and the additive effect was observed at 96 h. In addition, the significant alterations of superoxide, thiobarbituric acid reactive substances and antioxidant defenses (superoxide dismutase, catalase, glutathione) have been detected. It could be observed that the mixture predominantly lead to synergistic effects in superoxide induction, and the antagonistic effects in the GSH induction. A similar trend between the superoxide induction and growth inhibition were observed, which may indicate that the oxidative effects of Chlorella sorokiniana contributed to the growth inhibition after exposure to Cd and 4-n-NP. These findings may have important implications in the risk assessments of heavy metals and endocrine disruptors in the aquatic environment.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yuan Kang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | - Siyun Liang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Danying Chen
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Lixuan Zeng
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Feng Jiang
- School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Engineering Technology Research Center for Drinking Water Safety, School of Chemistry and Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| |
Collapse
|
15
|
Maiuolo J, Maretta A, Gliozzi M, Musolino V, Carresi C, Bosco F, Mollace R, Scarano F, Palma E, Scicchitano M, Nucera S, Sergi D, Muscoli S, Gratteri S, Muscoli C, Mollace V. Ethanol-induced cardiomyocyte toxicity implicit autophagy and NFkB transcription factor. Pharmacol Res 2018; 133:141-150. [PMID: 29679641 DOI: 10.1016/j.phrs.2018.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Abstract
Chronic ethanol (EtOH) consumption causes early detrimental consequences in many tissues including the myocardium, though the molecular mechanisms leading to the alcoholic cardiomyopathy (ACM) still remain to be elucidated. Here, we studied several biomolecular changes occurring in cardiomyoblasts after their exposure to sublethal concentrations of EtOH and the potential synergistic effect with methylmercury (MM) or doxorubicin (DOXO), which are known to produce direct myocardial dysfunction. In addition, the possible role of autophagic responses and Nuclear Factor kappa-B (NFkB) modulation in early post-alcoholic myocardial damage has been investigated. H9c2 rat cardiomyoblasts were incubated for fifteen days with a sub-lethal concentrations of EtOH (1-1000 μM). In particular, treatment of H9c2 cells with EtOH produced an increase of reactive oxygen species (ROS) and the activation of autophagy. Furthermore, chronic exposure to EtOH, was accompanied by a translocation of NFkB into the nucleus dose-dependently. Finally, co-incubation of EtOH (1-1000 μM) with sublethal concentrations of MM or DOXO showed a prominent apoptotic death of cardiomyoblasts accompanied by ROS overproduction, autophagy activation and by an increased nuclear translocation of NFkB as compared to untreated cells. Thus, EtOH produces early changes in cardiomyoblasts characterized by oxidative stress, reactive autophagy and NFkB modulation at concentrations unable to produce direct cell death. Combination of EtOH with cardiotoxic pollutants or drugs makes the cardiomyocyte vulnerable to exogenous insults leading to apoptosis. These data contribute to better identify molecular mechanisms underlying early stages of alcoholic cardiomyopathy and suggest novel strategies to counteract integrated risk of cardiotoxicity in chronic alcohol consumption.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Alessia Maretta
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Domenico Sergi
- Department of Cardiovascular Disease, Tor Vergata University of Rome, Rome, Italy
| | - Saverio Muscoli
- Department of Cardiovascular Disease, Tor Vergata University of Rome, Rome, Italy
| | - Santo Gratteri
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy; San Raffaele IRCCS Pisana, Rome, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University "Magna Graecia", Nutramed Consortium, Catanzaro, Italy; San Raffaele IRCCS Pisana, Rome, Italy.
| |
Collapse
|
16
|
Comparative Analysis of the Effects of Olive Oil Hydroxytyrosol and Its 5- S-Lipoyl Conjugate in Protecting Human Erythrocytes from Mercury Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9042192. [PMID: 29849921 PMCID: PMC5924984 DOI: 10.1155/2018/9042192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Oxidative stress is one of the underlying mechanisms of the toxic effects exerted by mercury (Hg) on human health. Several antioxidant compounds, including the olive oil phenol hydroxytyrosol (HT), were investigated for their protective action. Recently, we have reported that 5-S-lipoylhydroxytyrosol (Lipo-HT) has shown increased antioxidant activities compared to HT and exerted potent protective effects against reactive oxygen species (ROS) generation and oxidative damage in human hepatocellular carcinoma HepG2 cell lines. In this study, the effects of Lipo-HT and HT on oxidative alterations of human erythrocytes induced by exposure to 40 μM HgCl2 were comparatively evaluated. When administered to the cells, Lipo-HT (5–20 μM) proved nontoxic and it decreased the Hg-induced generation of ROS, the hemolysis, and the depletion of intracellular GSH levels. At all tested concentrations, Lipo-HT exhibited higher ability to counteract Hg-induced cytotoxicity compared to HT. Model studies indicated the formation of a mercury complex at the SH group of Lipo-HT followed by a redox reaction that would spare intracellular GSH. Thus, the enhanced erythrocyte protective action of Lipo-HT from Hg-induced damage with respect to HT is likely due to an effective chelating and reducing ability toward mercury ions. These findings encourage the use of Lipo-HT in nutraceutical strategies to contrast heavy metal toxicity in humans.
Collapse
|
17
|
Bjørklund G, Dadar M, Mutter J, Aaseth J. The toxicology of mercury: Current research and emerging trends. ENVIRONMENTAL RESEARCH 2017; 159:545-554. [PMID: 28889024 DOI: 10.1016/j.envres.2017.08.051] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 05/16/2023]
Abstract
Mercury (Hg) is a persistent bio-accumulative toxic metal with unique physicochemical properties of public health concern since their natural and anthropogenic diffusions still induce high risk to human and environmental health. The goal of this review was to analyze scientific literature evaluating the role of global concerns over Hg exposure due to human exposure to ingestion of contaminated seafood (methyl-Hg) as well as elemental Hg levels of dental amalgam fillings (metallic Hg), vaccines (ethyl-Hg) and contaminated water and air (Hg chloride). Mercury has been recognized as a neurotoxicant as well as immunotoxic and designated by the World Health Organization as one of the ten most dangerous chemicals to public health. It has been shown that the half-life of inorganic Hg in human brains is several years to several decades. Mercury occurs in the environment under different chemical forms as elemental Hg (metallic), inorganic and organic Hg. Despite the raising understanding of the Hg toxicokinetics, there is still fully justified to further explore the emerging theories about its bioavailability and adverse effects in humans. In this review, we describe current research and emerging trends in Hg toxicity with the purpose of providing up-to-date information for a better understanding of the kinetics of this metal, presenting comprehensive knowledge on published data analyzing its metabolism, interaction with other metals, distribution, internal doses and targets, and reservoir organs.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|