1
|
McCarrick S, Delaval MN, Dauter UM, Krais AM, Snigireva A, Abera A, Broberg K, Eriksson AC, Isaxon C, Gliga AR. Toxicity of particles derived from combustion of Ethiopian traditional biomass fuels in human bronchial and macrophage-like cells. Arch Toxicol 2024; 98:1515-1532. [PMID: 38427118 PMCID: PMC10965653 DOI: 10.1007/s00204-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Mathilde N Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Ulrike M Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Asmamaw Abera
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel C Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Shetty SS, D D, S H, Sonkusare S, Naik PB, Kumari N S, Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023; 9:e19496. [PMID: 37662771 PMCID: PMC10472068 DOI: 10.1016/j.heliyon.2023.e19496] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.
Collapse
Affiliation(s)
- Shilpa S. Shetty
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Deepthi D
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Harshitha S
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynecology, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Prashanth B. Naik
- Department of Pediatrics, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Suchetha Kumari N
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
- Department of Biochemistry, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
3
|
Gogoi D, Sazid A, Bora J, Deka P, Balachandran S, Hoque RR. Particulate matter exposure in biomass-burning homes of different communities of Brahmaputra Valley. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:856. [PMID: 34853951 DOI: 10.1007/s10661-021-09624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning for cooking prevalent in the developing countries is an issue which has been a concern for the past several decades for the noxious emissions and subsequent effects on the health of women and children due to the exposure of particulate matter (PM) and other gases. In this study, PM (PM1, PM2.5, and PM10) were measured in biomass-burning households for different communities of Brahmaputra Valley region northeast India by a 31-channel aerosol spectrometer. The levels of emission of PM in the case of different community households were found to be significantly different. Also, the emission characteristics of different cooking time of the day were found to be different across communities. The emission levels in the biomass-burning households were compared with emission in household using "clean" LPG fuel, and it was found that the biomass fuels emitted 10-12 times more PM2.5 and 6-7 times more PM10. The number densities of the emission were found to be more with smaller sizes of particulates which could explain why such biomass-burning emissions can pose with greater health risks. The exposure doses were calculated and were found to be about three times higher in biomass-burning houses than "clean" LPG fuel. It is important to note that the exposure from biomass burning while cooking has a gender perspective. The woman of the house generally takes care of the activities in the kitchen and get exposed to the noxious PM and the gases. Children often accompany their mothers and face the same fate.
Collapse
Affiliation(s)
- Dharitri Gogoi
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Abdullah Sazid
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Jayanta Bora
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | - Pratibha Deka
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India
| | | | - Raza R Hoque
- Department of Environmental Science, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
4
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Olloquequi J. COVID-19 Susceptibility in chronic obstructive pulmonary disease. Eur J Clin Invest 2020; 50:e13382. [PMID: 32780415 PMCID: PMC7435530 DOI: 10.1111/eci.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
In barely nine months, the pandemic known as COVID-19 has spread over 200 countries, affecting more than 22 million people and causing over than 786 000 deaths. Elderly people and patients with previous comorbidities such as hypertension and diabetes are at an increased risk to suffer a poor prognosis after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although the same could be expected from patients with chronic obstructive pulmonary disease (COPD), current epidemiological data are conflicting. This could lead to a reduction of precautionary measures in these patients, in the context of a particularly complex global health crisis. Most COPD patients have a long history of smoking or exposure to other harmful particles or gases, capable of impairing pulmonary defences even years after the absence of exposure. Moreover, COPD is characterized by an ongoing immune dysfunction, which affects both pulmonary and systemic cellular and molecular inflammatory mediators. Consequently, increased susceptibility to viral respiratory infections have been reported in COPD, often worsened by bacterial co-infections and leading to serious clinical outcomes. The present paper is an up-to-date review that discusses the available research regarding the implications of coronavirus infection in COPD. Although validation in large studies is still needed, COPD likely increases SARS-CoV-2 susceptibility and increases COVID-19 severity. Hence, specific mechanisms to monitor and assess COPD patients should be addressed in the current pandemic.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Laboratory of Cellular and Molecular PathologyFacultad de Ciencias de la SaludInstituto de Ciencias BiomédicasUniversidad Autónoma de ChileTalcaChile
| |
Collapse
|
6
|
Kelly FJ, Fussell JC. Global nature of airborne particle toxicity and health effects: a focus on megacities, wildfires, dust storms and residential biomass burning. Toxicol Res (Camb) 2020; 9:331-345. [PMID: 32905302 PMCID: PMC7467248 DOI: 10.1093/toxres/tfaa044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Since air pollutants are difficult and expensive to control, a strong scientific underpinning to policies is needed to guide mitigation aimed at reducing the current burden on public health. Much of the evidence concerning hazard identification and risk quantification related to air pollution comes from epidemiological studies. This must be reinforced with mechanistic confirmation to infer causality. In this review we focus on data generated from four contrasting sources of particulate air pollution that result in high population exposures and thus where there remains an unmet need to protect health: urban air pollution in developing megacities, household biomass combustion, wildfires and desert dust storms. Taking each in turn, appropriate measures to protect populations will involve advocating smart cities and addressing economic and behavioural barriers to sustained adoption of clean stoves and fuels. Like all natural hazards, wildfires and dust storms are a feature of the landscape that cannot be removed. However, many efforts from emission containment (land/fire management practices), exposure avoidance and identifying susceptible populations can be taken to prepare for air pollution episodes and ensure people are out of harm's way when conditions are life-threatening. Communities residing in areas affected by unhealthy concentrations of any airborne particles will benefit from optimum communication via public awareness campaigns, designed to empower people to modify behaviour in a way that improves their health as well as the quality of the air they breathe.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
7
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
8
|
Forman HJ, Finch CE. A critical review of assays for hazardous components of air pollution. Free Radic Biol Med 2018; 117:202-217. [PMID: 29407794 PMCID: PMC5845809 DOI: 10.1016/j.freeradbiomed.2018.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
Increased mortality and diverse morbidities are globally associated with exposure to ambient air pollution (AAP), cigarette smoke (CS), and household air pollution (HAP). The AAP-CS-HAP aerosols present heterogeneous particulate matter (PM) of diverse chemical and physical characteristics. Some epidemiological models have assumed the same health hazards by PM weight for AAP, CS, and HAP regardless of the composition. While others have recognized that biological activities and toxicity will vary with components, we focus particularly on oxidation because of its major role in assay outcomes. Our review of PM assays considers misinterpretations of some chemical measures used for oxidative activity. Overall, there is low consistency across chemical and cell-based assays for oxidative and inflammatory activity. We also note gaps in understanding how much airborne PM of various sizes enter cells and organs. For CS, the body burden per cigarette may be much below current assumptions. Synergies shown for health hazards of AAP and CS suggest crosstalk in detoxification pathways mediated by AHR, NF-κB, and Nrf2. These complex genomic and biochemical interactions frustrate resolution of the toxicity of specific AAP components. We propose further strategies based on targeted gene expression based on cell-type differences.
Collapse
Affiliation(s)
- Henry Jay Forman
- Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, United States; School of Natural Sciences, University of California, Merced, CA, United States.
| | - Caleb Ellicott Finch
- Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, United States; Dornsife College, The University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Capistrano SJ, van Reyk D, Chen H, Oliver BG. Evidence of Biomass Smoke Exposure as a Causative Factor for the Development of COPD. TOXICS 2017; 5:E36. [PMID: 29194400 PMCID: PMC5750564 DOI: 10.3390/toxics5040036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease of the lungs characterised by chronic inflammation, obstruction of airways, and destruction of the parenchyma (emphysema). These changes gradually impair lung function and prevent normal breathing. In 2002, COPD was the fifth leading cause of death, and is estimated by the World Health Organisation (WHO) to become the third by 2020. Cigarette smokers are thought to be the most at risk of developing COPD. However, recent studies have shown that people with life-long exposure to biomass smoke are also at high risk of developing COPD. Most common in developing countries, biomass fuels such as wood and coal are used for cooking and heating indoors on a daily basis. Women and children have the highest amounts of exposures and are therefore more likely to develop the disease. Despite epidemiological studies providing evidence of the causative relationship between biomass smoke and COPD, there are still limited mechanistic studies on how biomass smoke causes, and contributes to the progression of COPD. This review will focus upon why biomass fuels are used, and their relationship to COPD. It will also suggest methodological approaches to model biomass exposure in vitro and in vivo.
Collapse
Affiliation(s)
- Sarah J Capistrano
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia.
| | - David van Reyk
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia.
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia.
- Emphysema Center, Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia.
| |
Collapse
|
10
|
Ding T, Lambert LA, Aronoff DM, Osteen KG, Bruner-Tran KL. Sex-Dependent Influence of Developmental Toxicant Exposure on Group B Streptococcus-Mediated Preterm Birth in a Murine Model. Reprod Sci 2017; 25:662-673. [PMID: 29153057 DOI: 10.1177/1933719117741378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infectious agents are a significant risk factor for preterm birth (PTB); however, the simple presence of bacteria is not sufficient to induce PTB in most women. Human and animal data suggest that environmental toxicant exposures may act in concert with other risk factors to promote PTB. Supporting this "second hit" hypothesis, we previously demonstrated exposure of fetal mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to an increased risk of spontaneous and infection-mediated PTB in adult animals. Surprisingly, adult F1males also confer an enhanced risk of PTB to their control partners. Herein, we used a recently established model of ascending group B Streptococcus (GBS) infection to explore the impact of a maternal versus paternal developmental TCDD exposure on infection-mediated PTB in adulthood. Group B Streptococcus is an important contributor to PTB in women and can have serious adverse effects on their infants. Our studies revealed that although gestation length was reduced in control mating pairs exposed to low-dose GBS, dams were able to clear the infection and bacterial transmission to pups was minimal. In contrast, exposure of pregnant F1females to the same GBS inoculum resulted in 100% maternal and fetal mortality. Maternal health and gestation length were not impacted in control females mated to F1males and exposed to GBS; however, neonatal survival was reduced compared to controls. Our data revealed a sex-dependent impact of parental TCDD exposure on placental expression of Toll-like receptor 2 and glycogen production, which may be responsible for the differential impact on fetal and maternal outcomes in response to GBS infection.
Collapse
Affiliation(s)
- Tianbing Ding
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren A Lambert
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Aronoff
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin G Osteen
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|