1
|
Becker P, Ciesielska-Wrόbel I. Performance of Fabrics with 3D-Printed Photosensitive Acrylic Resin on the Surface. Polymers (Basel) 2024; 16:486. [PMID: 38399864 PMCID: PMC10891750 DOI: 10.3390/polym16040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Additive manufacturing (AM), also known as three-dimensional printing (3DP), has been widely applied to various fields and industries, including automotive, healthcare, and rapid prototyping. This study evaluates the effects of 3DP on textile properties. The usability of a textile and its durability are determined by its strength, washability, colorfastness to light, and abrasion resistance, among other traits, which may be impacted by the application of 3DP on the fabric's surface. This study examines the application of photosensitive acrylic resin on two fabric substrates: 100% cotton and 100% polyester white woven fabrics made of yarns with staple fibers. A simple alphanumeric text was translated into braille and the braille dots were 3D printed onto both fabrics. The color of the printed photosensitive acrylic resin was black, and it was an equal mixture of VeroCyanV, VeroYellowV, and VeroMagentaV. The 3D-printed design was the same on both fabrics and was composed of braille dots with a domed top. Both of the 3DP fabrics passed the colorfastness to washing test with no transfer or color change, but 3D prints on both fabrics showed significant color change during the colorfastness to light test. The tensile strength tests indicated an overall reduction in strength and elongation when the fabrics had 3DP on their surface. An abrasion resistance test revealed that the resin had a stronger adhesion to the cotton than to the polyester, but both resins were removed from the fabric with the abrader. These findings suggest that while 3DP on textiles offers unique possibilities for customization and design, mechanical properties and color stability trade-offs need to be considered. Further evaluation of textiles and 3D prints of textiles and their performance in areas such as colorfastness and durability are warranted to harness the full potential of this technology in the fashion and textile industry.
Collapse
Affiliation(s)
| | - Izabela Ciesielska-Wrόbel
- Department of Textiles, Fashion Merchandising and Design, College of Business, University of Rhode Island, 55 Lower College Road, Kingston, RI 02881, USA;
| |
Collapse
|
2
|
Johnson W, Bergfeld WF, Belsito DV, Cohen DE, Klaassen CD, Liebler DC, Marks JG, Peterson LA, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Methacrylate Ester Monomers. Int J Toxicol 2023; 42:61S-73S. [PMID: 37794531 DOI: 10.1177/10915818231204572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 2005, along with updated information regarding product types and concentrations of use, and confirmed that these 22 methacrylate ester monomers are safe as used in nail enhancement products in the practices of use and concentration as described in this report, when skin contact is avoided.
Collapse
Affiliation(s)
- Wilbur Johnson
- Cosmetic Ingredient Review Former Senior Scientific Analyst/Writer
| | | | | | | | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
3
|
Köck H, Striegl B, Kraus A, Zborilova M, Christiansen S, Schäfer N, Grässel S, Hornberger H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering (Basel) 2023; 10:767. [PMID: 37508794 PMCID: PMC10376441 DOI: 10.3390/bioengineering10070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.
Collapse
Affiliation(s)
- Hannah Köck
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Birgit Striegl
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| | - Annalena Kraus
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Magdalena Zborilova
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Christiansen
- Institute for Nanotechnology and Correlative Microscopy eV INAM, 91301 Forchheim, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, 93053 Regensburg, Germany
- Department of Orthopaedic Surgery, University of Regensburg, 93053 Regensburg, Germany
| | - Helga Hornberger
- Biomaterials Laboratory, Faculty of Mechanical Engineering, Ostbayerische Technische Hochschule (OTH), 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), Ostbayerische Technische Hochschule (OTH) and University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Anticancer Properties of Plectranthus ornatus-Derived Phytochemicals Inducing Apoptosis via Mitochondrial Pathway. Int J Mol Sci 2022; 23:ijms231911653. [PMID: 36232954 PMCID: PMC9569850 DOI: 10.3390/ijms231911653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Since cancer treatment by radio- and chemotherapy has been linked to safety concerns, there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants represent promising candidates. The current study investigates the anticancer features of halimane (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7 activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced MMP (ΔΨm) and mitochondrial copy numbers. They also changed the expression of pro- and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in in vivo test for the compounds tested. The potential mechanism of action may have been associated with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway; however, further in vivo research is needed to understand the mechanisms of action and potential of these compounds.
Collapse
|
5
|
Tangpothitham S, Pongprueksa P, Inokoshi M, Mitrirattanakul S. Effect of post-polymerization with autoclaving treatment on monomer elution and mechanical properties of 3D-printing acrylic resin for splint fabrication. J Mech Behav Biomed Mater 2021; 126:105015. [PMID: 34896766 DOI: 10.1016/j.jmbbm.2021.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate the effect of post-treatment autoclaving on monomer elution and mechanical properties of three-dimensionally (3D) printed resin for splint fabrication. METHODS Photopolymer resin specimens (Dental LT Clear) were 3D-printed and processed according to the manufacturer's instructions. The specimens were randomly divided to different post-treatment protocols: water storage, autoclaving at different temperatures (121 °C or 132 °C), times (4 or 30 min) and no treatment as a control. The elution of UDMA, HEMA, and EGDMA monomers was determined using high-performance liquid chromatography (HPLC) by immersing the specimens in 75% ethanol for 72 h. The flexural modulus, surface microhardness and linear dimensional changes were measured. The monomer elution and flexural modulus were statistically analyzed using Welch's ANOVA followed by Dunnett's T3 tests, while the surface microhardness and dimensional changes were analyzed using one-way ANOVA followed by Bonferroni tests (α = 0.05). RESULTS The overall monomer elution concentrations were significantly highest for the control group and lowest for specimens treated in an autoclave at 132 °C for 4 min. The flexural modulus was not significantly different between all groups. The surface microhardness was significantly higher for all autoclaved groups than the control and water storage groups. The linear expansion was significantly higher after post-treatment autoclaving in contrast to water storage. SIGNIFICANCE/CONCLUSIONS Post-polymerization autoclave treatment of the 3D-printed resin reduced monomer elution and improved surface microhardness without deteriorating the flexural modulus. Post-treatment with an autoclave at 132 °C for 4 min can be recommended for 3D-printed resin for splint fabrication.
Collapse
Affiliation(s)
- Sakarin Tangpothitham
- Department of Masticatory Sciences, Faculty of Dentistry, Mahidol University, Thailand; Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Thailand
| | - Pong Pongprueksa
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Thailand
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
6
|
Mansurnezhad R, Ghasemi-Mobarakeh L, Coclite AM, Beigi MH, Gharibi H, Werzer O, Khodadadi-Khorzoughi M, Nasr-Esfahani MH. Fabrication, characterization and cytocompatibility assessment of gelatin nanofibers coated with a polymer thin film by initiated chemical vapor deposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110623. [PMID: 32204065 DOI: 10.1016/j.msec.2019.110623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/22/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
The presence of various functional groups in the structure of gelatin nanofibers (GNFs) has made it a suitable candidate for biomedical applications, yet its fast dissolution in aqueous media has been a real challenge for years. In the present work, we propose an efficient procedure to improve the durability of the GNFs. The electrospun GNFs were coated with poly(ethylene glycol dimethacrylate) (pEGDMA) using initiated chemical vapor deposition (iCVD) as a completely dry polymerization method. Morphological and chemical analysis revealed that an ultrathin layer formed around nanofibers (iCVD-GNFs) which has covalently bonded to gelatin chains. Against the instant dissolution of GNFs, the in vitro biodegradability test showed the iCVD-GNFs, to a large extent, preserve their morphology after 14 days of immersion and did not lose its integrity even after 31 days. In vitro cell culture studies, also, revealed cytocompatibility of the iCVD-GNFs for human fibroblast cells (hFC), as well as higher cell proliferation on the iCVD-GNFs compared to control made from tissue culture plate (TCP). Furthermore, contact angle measurements indicated that the hydrophilic GNFs became hydrophobic after the iCVD, yet FE-SEM images of cell-seeded iCVD-GNFs showed satisfactory cell adhesion. Taken together, the proposed method paves a promising way for the production of water-resistant GNFs utilized in biomedical applications; for instance, tissue engineering scaffolds and wound dressings.
Collapse
Affiliation(s)
- Reza Mansurnezhad
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Anna Maria Coclite
- Institute for Solid State Physics, NAWI Graz, Graz University of Technology, 8010, Graz, Austria; BioTechMed, Graz, Austria.
| | - Mohammad-Hossein Beigi
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, Ontario, Canada; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamidreza Gharibi
- Innovation management and Technology Commercialization Center, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Oliver Werzer
- Institute of Pharmaceutical Science, Department of Pharmaceutical Technology, University of Graz, 8010, Graz, Austria
| | | | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|