1
|
Gao Q, Li X, Huang T, Gao L, Wang S, Deng Y, Wang F, Xue X, Duan R. Angiotensin-(1-7) relieves behavioral defects and α-synuclein expression through NEAT1/miR-153-3p axis in Parkinson's disease. Aging (Albany NY) 2024; 16:206028. [PMID: 39422618 DOI: 10.18632/aging.206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 10/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, whose characteristic pathology involves progressive deficiency of dopaminergic neurons and generation of Lewy bodies (LBs). Aggregated and misfolded α-synuclein (α-syn) is the major constituent of LBs. As the newly discovered pathway of renin-angiotensin system (RAS), Angiotensin-(1-7) (Ang-(1-7)) and receptor Mas have attracted increasing attentions for their correlation with PD, but underlying mechanisms remain not fully clear. Based on above, this study established PD models of mice and primary dopaminergic neurons with AAV-hα-syn(A53T), then discussed the effects of Ang-(1-7)/Mas on α-syn level and neuronal apoptosis for these models combined with downstream long non-coding RNA (lncRNA) and microRNA (miRNA). Results showed that Ang-(1-7) alleviated behavioral impairments, rescued dopaminergic neurons loss and lowered α-syn expression in substantia nigra of hα-syn(A53T) overexpressed PD mice. We also discovered that Ang-(1-7) decreased level of α-syn and apoptosis in the hα-syn(A53T) overexpressed dopaminergic neurons through lncRNA NEAT1/miR-153-3p axis. Moreover, miR-153-3p level in peripheral blood is found negatively correlated with that of α-syn. In conclusion, our work not only showed neuroprotective effect and underlying mechanisms for Ang-(1-7) on α-syn in vivo and vitro, but also brought new hope on miR-153-3p and NEAT1 for diagnosis and treatment in PD.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xiaoyuan Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, P.R. China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| |
Collapse
|
2
|
Sun M, Wu C, Liu L, Gu L, Wang Z, Xu F, Zhu D. Interplay between the renin angiotensin system and oxidative stress contributes to alcohol addiction by stimulating dopamine accumulation in the mesolimbic pathway. Biochem Pharmacol 2023; 212:115578. [PMID: 37137415 DOI: 10.1016/j.bcp.2023.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The brain renin-angiotensin system (RAS) has recently been implicated in the development of substance abuse and addiction. However, the integrative roles of the two counter-regulating RAS arms, including the ACE1/Ang II/AT1R axis and the ACE2/Ang(1-7)/MasR axis, in alcohol addiction remain unclear. Using the 20% ethanol intermittent-access two-bottle-choice (IA2BC) paradigm, we observed significant alcohol preference and addictive behaviors in rats. Additionally, we observed significant disruption in the RAS and redox homeostasis in the ventral tegmental area (VTA), as indicated by upregulation of ACE1 activities, Ang II levels, AT1R expression, and glutathione disulfide contents, as well as downregulation of ACE2 activities, Ang(1-7) levels, MasR expression and glutathione content. Moreover, dopamine accumulated in the VTA and nucleus accumbens of IA2BC rats. Intra-VTA infusion of the antioxidant tempol substantially attenuated RAS imbalance and addictive behaviors. Intra-VTA infusion of the ACE1 inhibitor captopril significantly reduced oxidative stress, alcohol preference, addictive behaviors, and dopamine accumulation, whereas intra-VTA infusion of the ACE2 inhibitor MLN4760 had the opposite effects. The anti-addictive effects of the ACE2/Ang(1-7)/MasR axis were further observed using intra-VTA infusion of Ang(1-7) and a MasR-specific antagonist A779. Therefore, our findings suggest that excessive alcohol intake causes RAS imbalance via oxidative stress, and that a dysregulated RAS in the VTA contributes to alcohol addiction by stimulating oxidative stress and dopaminergic neurotransmission. Breaking the vicious cycle of RAS imbalance and oxidative stress using brain-permeable antioxidants, ACE1 inhibitors, ACE2 activators, or Ang(1-7) mimetics thus represents a promising strategy for combating alcohol addiction.
Collapse
Affiliation(s)
- Ming Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China; Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Chao Wu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Lixin Liu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Liang Gu
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Zihao Wang
- Department of Emergency Medicine, the Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Feng Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Donglin Zhu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
3
|
Bruhns RP, Sulaiman MI, Gaub M, Bae EH, Davidson Knapp RB, Larson AR, Smith A, Coleman DL, Staatz WD, Sandweiss AJ, Joseph B, Hay M, Largent-Milnes TM, Vanderah TW. Angiotensin-(1-7) improves cognitive function and reduces inflammation in mice following mild traumatic brain injury. Front Behav Neurosci 2022; 16:903980. [PMID: 35990729 PMCID: PMC9386567 DOI: 10.3389/fnbeh.2022.903980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Traumatic brain injury (TBI) is a leading cause of disability in the US. Angiotensin 1-7 (Ang-1-7), an endogenous peptide, acts at the G protein coupled MAS1 receptors (MASR) to inhibit inflammatory mediators and decrease reactive oxygen species within the CNS. Few studies have identified whether Ang-(1-7) decreases cognitive impairment following closed TBI. This study examined the therapeutic effect of Ang-(1-7) on secondary injury observed in a murine model of mild TBI (mTBI) in a closed skull, single injury model. Materials and methods Male mice (n = 108) underwent a closed skull, controlled cortical impact injury. Two hours after injury, mice were administered either Ang-(1-7) (n = 12) or vehicle (n = 12), continuing through day 5 post-TBI, and tested for cognitive impairment on days 1-5 and 18. pTau, Tau, GFAP, and serum cytokines were measured at multiple time points. Animals were observed daily for cognition and motor coordination via novel object recognition. Brain sections were stained and evaluated for neuronal injury. Results Administration of Ang-(1-7) daily for 5 days post-mTBI significantly increased cognitive function as compared to saline control-treated animals. Cortical and hippocampal structures showed less damage in the presence of Ang-(1-7), while Ang-(1-7) administration significantly changed the expression of pTau and GFAP in cortical and hippocampal regions as compared to control. Discussion These are among the first studies to demonstrate that sustained administration of Ang-(1-7) following a closed-skull, single impact mTBI significantly improves neurologic outcomes, potentially offering a novel therapeutic modality for the prevention of long-term CNS impairment following such injuries.
Collapse
Affiliation(s)
- Ryan P. Bruhns
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Maha Ibrahim Sulaiman
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Michael Gaub
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Esther H. Bae
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Rachel B. Davidson Knapp
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Anna R. Larson
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Angela Smith
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Deziree L. Coleman
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - William D. Staatz
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Alexander J. Sandweiss
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Bellal Joseph
- Department of Surgery, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Meredith Hay
- Department of Physiology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Xue X, Duan R, Zhang QQ, Wang SY, Gong PY, Yan E, Zhang YD, Jiang T. A non-peptidic MAS1 agonist AVE0991 alleviates hippocampal synaptic degeneration in rats with chronic cerebral hypoperfusion. Curr Neurovasc Res 2021; 18:343-350. [PMID: 34636310 DOI: 10.2174/1567202618666211012095210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a contributing factor for neurodegenerative diseases. As a recently identified heptapeptide of the brain renin-angiotensin system, angiotensin-(1-7) was revealed to activate its receptor MAS1 and thus ameliorated cognitive impairments in rats with CCH. Since hippocampal synaptic degeneration represents an important pathological basis of cognitive deficits, we hypothesize that activation of MAS1-mediated signaling may alleviate CCH-induced synaptic degeneration in the hippocampus. METHODS In this study, we tested this hypothesis and uncovered the underlying mechanisms in a rat model of CCH induced by bilateral common carotid artery ligation surgery. At 1 week after the surgery, rats received a daily intraperitoneal injection of vehicle or a non-peptidic MAS1 agonist AVE0991 for 8 weeks. During this procedure, cerebral blood flow (CBF) was recorded. The levels of MAS1, amyloid-β (Aβ), neuroinflammatory cytokines, glial cell markers and synaptophysin in the hippocampus were assessed at the end of the treatment period. RESULTS We showed that AVE0991 significantly alleviated hippocampal synaptic degeneration in rats with CCH. This protection might be achieved by facilitating CBF recovery, reducing hippocampal Aβ levels and suppressing neuroinflammatory responses. CONCLUSIONS These findings indicate that MAS1-mediated signaling may represent a novel therapeutic target for CCH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Qiao-Quan Zhang
- Department of Pathology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029. China
| | - Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| |
Collapse
|
5
|
Gao Q, Chen R, Wu L, Huang Q, Wang XX, Tian YY, Zhang YD. Angiotensin-(1-7) reduces α-synuclein aggregation by enhancing autophagic activity in Parkinson's disease. Neural Regen Res 2021; 17:1138-1145. [PMID: 34558543 PMCID: PMC8552854 DOI: 10.4103/1673-5374.324854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal accumulation of α-synuclein contributes to the formation of Lewy bodies in the substantia nigra, which is considered the typical pathological hallmark of Parkinson's disease. Recent research indicates that angiotensin-(1-7) plays a crucial role in several neurodegenerative disorders, including Parkinson's disease, but the underlying mechanisms remain elusive. In this study, we used intraperitoneal administration of rotenone to male Sprague-Dawley rats for 4 weeks to establish a Parkinson's disease model. We investigated whether angiotensin-(1-7) is neuroprotective in this model by continuous administration of angiotensin-(1-7) into the right substantia nigra for 4 weeks. We found that angiotensin-(1-7) infusion relieved characteristic parkinsonian behaviors and reduced α-synuclein aggregation in the substantia nigra. Primary dopaminergic neurons were extracted from newborn Sprague-Dawley rat substantia nigras and treated with rotenone, angiotensin-(1-7), and/or the Mas receptor blocker A-779 for 24 hours. After binding to the Mas receptor, angiotensin-(1-7) attenuated apoptosis and α-synuclein aggregation in rotenone-treated cells. Primary dopaminergic neurons were also treated with angiotensin-(1-7) and/or the autophagy inhibitor 3-methyladenine for 24 hours. Angiotensin-(1-7) increased α-synuclein removal and increased the autophagy of rotenone-treated cells. We conclude that angiotensin-(1-7) reduces α-synuclein aggregation by alleviating autophagy dysfunction in Parkinson's disease. Therefore, the angiotensin-(1-7)/Mas receptor axis plays an important role in the pathogenesis of Parkinson's disease and angiotensin-(1-7) has potential therapeutic value for Parkinson's disease. All experiments were approved by the Biological Research Ethics Committee of Nanjing First Hospital (approval No. DWSY-2000932) in January 2020.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi-Xi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Antiepileptic effects of long-term intracerebroventricular infusion of angiotensin-(1-7) in an animal model of temporal lobe epilepsy. Clin Sci (Lond) 2021; 134:2263-2277. [PMID: 32803259 DOI: 10.1042/cs20200514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most frequent type of epilepsy and is often refractory to pharmacological treatment. In this scenario, extensive research has identified components of the renin-angiotensin system (RAS) as potential therapeutic targets. Therefore, the aim of the present study was to evaluate the effects of long-term treatment with angiotensin-(1-7) [Ang-(1-7)] in male Wistar rats with TLE induced by pilocarpine (PILO). Rats with TLE were submitted to intracerebroventricular (icv) infusion of Ang-(1-7) (200 ng/kg/h) for 28 days, starting at the first spontaneous motor seizure (SMS). Body weight, food intake, and SMS were evaluated daily. Behavioral tests and hippocampal protein levels were also evaluated at the end of the treatment. Ang-(1-7) treatment reduced the frequency of SMS and attenuated low anxiety levels, increased locomotion/exploration, and reduced body weight gain that was induced by TLE. Moreover, Ang-(1-7) positively regulated the hippocampal levels of antioxidant protein catalase and antiapoptotic protein B-cell lymphoma 2 (Bcl-2), as well as mammalian target of rapamycin (mTOR) phosphorylation, which were reduced by TLE. The hippocampal up-regulation of angiotensin type 1 receptor induced by TLE was also attenuated by Ang-(1-7), while the Mas receptor (MasR) was down-regulated compared with epilepsy. These data show that Ang-(1-7) presents an antiepileptic effect, increasing neuroprotection markers and reducing SMS frequency, body weight, and behavior impairments found in TLE. Therefore, Ang-(1-7) is a promising coadjutant therapeutic option for the treatment of TLE.
Collapse
|
7
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Del Fabbro L, Rossito Goes A, Jesse CR, de Gomes MG, Cattelan Souza L, Lobo Ladd FV, Lobo Ladd AAB, Nunes Arantes RV, Reis Simionato A, Oliveira MS, Furian AF, Boeira SP. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson's disease. Neurosci Lett 2019; 706:158-163. [PMID: 31121284 DOI: 10.1016/j.neulet.2019.05.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder that severely affects quality of life of patients and their families. The flavonoid chrysin (5,7-dihydroxylflavone) is a naturally occurring flavone with several pharmacological activities, including anti-inflammatory and anti-oxidative. We investigated the effects of a 28-day chrysin treatment (10 mg/kg/day, i.g.) on a model of PD induced by 6-OHDA in aged (20-month old) mice. We found a protective effect of chrysin on behavioral and cognitive alterations (rotational behavior, passive avoidance and Barnes maze tests), nitric oxide synthesis (NOx), lipid peroxidation (HNE), glutathione levels (GSH), reactive species levels (RS), neuroinflammation (interleukin-1 beta - IL-1β and tumor necrosis factor alpha - TNF-α), Na+, K+-ATPase and nicotinamide adenine dinucleotide phosphate oxidase activity (NADPH oxidase) activities. In addition, chrysin protected against changes in striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. In conclusion, chrysin improved several behavioral, cognitive and neurochemical parameters in a relevant preclinical model of PD in aged mice.
Collapse
Affiliation(s)
- Lucian Del Fabbro
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - André Rossito Goes
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa Campus, Uruguaiana, RS, Brazil
| | - Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Fernando V Lobo Ladd
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Aliny A B Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy, Department of Surgery, College of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil
| | | | - Astor Reis Simionato
- Laboratory of Optimization of Sports Performance Human (LaBOEH), São Paulo State University, Bauru, SP, Brazil
| | - Mauro Schneider Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology (LABNEURO), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Laboratory of Pharmacology, Mycotoxins and Toxicology (LAFARMT), Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological evaluations applied to Bioactive Molecules (Laftambio Pampa), Federal University of Pampa, Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| |
Collapse
|