1
|
Wang K, Xu X, Shan Q, Ding R, Lyu Q, Huang L, Chen X, Han X, Yang Q, Sang X, Peng M, Hao M, Cao G. Integrated gut microbiota and serum metabolomics reveal the protective effect of oleanolic acid on liver and kidney-injured rats induced by Euphorbia pekinensis. Phytother Res 2024; 38:4877-4892. [PMID: 36426741 DOI: 10.1002/ptr.7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Euphorbia pekinensis (EP) is a commonly used Chinese medicine treating edema with potential hepatorenal toxicity. However, its toxic mechanism and prevention are remained to be explored. Oleanolic acid (OA) is a triterpene acid with potential hepatorenal protective activities. We investigated the protective effect and potential mechanism of OA on EP-induced hepatorenal toxicity. In this study, rats were given total diterpenes from EP (TDEP, 16 mg/kg) combined with OA (10, 20, 40 mg/kg) by gavage for 4 weeks. The results showed that TDEP administration could lead to a 3-4-fold increasement in hepatorenal biochemical parameters with histopathological injuries, while OA treatment could ameliorate them in a dose-dependent manner. At microbial and metabolic levels, intestinal flora and host metabolism were perturbed after TDEP administration. The disturbance of bile acid metabolism was the most significant metabolic pathway, with secondary bile acids increasing while conjugated bile acids decreased. OA treatment can improve the disorder of intestinal flora and metabolic bile acid spectrum. Further correlation analysis screened out that Escherichia-Shigella, Phascolarctobacterium, Acetatifactor, and Akkermansia were closely related to the bile acid metabolic disorder. In conclusion, oleanolic acid could prevent hepatorenal toxicity induced by EP by regulating bile acids metabolic disorder via intestinal flora improvement.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lyu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lichuang Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Ma H, Lee GR, Park JS, Lee J, Wang F, Ma Y, Sui GY, Rustamov N, Kim SH, Jung YS, Yoo HS, Han SB, Hong JT, Yun J, Roh YS. Cocaine-derived hippuric acid activates mtDNA-STING signaling in alcoholic liver disease: Implications for alcohol and cocaine co-abuse. Cell Biol Toxicol 2024; 40:71. [PMID: 39147926 PMCID: PMC11327214 DOI: 10.1007/s10565-024-09901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.
Collapse
Affiliation(s)
- Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Gyu-Rim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Nodir Rustamov
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| |
Collapse
|
3
|
Meijers B, Zadora W, Lowenstein J. A Historical Perspective on Uremia and Uremic Toxins. Toxins (Basel) 2024; 16:227. [PMID: 38787079 PMCID: PMC11126090 DOI: 10.3390/toxins16050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Uremia, also known as uremic syndrome, refers to the clinical symptoms in the final stage of renal failure. The definition of the term has changed over time due to an improved comprehension of the kidney's function and the advancement of dialysis technology. Here, we aim to present an overview of the various concepts that have developed regarding uremia throughout the years. We provide a comprehensive review of the historical progression starting from the early days of Kolff and his predecessors, continuing with the initial research conducted by Niwa et al., and culminating in the remote sensing hypothesis of Nigam. Additionally, we explore the subsequent investigation into the function of these toxins as signaling molecules in various somatic cells.
Collapse
Affiliation(s)
- Björn Meijers
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Ward Zadora
- Nephrology and Transplantation Unit, University Hospitals Leuven, 30000 Leuven, Belgium; (B.M.); (W.Z.)
- Laboratory of Nephrology, Katholieke Universiteit Leuven, 30000 Leuven, Belgium
| | - Jerome Lowenstein
- Nephrology Division, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
4
|
Boopathi S, Priya PS, Haridevamuthu B, Nayak SPRR, Chandrasekar M, Arockiaraj J, Jia AQ. Expanding germ-organ theory: Understanding non-communicable diseases through enterobacterial translocation. Pharmacol Res 2023; 194:106856. [PMID: 37460001 DOI: 10.1016/j.phrs.2023.106856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China; Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
5
|
Bile Acid-Drug Interaction via Organic Anion-Transporting Polypeptide 4C1 Is a Potential Mechanism of Altered Pharmacokinetics of Renally Excreted Drugs. Int J Mol Sci 2022; 23:ijms23158508. [PMID: 35955643 PMCID: PMC9369231 DOI: 10.3390/ijms23158508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid−drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics.
Collapse
|
6
|
Zhong XY, Guo Y, Fan Z. Increased level of free-circulating MtDNA in maintenance hemodialysis patients: Possible role in systemic inflammation. J Clin Lab Anal 2022; 36:e24558. [PMID: 35708020 PMCID: PMC9279998 DOI: 10.1002/jcla.24558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background Mitochondrial DNA (MtDNA) exposed to the extracellular space due to cell death and stress has immunostimulatory properties. However, the clinical significance of circulating MtDNA in maintenance hemodialysis (MHD) patients and the precise mechanism of its emergence have yet to be investigated. Methods This cross‐sectional study consisted of 52 MHD patients and 32 age‐ and sex‐matched healthy controls. MHD patients were further categorized into high and low circulating cell‐free MtDNA (ccf‐MtDNA) groups based on the median value. Copy number of MtDNA was quantified using TaqMan‐based qPCR. Plasma cytokines were measured using ELISA kits. Reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in peripheral blood mononuclear cells (PBMCs) were detected using DCFH‐DA or JC‐1 staining. Results The copy numbers of ccf‐MtDNA in patients with MHD were higher than those in healthy controls, and these alterations were correlated with changes of cytokines TNF‐α and IL‐6. Adjusted model in multivariate analysis showed that the presence of anuria and longer dialysis vintage were independently associated with higher levels of ccf‐MtDNA. Meanwhile, although not statistically significant, an inverse correlative trend between urinary MtDNA and ccf‐MtDNA was observed in patients with residual urine. Afterward, using PBMCs as surrogates for mitochondria‐rich cells, we found that patients in the high ccf‐MtDNA group exhibited a significantly higher ROS production and lower Δψm in cells. Conclusions Our data suggested that changes in ccf‐MtDNA correlate with the degree of inflammatory status in MHD patients, and that the excessive MtDNA may be caused by mitochondrial dysfunction and reduced urinary MtDNA excretion.
Collapse
Affiliation(s)
- Xiao-Yi Zhong
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Deng M, Li X, Li W, Gong J, Zhang X, Ge S, Zhao L. Short-Chain Fatty Acids Alleviate Hepatocyte Apoptosis Induced by Gut-Derived Protein-Bound Uremic Toxins. Front Nutr 2021; 8:756730. [PMID: 34712690 PMCID: PMC8545797 DOI: 10.3389/fnut.2021.756730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized with the influx of uremic toxins, which impairs the gut microbiome by decreasing beneficial bacteria that produce short-chain fatty acids (SCFAs) and increasing harmful bacteria that produce gut-derived protein-bound uremic toxins (PBUTs). This study aimed to assess the proapoptotic effects of three major gut-derived PBUTs in hepatocytes, and the effects of SCFAs on apoptosis phenotype in vitro. HepG2 (human liver carcinoma cells) and THLE-2 (immortalized human normal liver cells) cell line were incubated with 0, 2, 20, 200, 2000 μM p-cresol sulfate (PCS), indoxyl sulfate (IS), and hippuric acid (HA), respectively, for 24 h. Flow cytometry analysis indicated that three uremic toxins induced varying degrees of apoptosis in hepatocytes and HA represented the highest efficacy. These phenotypes were further confirmed by western blot of apoptosis protein expression [Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax)]. Human normal hepatocytes (THLE-2) are more sensitive to PBUTs-induced apoptosis compared with human hepatoma cells (HepG2). Mechanistically, extracellular HA could enter hepatocytes, increase reactive oxygen species (ROS) generation, and decrease mitochondrial membrane potential dose-dependently in THLE-2 cells. Notably, coculture with SCFAs (acetate, propionate, butyrate) for 24 h significantly improved HA-induced apoptosis in THLE-2 cells, and propionate (500 μM) represented the highest efficacy. Propionate reduction of apoptosis was associated with improving mitochondria dysfunction and oxidative stress in a manner involving reducing Caspase-3 expression, ROS production, and increasing the Bcl-2/Bax level. As such, our studies validated PBUTs accumulation might be an important cause of liver dysfunction in patients with CKD, and supplementation of SCFAs might be a viable way to protect the liver for patients with CKD.
Collapse
Affiliation(s)
- Mingjuan Deng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xingqi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weiwei Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiahui Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021; 9:biomedicines9101405. [PMID: 34680522 PMCID: PMC8533451 DOI: 10.3390/biomedicines9101405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and is characterized by exaggerated lipid accumulation, inflammation and even fibrosis. It has been shown that NAFLD increases the risk of other chronic diseases, particularly chronic kidney disease (CKD). Lipid in excess could lead to liver and kidney lesions and even end-stage disease through diverse pathways. Dysregulation of lipid uptake, oxidation or de novo lipogenesis contributes to the toxic effects of ectopic lipids which promotes the development and progression of NAFLD and CKD via triggering oxidative stress, apoptosis, pro-inflammatory and profibrotic responses. Importantly, dyslipidemia and release of pro-inflammatory cytokines caused by NAFLD (specifically, nonalcoholic steatohepatitis) are considered to play important roles in the pathological progression of CKD. Growing evidence of similarities between the pathogenic mechanisms of NAFLD and those of CKD has attracted attention and urged researchers to discover their common therapeutic targets. Here, we summarize the current understanding of molecular aberrations underlying the lipid metabolism of NAFLD and CKD and clinical evidence that suggests the relevance of these pathways in humans. This review also highlights the orchestrated inter-organ cross-talk in lipid disorders, as well as therapeutic options and opportunities to counteract NAFLD and CKD.
Collapse
|
11
|
Saar-Kovrov V, Zidek W, Orth-Alampour S, Fliser D, Jankowski V, Biessen EAL, Jankowski J. Reduction of protein-bound uraemic toxins in plasma of chronic renal failure patients: A systematic review. J Intern Med 2021; 290:499-526. [PMID: 33792983 DOI: 10.1111/joim.13248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Protein-bound uraemic toxins (PBUTs) accumulate in patients with chronic kidney disease and impose detrimental effects on the vascular system. However, a unanimous consensus on the most optimum approach for the reduction of plasma PBUTs is still lacking. METHODS In this systematic review, we aimed to identify the most efficient clinically available plasma PBUT reduction method reported in the literature between 1980 and 2020. The literature was screened for clinical studies describing approaches to reduce the plasma concentration of known uraemic toxins. There were no limits on the number of patients studied or on the duration or design of the studies. RESULTS Out of 1274 identified publications, 101 studies describing therapeutic options aiming at the reduction of PBUTs in CKD patients were included in this review. We stratified the studies by the PBUTs and the duration of the analysis into acute (data from a single procedure) and longitudinal (several treatment interventions) trials. Reduction ratio (RR) was used as the measure of plasma PBUTs lowering efficiency. For indoxyl sulphate and p-cresyl sulphate, the highest RR in the acute studies was demonstrated for fractionated plasma separation, adsorption and dialysis system. In the longitudinal trials, supplementation of haemodialysis patients with AST-120 (Kremezin®) adsorbent showed the highest RR. However, no superior method for the reduction of all types of PBUTs was identified based on the published studies. CONCLUSIONS Our study shows that there is presently no technique universally suitable for optimum reduction of all PBUTs. There is a clear need for further research in this field.
Collapse
Affiliation(s)
- V Saar-Kovrov
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W Zidek
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Orth-Alampour
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - D Fliser
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Internal Medicine IV - Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - V Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany
| | - E A L Biessen
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J Jankowski
- From the, Institute for Molecular Cardiovascular Research IMCAR, University hospital, Aachen, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Rong Y, Kiang TKL. Characterizations of Human UDP-Glucuronosyltransferase Enzymes in the Conjugation of p-Cresol. Toxicol Sci 2021; 176:285-296. [PMID: 32421801 DOI: 10.1093/toxsci/kfaa072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p-Cresol is a uremic toxin that is formed by intestinal microbiota and extensively conjugated by first-pass metabolism. p-Cresol glucuronide exerts various forms of cellular toxicity in vitro and is accumulated in the plasma of subjects with kidney disease, where associations with adverse cardiovascular and renal outcomes are evident. The objective of this study was to determine the contributions of human UDP-glucuronosyltransferase (UGT) enzymes in the formation of p-cresol glucuronide. Utilizing commonly expressed hepatic or renal human recombinant UGTs (ie, hrUGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, and 2B17), hrUGT1A6 and hrUGT1A9 exhibited the highest catalytic activities in the generation of p-cresol glucuronide. The kinetics of p-cresol glucuronide formation in hrUGT1A6 and pooled human liver microsomes were best described by the Hill equation and in hrUGT1A9 and pooled human kidney microsomes by substrate inhibition. Using inhibitory and selective UGT inhibitors (ie, acetaminophen or amentoflavone for UGT1A6 and niflumic acid for UGT1A9), UGT1A6 was identified the predominant enzyme responsible for p-cresol glucuronide production in pooled human liver (78.4%-81.3% contribution) and kidney (54.3%-62.9%) microsomes, whereas UGT1A9 provided minor contributions (2.8% and 35.5%, respectively). The relative contributions of UGT1A6 (72.6 ± 11.3%, mean ± SD) and UGT1A9 (5.7 ± 4.1%) in individual human liver microsomes from 12 adult donors were highly variable, where an inverse association (R = -.784, p = .003) between UGT1A6 contribution and UGT1A9 probe substrate activity (ie, mycophenolic acid) was evident. Our novel findings provide valuable tools for conducting further mechanistic studies and for designing clinical interventions to mitigate the toxicities associated with p-cresol glucuronide.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
13
|
Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021; 13:pharmaceutics13060857. [PMID: 34207666 PMCID: PMC8228354 DOI: 10.3390/pharmaceutics13060857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The toxicological effects of p-cresol have primarily been attributed to its metabolism products; however, very little human data are available in the key organ (i.e., liver) responsible for the generation of these metabolites. Experiments were conducted in HepaRG cells utilizing the following markers of cellular toxicity: 2′-7′-dichlorofluorescein (DCF; oxidative stress) formation, total cellular glutathione (GSH) concentration, and lactate dehydrogenase (LDH; cellular necrosis) release. Concentrations of p-cresol, p-cresol sulfate, and p-cresol glucuronide were determined using validated assays. p-Cresol exposure resulted in concentration- and time-dependent changes in DCF (EC50 = 0.64 ± 0.37 mM at 24 h of exposure) formation, GSH (EC50 = 1.00 ± 0.07 mM) concentration, and LDH (EC50 = 0.85 ± 0.14 mM) release at toxicologically relevant conditions. p-Cresol was also relatively more toxic than 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid, and hippuric acid on all markers. Although the exogenous administration of p-cresol sulfate and p-cresol glucuronide generated high intracellular concentrations of these metabolites, both metabolites were less toxic compared to p-cresol at equal-molar conditions. Moreover, p-cresol glucuronide was the predominant metabolite generated in situ from p-cresol exposure. Selective attenuation of glucuronidation (without affecting p-cresol sulfate formation, while increasing p-cresol accumulation) using independent chemical inhibitors (i.e., 0.75 mM l-borneol, 75 µM amentoflavone, or 100 µM diclofenac) consistently resulted in further increases in LDH release associated with p-cresol exposure (by 28.3 ± 5.3%, 30.0 ± 8.2% or 27.3 ± 6.8%, respectively, compared to p-cresol treatment). These novel data indicated that p-cresol was a relatively potent toxicant, and that glucuronidation was unlikely to be associated with the manifestation of its toxic effects in HepaRG cells.
Collapse
|
14
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
15
|
Rong Y, Kiang TKL. Characterization of human sulfotransferases catalyzing the formation of p-cresol sulfate and identification of mefenamic acid as a potent metabolism inhibitor and potential therapeutic agent for detoxification. Toxicol Appl Pharmacol 2021; 425:115553. [PMID: 33915121 DOI: 10.1016/j.taap.2021.115553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
p-Cresol sulfate, the primary metabolite of p-cresol, is a uremic toxin that has been associated with toxicities and mortalities. The study objectives were to i) characterize the contributions of human sulfotransferases (SULT) catalyzing p-cresol sulfate formation using multiple recombinant SULT enzymes (including the polymorphic variant SULT1A1*2), pooled human liver cytosols, and pooled human kidney cytosols; and ii) determine the potencies and mechanisms of therapeutic inhibitors capable of attenuating the production of p-cresol sulfate. Human recombinant SULT1A1 was the primary enzyme responsible for the formation of p-cresol sulfate (Km = 0.19 ± 0.02 μM [with atypical kinetic behavior at lower substrate concentrations; see text discussion], Vmax = 789.5 ± 101.7 nmol/mg/min, Ksi = 2458.0 ± 332.8 μM, mean ± standard deviation, n = 3), while SULT1A3, SULT1B1, SULT1E1, and SULT2A1 contributed negligible or minor roles at toxic p-cresol concentrations. Moreover, human recombinant SULT1A1*2 exhibited reduced enzyme activities (Km = 81.5 ± 31.4 μM, Vmax = 230.6 ± 17.7 nmol/mg/min, Ksi = 986.0 ± 434.4 μM) compared to the wild type. The sulfonation of p-cresol was characterized by Michaelis-Menten kinetics in liver cytosols (Km = 14.8 ± 3.4 μM, Vmax = 1.5 ± 0.2 nmol/mg/min) and substrate inhibition in kidney cytosols (Km = 0.29 ± 0.02 μM, Vmax = 0.19 ± 0.05 nmol/mg/min, Ksi = 911.7 ± 278.4 μM). Of the 14 investigated therapeutic inhibitors, mefenamic acid (Ki = 2.4 ± 0.1 nM [liver], Ki = 1.2 ± 0.3 nM [kidney]) was the most potent in reducing the formation of p-cresol sulfate, exhibiting noncompetitive inhibition in human liver cytosols and recombinant SULT1A1, and mixed inhibition in human kidney cytosols. Our novel findings indicated that SULT1A1 contributed an important role in p-cresol sulfonation (hence it can be considered a probe reaction) in liver and kidneys, and mefenamic acid may be utilized as a potential therapeutic agent to attenuate the generation of p-cresol sulfate as an approach to detoxification.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Tatosian DA, Yee KL, Zhang Z, Mostoller K, Paul E, Sutradhar S, Larson P, Chhibber A, Wen J, Wang YJ, Lassman M, Latham AH, Pang J, Crumley T, Gillespie A, Marricco NC, Marenco T, Murphy M, Lasseter KC, Marbury TC, Tweedie D, Chu X, Evers R, Stoch SA. A Microdose Cocktail to Evaluate Drug Interactions in Patients with Renal Impairment. Clin Pharmacol Ther 2020; 109:403-415. [PMID: 32705692 DOI: 10.1002/cpt.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Renal impairment (RI) is known to influence the pharmacokinetics of nonrenally eliminated drugs, although the mechanism and clinical impact is poorly understood. We assessed the impact of RI and single dose oral rifampin (RIF) on the pharmacokinetics of CYP3A, OATP1B, P-gp, and BCRP substrates using a microdose cocktail and OATP1B endogenous biomarkers. RI alone had no impact on midazolam (MDZ), maximum plasma concentration (Cmax ), and area under the curve (AUC), but a progressive increase in AUC with RI severity for dabigatran (DABI), and up to ~2-fold higher AUC for pitavastatin (PTV), rosuvastatin (RSV), and atorvastatin (ATV) for all degrees of RI was observed. RIF did not impact MDZ, had a progressively smaller DABI drug-drug interaction (DDI) with increasing RI severity, a similar 3.1-fold to 4.4-fold increase in PTV and RSV AUC in healthy volunteers and patients with RI, and a diminishing DDI with RI severity from 6.1-fold to 4.7-fold for ATV. Endogenous biomarkers of OATP1B (bilirubin, coproporphyrin I/III, and sulfated bile salts) were generally not impacted by RI, and RIF effects on these biomarkers in RI were comparable or larger than those in healthy volunteers. The lack of a trend with RI severity of PTV and several OATP1B biomarkers, suggests that mechanisms beyond RI directly impacting OATP1B activity could also be considered. The DABI, RSV, and ATV data suggest an impact of RI on intestinal P-gp, and potentially BCRP activity. Therefore, DDI data from healthy volunteers may represent a worst-case scenario for clinically derisking P-gp and BCRP substrates in the setting of RI.
Collapse
Affiliation(s)
| | - Ka Lai Yee
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zufei Zhang
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | - Erina Paul
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | - Anne Gillespie
- Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA
| | | | - Ted Marenco
- Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA
| | - Matthew Murphy
- Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA
| | | | | | - Donald Tweedie
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Currently Independent Consultant, Harleysville, Pennsylvania, USA
| | - Xiaoyan Chu
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | |
Collapse
|
17
|
Wang Z, Jiang H, Chen X, Song X, Xu F, Chen F, Mao Z, Gao S, Chen W. A rapid and sensitive method for simultaneous determination of eight protein-bound uremic toxins in human serum by UHPLC-MS/MS: application in assessing peritoneal dialysis. J Pharm Biomed Anal 2020; 186:113312. [PMID: 32361090 DOI: 10.1016/j.jpba.2020.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/19/2022]
Abstract
A simple, rapid, reliable and sensitive ultra-high performance liquid chromatography tandem spectrometry (UHPLC-MS/MS) method was established for determination of eight serum protein-bound uremic toxins (hippuric acid, indoxyl sulfate, indole-3-acetic acid, kynurenic acid, L-kynurenine, melatonin, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid, 4-hydroxyhippuric acid) in serum from chronic kidney disease (CKD) dialysis patients. The chromatographic separation was achieved on an Atlantis T3 column (3 μm, 2.1 mm × 100 mm) using a gradient elution with acetonitrile (phase B) and 0.1% formic acid and 10 mmol/L ammonium acetate aqueous solution (phase A). The flow rate was 0.3 mL/min with analytical time of 5 min. The pretreatment procedure was developed with a simple protein precipitation and the hydrochlorothiazide was used as internal standard. The calibration ranges were set as 156.250-20000.000 ng/mL for indoxyl sulfate, hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; 78.125-10000.000 ng/mL for L-kynurenine, indole-3-acetic acid and 4-hydroxyhippuricacid; 1.562-200.000 ng/mL for kynurenic acid; 0.078-10.000 ng/mL for melatonin. The UHPLC-MS/MS method for quantification of eight protein-bound uremic toxins was successfully developed and validated, and its clinical practicability was assessed on 81 serum samples from CKD patients.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Hong Jiang
- Department of Pharmacy. Changhai Hospital. Second Military Medical University. Shanghai 200433, PR China
| | - Xujiao Chen
- Department of Nephrology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, PR China
| | - Xinhua Song
- College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, Jiangxi Province, PR China
| | - Fengjing Xu
- Traditional Chinese medicine college, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, PR China
| | - Fangchao Chen
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Zhiguo Mao
- Division of Nephrology, Kidney Institute of CPLA, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| |
Collapse
|
18
|
Mihaila SM, Faria J, Stefens MFJ, Stamatialis D, Verhaar MC, Gerritsen KGF, Masereeuw R. Drugs Commonly Applied to Kidney Patients May Compromise Renal Tubular Uremic Toxins Excretion. Toxins (Basel) 2020; 12:toxins12060391. [PMID: 32545617 PMCID: PMC7354492 DOI: 10.3390/toxins12060391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD), the secretion of uremic toxins is compromised leading to their accumulation in blood, which contributes to uremic complications, in particular cardiovascular disease. Organic anion transporters (OATs) are involved in the tubular secretion of protein-bound uremic toxins (PBUTs). However, OATs also handle a wide range of drugs, including those used for treatment of cardiovascular complications and their interaction with PBUTs is unknown. The aim of this study was to investigate the interaction between commonly prescribed drugs in CKD and endogenous PBUTs with respect to OAT1-mediated uptake. We exposed a unique conditionally immortalized proximal tubule cell line (ciPTEC) equipped with OAT1 to a panel of selected drugs, including angiotensin-converting enzyme inhibitors (ACEIs: captopril, enalaprilate, lisinopril), angiotensin receptor blockers (ARBs: losartan and valsartan), furosemide and statins (pravastatin and simvastatin), and evaluated the drug-interactions using an OAT1-mediated fluorescein assay. We show that selected ARBs and furosemide significantly reduced fluorescein uptake, with the highest potency for ARBs. This was exaggerated in presence of some PBUTs. Selected ACEIs and statins had either no or a slight effect at supratherapeutic concentrations on OAT1-mediated fluorescein uptake. In conclusion, we demonstrate that PBUTs may compete with co-administrated drugs commonly used in CKD management for renal OAT1 mediated secretion, thus potentially compromising the residual renal function.
Collapse
Affiliation(s)
- Silvia M. Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - João Faria
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Maurice F. J. Stefens
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
| | - Dimitrios Stamatialis
- (Bio)artificial Organs, Department of Biomaterials Science and Technology, University of Twente, 7522 LW Enschede, The Netherlands;
| | - Marianne C. Verhaar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Karin G. F. Gerritsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3854 CG Utrecht, The Netherlands; (S.M.M.); (M.C.V.); (K.G.F.G.)
| | - Rosalinde Masereeuw
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3582 CX Utrecht, The Netherlands; (J.F.); (M.F.J.S.)
- Correspondence:
| |
Collapse
|
19
|
Raj D, Tomar B, Lahiri A, Mulay SR. The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacol Res 2019; 152:104617. [PMID: 31881272 DOI: 10.1016/j.phrs.2019.104617] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
Increased interest in understanding the liver-kidney axis in health and disease during the last decade unveiled multiple recent evidence that suggested a strong association of fatty liver diseases with chronic kidney disease (CKD). Low-grade systemic inflammation is thought to be the major contributing factor to the pathogenesis of CKD associated with fatty liver. However, other contributing factors largely remained unclear, for example, gut microbiota and intestinal barrier integrity. Homeostasis of the gut microbiome is very crucial for the health of an individual. Imbalance in the gut microbiota leads to various diseases like fatty liver disease and CKD. On the contrary, disease conditions can also distinctly change gut microbiota. In this review, we propose the pathogenic role of the gut-liver-kidney axis in the development and progression of CKD associated with chronic fatty liver diseases, either non-alcoholic fatty liver disease or non-alcoholic steatohepatitis in experimental models and humans. Further, we discuss the therapeutic potential and highlight the future research directions for therapeutic targeting of the gut-liver-kidney axis.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Bhawna Tomar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
20
|
Gipson GT, Carbone S, Wang J, Dixon DL, Jovin IS, Carl DE, Gehr TW, Ghosh S. Impaired Delivery of Cholesterol Effluxed From Macrophages to Hepatocytes by Serum From CKD Patients May Underlie Increased Cardiovascular Disease Risk. Kidney Int Rep 2019; 5:199-210. [PMID: 32043034 PMCID: PMC7000844 DOI: 10.1016/j.ekir.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction Although chronic kidney disease (CKD) is associated with increased risk for coronary artery disease (CAD), the underlying mechanisms are not completely defined. In the present study, we tested the hypothesis that flux of cholesterol from macrophage foam cells to liver is impaired in subjects with CKD. Methods Consecutive healthy patients, patients with at least 1 CAD risk factor, patients with established CAD, and patients with CKD stages G3 to G5 (n ≥ 15/group) were recruited prospectively. The ability of total patient serum without any modifications to (i) facilitate efflux of cholesterol from human THP1-macrophage foam cells under physiological conditions (cholesterol efflux capacity [CEC]) and (ii) to deliver this effluxed cholesterol to primary hepatocytes with physiological expression of high-density lipoprotein (HDL) receptor SR-BI (capacity to deliver cholesterol to hepatocytes [CDCH]) was evaluated. Results Although healthy patients, patients with at least 1 CAD risk factor, and patients with established CAD all showed similar CEC, patients with CKD showed significantly higher CEC. CDCH was significantly lower in all groups compared with the healthy patients; however, when corrected for higher CEC, CDCH in patients with CKD was significantly lower than in patients with CAD. CDCH correlated with age, body mass index, metabolic parameters, inflammatory markers, and kidney function markers (estimated glomerular filtration rate [eGFR], serum creatinine, and serum cystatin C). Conclusions These results suggest that aberrations in delivery of cholesterol effluxed from macrophage foam cells to liver for final elimination or the last step of reverse cholesterol transport, may underlie the increased risk of CAD in patients with CKD.
Collapse
Affiliation(s)
- Graham T Gipson
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Salvatore Carbone
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University (VCU) School of Pharmacy, Richmond, Virginia, USA
| | - Ion S Jovin
- Hunter Holmes McGuire Veterans Affairs Medical Center (VAMC), Richmond, Virginia, USA
| | - Daniel E Carl
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Todd W Gehr
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University (VCU) School of Medicine, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center (VAMC), Richmond, Virginia, USA
| |
Collapse
|
21
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|