1
|
Qiang L, Lee SH, Xiao P, Chunhui L, Lei G, Shaoli C, Tingjie Y, Guangli D, Wei X, Guofu Z. Novel detoxifier of spironolactone against triptolide-induced hepatotoxicity through inhibition of RPB1 degradation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118722. [PMID: 39182704 DOI: 10.1016/j.jep.2024.118722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triptolide is a major bioactive and toxic ingredient isolated from the traditional Chinese herb Tripterygium wilfordii (T. wilfordii) Hook F. It exhibits potent antitumor, immunosuppressive, and anti-inflammatory biological activities; however, its clinical application is hindered by severe systemic toxicity. Two preparations of T. wilfordii, including T. wilfordii glycoside tablets and T. wilfordii tablets, containing triptolide, are commonly used in clinical practice. However, their adverse side effects, particularly hepatotoxicity, limit their safe use. Therefore, it is crucial to discover potent and specific detoxification medicines for triptolide. AIM OF THE STUDY This study aimed to investigate the detoxification effects and potential mechanism of action of spironolactone on triptolide-induced hepatotoxicity to provide a potential detoxifying strategy for triptolide, thereby promoting the safe applications of T. wilfordii preparations in clinical settings. MATERIALS AND METHODS Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and crystal violet staining. Nuclear fragmentation was visualized using 4',6-diamidino-2-phenylindole (DAPI) staining, and protein expression was analyzed by Western blotting. The inhibitory effect of spironolactone on triptolide-induced hepatotoxicity was evaluated by examining the effects of spironolactone on serum alanine aminotransferase and aspartate aminotransferase levels, as well as liver pathology in a mouse model of triptolide-induced acute hepatotoxicity. Furthermore, a survival assay was performed to investigate the effects of spironolactone on the survival rate of mice exposed to a lethal dose of triptolide. The effect of spironolactone on triptolide-induced global transcriptional repression was assessed through 5-ethynyl uridine staining. RESULTS Triptolide treatment decreased the cell viability, increased the nuclear fragmentation and the cleaved caspase-3 levels in both hepatoma cells and hepatocytes. It also increased the alanine aminotransferase and aspartate aminotransferase levels, induced the hepatocyte swelling and necrosis, and led to seven deaths out of 11 mice. The above effects could be mitigated by pretreatment with spironolactone. Additionally, molecular mechanism exploration unveiled that spironolactone inhibited triptolide-induced DNA-directed RNA polymerase II subunit RPB1 degradation, consequently increased the fluorescence intensity of 5-ethynyl uridine staining for nascent RNA. CONCLUSIONS This study shows that spironolactone exhibits a potent detoxification role against triptolide hepatotoxicity, through inhibition of RPB1 degradation induced by triptolide and, in turn, retardation of global transcriptional inhibition in affected cells. These findings suggest a potential detoxification strategy for triptolide that may contribute to the safe use of T. wilfordii preparations.
Collapse
Affiliation(s)
- Li Qiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| | - Peng Xiao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Chunhui
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Guo Lei
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China.
| | - Chen Shaoli
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ye Tingjie
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Du Guangli
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xu Wei
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhu Guofu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Shan Y, Zhao J, Wei K, Jiang P, Xu L, Chang C, Xu L, Shi Y, Zheng Y, Bian Y, Zhou M, Schrodi SJ, Guo S, He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14:1282610. [PMID: 38027004 PMCID: PMC10646552 DOI: 10.3389/fphar.2023.1282610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Triptolide exposure induces oxidative stress and decrease oocyte quality in mice. Toxicon 2022; 221:106964. [DOI: 10.1016/j.toxicon.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
5
|
Maremanda KP, Sundar IK, Rahman I. Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol 2021; 45:102055. [PMID: 34214709 PMCID: PMC8258692 DOI: 10.1016/j.redox.2021.102055] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are linked to several mitochondrial alterations. Cigarette smoke (CS) alters the structure and function of mitochondria. OPA1 is the main inner mitochondrial GTPase responsible for the fusion events. OPA1 undergoes proteolytic cleavage from long to short forms during acute stress and mitophagy. However, the exact role of OPA1 isoforms and related proteins during CS-induced mitophagy and COPD is not clear. METHODS Lung tissues from non-smokers, smokers, COPD and IPF were used to determine the relative expression of OPA1 and related proteins. Additionally, we used mouse lungs from chronic (6 months) CS exposure to evaluate the status of OPA1. Primary lung fibroblasts from normal and COPD patients and naked mole rat (NMR) lung fibroblasts, human fetal lung fibroblast (HFL1), mouse embryonic fibroblast from wild type (WT), OPA1-/-, MFN1 and MFN2-/- were used to determine the effect of CS on OPA1 isoforms. Various mitochondrial fusion promoters/activators (BGP-15, leflunomide, M1) and fission inhibitor (DRP1) were used to determine their effect on OPA1 status and cigarette smoke extract (CSE)-induced lung epithelial (BEAS2B) cell damage, respectively. Seahorse flux analyzer was used to determine the effect of these compounds in BEAS2B cells with and without CSE exposure. FINDINGS Short OPA1 isoforms were predominantly detected and significantly increased in COPD subjects. Acute CSE treatment in various cell lines except NMR was found to increase the conversion of long to short OPA1 isoforms. CSE treatment significantly increased mitochondrial stress-related protein SLP2 in all the cells used. OPA1 interacting partners like prohibitins (PHB1 and 2) were also altered depending on the CS exposure. Finally, BGP-15 and leflunomide treatment were able to preserve the long OPA1 isoform in cells treated with CSE. INTERPRETATION/CONCLUSION The long OPA1 isoform along with SLP2 and prohibitins play a crucial role in CS-induced lung damage, causing mitophagy/mitochondrial dysfunction in COPD, which may be used as a novel therapeutic target in COPD.
Collapse
Affiliation(s)
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Ling YJ, Ding TY, Dong FL, Gao YJ, Jiang BC. Intravenous Administration of Triptonide Attenuates CFA-Induced Pain Hypersensitivity by Inhibiting DRG AKT Signaling Pathway in Mice. J Pain Res 2020; 13:3195-3206. [PMID: 33293856 PMCID: PMC7718987 DOI: 10.2147/jpr.s275320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/11/2023] Open
Abstract
Background Currently, medical treatment of inflammatory pain is limited by a lack of safe and effective therapies. Triptonide (TPN), a major component of Tripterygium wilfordii Hook.f. with low toxicity, has been shown to have good anti-inflammatory and neuroprotective effects. The present study aims to investigate the effects of TPN on chronic inflammatory pain. Materials and Methods Inflammatory pain was induced by intraplantar injection of complete Freund’s adjuvant (CFA). TPN’s three different doses were intravenously administered to compare the analgesic efficacy: 0.1 mg/kg, 0.5 mg/kg, and 2.0 mg/kg. The foot swelling was quantitated by measuring paw volume. Mechanical allodynia and thermal hyperalgesia were assessed with von Frey filament testing and Hargreaves’ test, respectively. Western blots, qRT–PCR and immunofluorescence tests were used to analyze the expression of pAKT, tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). Two AKT inhibitors, AKT inhibitor Ⅳ and MK-2206, were used to examine AKT’s effects on pain behavior and cytokines expression. Results Intravenous treatment with TPN attenuated CFA-induced paw edema, mechanical allodynia, and thermal hyperalgesia. Western blotting and immunofluorescence results showed that CFA induced AKT activation in the dorsal root ganglion (DRG) neurons. However, these effects were suppressed by treatment with TPN. Furthermore, TPN treatment inhibited CFA-induced increase of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6. Consistent with the in vivo data, TPN inhibited LPS-induced Akt phosphorylation and inflammatory mediator production in ND7/23 cells. Finally, intrathecal treatment with AKT inhibitor Ⅳ or MK-2206, attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, and simultaneously decreased the mRNA expression of TNF-α, IL-1β, and IL-6 in DRG. Conclusion These data indicate that TPN attenuates CFA-induced pain potentially via inhibiting AKT-mediated pro-inflammatory cytokines production in DRG. TPN may be used for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Yue-Juan Ling
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China.,Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Ting-Yu Ding
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China.,Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Fu-Lu Dong
- School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China.,Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Bao-Chun Jiang
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China.,Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| |
Collapse
|
7
|
Triptolide induces atrophy of myotubes by triggering IRS-1 degradation and activating the FoxO3 pathway. Toxicol In Vitro 2020; 65:104793. [PMID: 32061799 DOI: 10.1016/j.tiv.2020.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
Triptolide is an active ingredient isolated from an ancient Chinese herb (Tripterygium wilfordii Hook. f) for inflammatory and immune disorders. It has been shown to inhibit the proliferation of skeletal muscle; however, mechanisms of this effect remain unclear. We used mouse C2C12 myotubes as an in vitro model to investigate the effects of triptolide on skeletal muscle. Triptolide markedly inhibited the expression of myosin heavy chain and upregulated the expression of muscle atrophy-related proteins, leading to atrophy of the myotubes. Triptolide dose-dependently decreased the phosphorylation of Forkhead box O3 (FoxO3) and activated FoxO3 transcription activity, which regulates the expression of muscle atrophy-related proteins. Furthermore, triptolide inhibited the phosphorylation of Akt on the site of S473 and T308, and decreased the phosphorylation of insulin receptor substrate-1 (IRS-1) on the site of S302. In addition, triptolide reduced the protein level, but not mRNA level of IRS-1, whereas other upstream regulators of the Akt signaling pathway were not affected. Finally, a time-course experiment showed that the triptolide-induced degradation of IRS-1 in myotubes occurred 12 h prior to both inhibition of Akt activity and the activation of FoxO3. These data indicate that triptolide triggers IRS-1 degradation to promote FoxO3 activation, which subsequently led to atrophy of myotubes, providing us a potential target to prevent triptolide-induced skeletal muscle atrophy.
Collapse
|