1
|
Wendland RJ, Conway MT, Worthington KS. Evaluating the polymerization effectiveness and biocompatibility of bio-sourced, visible light-based photoinitiator systems. J Biomed Mater Res A 2024; 112:1662-1674. [PMID: 38572856 DOI: 10.1002/jbm.a.37715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the "library" of visible light initiators is limited compared with the wealth of options available for UV polymerization. Furthermore, the synthesis of traditional photoinitiators relies on diminishing raw materials, and several traditional photoinitiators are considered emerging environmental contaminants. As such, there has been recent focus on identifying and characterizing biologically sourced, visible light-based photoinitiator systems that can be effectively used in photopolymerization applications. In this regard, several bio-sourced molecules have been shown to act as photoinitiators, primarily through Type II photoinitiation mechanisms. However, whether bio-sourced molecules can also act as effective synergists in these reactions remains unknown. In this study, we evaluated the effectiveness of bio-sourced synergist candidates, with a focus on amino acids, due to their amine functional groups, in combination with two bio-sourced photoinitiator molecules: riboflavin and curcumin. We tested the effectiveness of these photoinitiator systems under both violet (405 nm) and blue (460-475 nm) light using photo-rheology. We found that several synergist candidates, namely lysine, arginine, and histidine, increased the polymerization effectiveness of riboflavin when used with both violet and blue light. With curcumin, we found that almost all tested synergist candidates slightly decreased the polymerization effectiveness compared with curcumin alone under both light sources. These results show that bio-sourced molecules have the potential to be used as synergists with bio-sourced photoinitiators in visible light photopolymerization. However, more work must be done to fully characterize these reactions and to investigate more synergist candidates. Ultimately, this information is expected to expand the range of available visible light-based photoinitiator systems and increase their sustainability.
Collapse
Affiliation(s)
- Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Matthew T Conway
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Cabrol A, Chuy V, Fron-Chabouis H, Naveau A. Effectiveness of postprocessing on 3D printed resin biocompatibility in prosthodontics: A systematic review. J Prosthet Dent 2024:S0022-3913(24)00588-2. [PMID: 39304492 DOI: 10.1016/j.prosdent.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
STATEMENT OF PROBLEM Additive manufacturing is used in prosthodontics for producing casts, surgical guides, and interim and definitive prostheses. Printed resin components that will be in contact with the oral mucosa must meet biocompatibility requirements in accordance with current standards for medical devices. Despite such approvals being obtained by the manufacturer, the dentist remains responsible for following the manufacturer recommendations. Evidence for the effect of postprocessing 3-dimensionally (3D) printed resin components on biocompatibility is lacking PURPOSE: The purpose of this systematic review was to assess the effectiveness of 3D printing postprocessing on the biocompatibility of resins that will be in contact with the oral mucosa. MATERIAL AND METHODS The PubMed, Scopus, and DOSS search engines were used to identify articles. Two independent researchers conducted the systematic review by following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines and by following a combination of keywords. RESULTS Of a total of 249 articles, 27 were selected, including only 1 in vivo study. Thirty-two commercially available and a few experimental resins were tested. The main applications were removable denture bases and denture teeth, interim and definitive fixed restorations, occlusal splints, and surgical guides. Postprocessing procedures were those recommended by the manufacturer, experimental, or not implemented and involving alcohol, ultrasonic or centrifugal rinsing, photopolymerization at different UV wavelengths, a nitrated atmosphere chamber with air drying or compressed air drying and with heat treatment. The majority of postprocessed 3D printed resins were reported to be noncytotoxic, implying sufficient biocompatibility. CONCLUSIONS The heterogeneity of materials and methods did not allow the identification of an ideal postprocessing protocol or of the need for additional steps after following the manufacturer's recommendations.
Collapse
Affiliation(s)
| | - Virginie Chuy
- Hospital University Practitioner, Public Health Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France
| | - Hélène Fron-Chabouis
- Associate Professor, Prosthodontics Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France
| | - Adrien Naveau
- Professor, Prosthodontics Department, Faculty of Dental Medicine, Bordeaux University, Bordeaux University Hospital, Saint-André Hospital, Bordeaux, France; and Academic Guest, Clinic of General-, Special Care- and Geriatric Dentistry, Center of Dental Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Dobrzyńska-Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024:e2401674. [PMID: 39233521 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
- Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, Pilsen, 30100, Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering Department, University of Missouri, 1030 Hill Street, Columbia, Missouri, 65211, USA
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Poznan, Poland
| | - Reece N Oosterbeek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Pablo Salinas
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Eduardo Pozo
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, Newcastle, NE1 7RU, UK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of Technology, Department of Chemical, Metallurgical and Materials Engineering, Polymer Division & Institute for Nano Engineering Research (INER), Pretoria West Campus, Pretoria, South Africa
| |
Collapse
|
4
|
Rabel K, Nath AJ, Nold J, Spies BC, Wesemann C, Altmann B, Adolfsson E, Witkowski S, Tomakidi P, Steinberg T. Analysis of soft tissue integration-supportive cell functions in gingival fibroblasts cultured on 3D printed biomaterials for oral implant-supported prostheses. J Biomed Mater Res A 2024; 112:1376-1387. [PMID: 38251807 DOI: 10.1002/jbm.a.37675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
To date, it is unknown whether 3D printed fixed oral implant-supported prostheses can achieve comparable soft tissue integration (STI) to clinically established subtractively manufactured counterparts. STI is mediated among others by gingival fibroblasts (GFs) and is modulated by biomaterial surface characteristics. Therefore, the aim of the present work was to investigate the GF response of a 3D printed methacrylate photopolymer and a hybrid ceramic-filled methacrylate photopolymer for fixed implant-supported prostheses in the sense of supporting an STI. Subtractively manufactured samples made from methacrylate polymer and hybrid ceramic were evaluated for comparison and samples from yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), comprising well documented biocompatibility, served as control. Surface topography was analyzed by scanning electron microscopy and interferometry, elemental composition by energy-dispersive x-ray spectroscopy, and wettability by contact angle measurement. The response of GFs obtained from five donors was examined in terms of membrane integrity, adhesion, morphogenesis, metabolic activity, and proliferation behavior by a lactate-dehydrogenase assay, fluorescent staining, a resazurin-based assay, and DNA quantification. The results revealed all surfaces were smooth and hydrophilic. GF adhesion, metabolic activity and proliferation were impaired by 3D printed biomaterials compared to subtractively manufactured comparison surfaces and the 3Y-TZP control, whereas membrane integrity was comparable. Within the limits of the present investigation, it was concluded that subtractively manufactured surfaces are superior compared to 3D printed surfaces to support STI. For the development of biologically optimized 3D printable biomaterials, consecutive studies will focus on the improvement of cytocompatibility and the synthesis of STI-relevant extracellular matrix constituents.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amélie Joséphine Nath
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Nold
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Wesemann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- G.E.R.N Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production-RISE Research Institutes of Sweden, Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Shen J, Liu J, Ji X, Liang J, Feng X, Liu X, Wang Y, Zhang Q, Zhang Q, Qu G, Yan B, Liu R. Nail salon dust reveals alarmingly high photoinitiator levels: Assessing occupational risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134913. [PMID: 38880048 DOI: 10.1016/j.jhazmat.2024.134913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects. Surprisingly, we found high levels of PIs in indoor dust. Our analysis revealed comparable levels of PIs in dust from printing shops (geometric mean, GM: 1.33 ×103 ng/g) and control environments (GM: 874 ng/g), underscoring the widespread presence of PIs across various settings. Alarmingly, in dust samples from nail salons, PIs were detected at total concentrations ranging from 610 to 1.04 × 107 ng/g (GM: 1.87 ×105 ng/g), significantly exceeding those in the control environments (GM: 1.43 ×103 ng/g). Nail salon workers' occupational exposure to PIs through dust ingestion was estimated at 4.86 ng/kg body weight/day. Additionally, an in vitro simulated digestion test suggested that between 10 % and 42 % of PIs present in ingested dust could become bioaccessible to humans. This is the first study to report on PIs in the specific environments of nail salons and printing shops. This study highlights the urgent need for public awareness regarding the potential health risks posed by PIs to occupational workers, marking an important step towards our understanding of environmental pollution caused by PIs.
Collapse
Affiliation(s)
- Jie Shen
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiale Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Buckley C, Montgomery TR, Szank T, Major I. Hyaluronic acid hybrid formulations optimised for 3D printing of nerve conduits and the delivery of the novel neurotrophic-like compound tyrosol to enhance peripheral nerve regeneration via Schwann cell proliferation. Int J Pharm 2024; 661:124477. [PMID: 39013530 DOI: 10.1016/j.ijpharm.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Peripheral nerve injuries, predominantly affecting individuals aged 20-40, pose significant healthcare challenges, with current surgical methods often failing to achieve complete functional recovery. This study focuses on the development of 3D printed hydrogel nerve conduits using modified hyaluronic acid (HA) for potentially enhancing peripheral nerve regeneration. Hyaluronic acid was chemically altered with cysteamine HCl and methacrylic anhydride to create thiolated HA (HA-SH) and methacrylated HA (HA-MA), achieving a modification degree of approximately 20 %. This modification was crucial to maintain the receptor interaction of HA. The modified HA was rigorously tested to ensure cytocompatibility in neuronal and glial cell lines. Subsequently, various 3D printed HA formulations were evaluated, focusing on improving HA's inherent mechanical weaknesses. These formulations were assessed for cytotoxicity through direct contact and elution extract testing, confirming their safety over a 24-h period. Among the neurotrophic compounds tested, Tyrosol emerged as the most effective in promoting Schwann cell proliferation in vitro. The 3D printed HA system demonstrated proficiency in loading and releasing Tyrosol at physiological pH. The findings from this research highlight the promising role of 3D printed HA and Tyrosol in the field of nerve tissue engineering, offering a novel approach to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Therese R Montgomery
- School of Science and Computing, Atlantic Technological University, Galway H91 T8NW, Ireland
| | - Tomasz Szank
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| |
Collapse
|
7
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Liu Y, Ling S, Chen Z, Xu J. Ionic Polymerization-Based Synthesis of Bioinspired Adhesive Hydrogel Microparticles with Tunable Morphologies from Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37028-37040. [PMID: 38963006 DOI: 10.1021/acsami.4c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Shape-anisotropic hydrogel microparticles have attracted considerable attention for drug-delivery applications. Particularly, nonspherical hydrogel microcarriers with enhanced adhesive and circulatory abilities have demonstrated value in gastrointestinal drug administration. Herein, inspired by the structures of natural suckers, we demonstrate an ionic polymerization-based production of calcium (Ca)-alginate microparticles with tunable shapes from Janus emulsion for the first time. Monodispersed Janus droplets composed of sodium alginate and nongelable segments were generated using a coflow droplet generator. The interfacial curvatures, sizes, and production frequencies of Janus droplets can be flexibly controlled by varying the flow conditions and surfactant concentrations in the multiphase system. Janus droplets were ionically solidified on a chip, and hydrogel beads of different shapes were obtained. The in vitro and in vivo adhesion abilities of the hydrogel beads to the mouse colon were investigated. The anisotropic beads showed prominent adhesive properties compared with the spherical particles owing to their sticky hydrogel components and unique shapes. Finally, a novel computational fluid dynamics and discrete element method (CFD-DEM) coupling simulation was used to evaluate particle migration and contact forces theoretically. This review presents a simple strategy to synthesize Ca-alginate particles with tunable structures that could be ideal materials for constructing gastrointestinal drug delivery systems.
Collapse
Affiliation(s)
- Yingzhe Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sida Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Li R, Guo H, Luo X, Wang Q, Pang Y, Li S, Liu S, Li J, Strehmel B, Chen Z. Type I Photoinitiator Based on Sustainable Carbon Dots. Angew Chem Int Ed Engl 2024; 63:e202404454. [PMID: 38683297 DOI: 10.1002/anie.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Sustainable carbon dots comprising surficial oxime ester groups following homolytic bond cleavage exhibit potential as photoinitiators for traditional free radical photopolymerization. Carbon dots were made following a solvothermal procedure from sustainable furfural available from lignocellulose. Surficial aldehyde moieties reacted with hydroxylamine to the respective oxime while reaction with benzoyl chloride resulted in a biobased Type I photoinitiator comprising sustainable carbon dot (CD-PI). Photoinitiating ability was compared with the traditional photoinitiator (PI) ethyl (2,4,6-trimethyl benzoyl) phenyl phosphinate (TPO-L) by real-time FTIR with UV exposure at 365 nm. Photopolymer composition based on a mixture of urethane dimethacrylate (UDMA) and tripropylene glycol diacrylate (TPGDA) resulted in a similar final conversion of about 70 % using either CD-PI or TPO-L. Nevertheless, it appeared homogeneous in the case of compositions processed with CD-PI, while those made with TPO-L were heterogeneous as shown by two glass transition temperatures. Moreover, the migration rate of CD-PI in the cured samples was lower in comparison with those samples using TPO-L as PI.
Collapse
Affiliation(s)
- Ruiping Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
| | - Xiongfei Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
| | - Qunying Wang
- Department of Chemistry, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Yulian Pang
- Hubei Gurun Technology Co., LTD, Jingmen Chemical Recycling Industrial Park, 448000, Jingmen, Hubei Province, P. R. China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
| | - Bernd Strehmel
- Department of Chemistry, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Hexing Road 26, 150040, Harbin, P. R. China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| |
Collapse
|
10
|
Debbi L, Machour M, Dahis D, Shoyhet H, Shuhmaher M, Potter R, Tabory Y, Goldfracht I, Dennis I, Blechman T, Fuchs T, Azhari H, Levenberg S. Ultrasound Mediated Polymerization for Cell Delivery, Drug Delivery, and 3D Printing. SMALL METHODS 2024; 8:e2301197. [PMID: 38376006 DOI: 10.1002/smtd.202301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Safe and accurate in situ delivery of biocompatible materials is a fundamental requirement for many biomedical applications. These include sustained and local drug release, implantation of acellular biocompatible scaffolds, and transplantation of cells and engineered tissues for functional restoration of damaged tissues and organs. The common practice today includes highly invasive operations with major risks of surgical complications including adjacent tissue damage, infections, and long healing periods. In this work, a novel non-invasive delivery method is presented for scaffold, cells, and drug delivery deep into the body to target inner tissues. This technology is based on acousto-sensitive materials which are polymerized by ultrasound induction through an external transducer in a rapid and local fashion without additional photoinitiators or precursors. The applicability of this technology is demonstrated for viable and functional cell delivery, for drug delivery with sustained release profiles, and for 3D printing. Moreover, the mechanical properties of the delivered scaffold can be tuned to the desired target tissue as well as controlling the drug release profile. This promising technology may shift the paradigm for local and non-invasive material delivery approach in many clinical applications as well as a new printing method - "acousto-printing" for 3D printing and in situ bioprinting.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Daniel Dahis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hagit Shoyhet
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ruth Potter
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Tabory
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Idit Goldfracht
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Itiel Dennis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tom Blechman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Theodor Fuchs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Haim Azhari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
11
|
Zhang S, Felthaus O, Prantl L, Ma N, Machatschek R. Continuous protein-density gradients: A new approach to correlate physical cues with cell response. PNAS NEXUS 2024; 3:pgae202. [PMID: 38840799 PMCID: PMC11152205 DOI: 10.1093/pnasnexus/pgae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
To assess cellular behavior within heterogeneous tissues, such as bone, skin, and nerves, scaffolds with biophysical gradients are required to adequately replicate the in vivo interaction between cells and their native microenvironment. In this study, we introduce a strategy for depositing ultrathin films comprised of laminin-111 with precisely controlled biophysical gradients onto planar substrates using the Langmuir-Blodgett (LB) technique. The gradient is created by controlled desynchronization of the barrier compression and substrate withdrawal speed during the LB deposition process. Characterization of the films was performed using techniques such as atomic force microscopy and confocal fluorescence microscopy, enabling the comprehensive analysis of biophysical parameters along the gradient direction. Furthermore, human adipose-derived stem cells were seeded onto the gradient films to investigate the influence of protein density on cell attachment, showing that the distribution of the cells can be modulated by the arrangement of the laminin at the air-water interface. The presented approach not only allowed us to gain insights into the intricate interplay between biophysical cues and cell behavior within complex tissue environments, but it is also suited as a screening approach to determine optimal protein concentrations to achieve a target cellular output.
Collapse
Affiliation(s)
- Shanshan Zhang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Helmholtz-Zentrum Hereon, Institute of Active Polymers, Kantstrasse 55, 14513 Teltow, Germany
| | - Oliver Felthaus
- Department of Plastic Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Helmholtz-Zentrum Hereon, Institute of Sustainable Materials, Kantstrasse 55, 14513 Teltow, Germany
| | - Rainhard Machatschek
- Helmholtz-Zentrum Hereon, Institute of Active Polymers, Kantstrasse 55, 14513 Teltow, Germany
| |
Collapse
|
12
|
Karamzadeh V, Shen ML, Ravanbakhsh H, Sohrabi‐Kashani A, Okhovatian S, Savoji H, Radisic M, Juncker D. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Adv Healthc Mater 2024; 13:e2303708. [PMID: 37990819 PMCID: PMC11468968 DOI: 10.1002/adhm.202303708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.
Collapse
Affiliation(s)
- Vahid Karamzadeh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Molly L. Shen
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Hossein Ravanbakhsh
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
- Department of Biomedical EngineeringThe University of AkronAkronOH44325USA
| | - Ahmad Sohrabi‐Kashani
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| | - Sargol Okhovatian
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3C 3J7Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3C 3A7Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoONM1C 1A4Canada
| | - David Juncker
- Biomedical Engineering DepartmentMcGill UniversityMontrealQCH3A 0G4Canada
- McGill Genome CentreMcGill UniversityMontrealQCH3A 0G4Canada
| |
Collapse
|
13
|
Zhou ZX, Li J, Hu J, Fu H. Towards promoting wound healing: A near-infrared light-triggered persistently antibacterial, synergistically hemostatic nanoarchitecture-integrated chitosan hydrogel. Carbohydr Polym 2024; 329:121783. [PMID: 38286553 DOI: 10.1016/j.carbpol.2024.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
The skin, the primary barrier of the body, is inevitably broken. However, the development of materials that facilitate wound healing with sustained antimicrobial, hemostatic, and biocompatible properties remains a formidable challenge. In this article, we prepared a photopolymerizable composite hydrogel consisting of a hydrogel matrix, a hemostatic/antibacterial agent, and a photothermal therapy agent. The photopolymerizable hydrogel matrix was prepared by grafting the photoinitiator and polymerizable active monomer onto the chitosan chain segment, which exhibits excellent biocompatibility. Furthermore, linalool is adsorbed on the surface of halloysite nanotubes (HNTs) to form a hemostatic and antibacterial. Meanwhile, dopamine is employed as a coating material for hollow glass microsphere (HGM), which enables them to function as photothermal therapy agents. Upon exposure to near-infrared radiation, the PHA hydrogel releases linalool molecules from the surface of the HNTs, which diffuse into the hydrogel matrix, resulting in a sustained antimicrobial effect. At the same time, rapid curing of the photopolymerizable hydrogel under UV light forms a physical barrier that synergistically enhances the hemostatic properties of the HNTs. From the above, the results pave the way to develop a potential hemostatic antimicrobial dressing for clinical use in wound healing.
Collapse
Affiliation(s)
- Zhao-Xi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianfeng Hu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China.
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
| |
Collapse
|
14
|
Silva ID, Boaro LCC, Muniz BV, Cogo-Muller K, Gonçalves F, Brandt WC. The impact of chitosan in experimental resin with different photoinitiator systems. J Mech Behav Biomed Mater 2024; 150:106323. [PMID: 38134585 DOI: 10.1016/j.jmbbm.2023.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE to investigate the effect of different concentrations of chitosan added to experimental resins containing either BAPO or camphorquinone (CQ) as photoinitiators, regarding degree of conversion (DC), flexural strength (FS), flexural elastic modulus (E), Knoop microhardness (KHN), cytotoxicity, genotoxicity and antimicrobial activity. METHODS Experimental resins with polymeric matrix of BisGMA and TEGDMA was added either 0.5 wt% BAPO or 0.5 wt% camphorquinone/0.2% amine along with and chitosan concentrations of 0.5%; 1.0% or 2.0%. Degree of conversion was measured using Fourier transformed infrared spectroscopy. Flexural strength and elastic modulus were obtained through three-point bending test and Knoop microhardness was measured in a microidenter. Direct cytotoxicity was performed in human keratinocytes and genotoxicity test was done in murine macrophages cells. Antimicrobial activity was acessed against Staphylococcus aureus and Streptococcus mutans through the inhibition halo. Data were analyzed using two-way ANOVA and Tukey teste (α = 0.05). RESULTS The materials containing photoinitiator BAPO showed higher values of DC, FS, E, and KHN compared to resins with CQ. The addition of chitosan did not affect the properties of these materials. However, in resins containing CQ, the addition of chitosan improve these properties compared to control group. For the groups containing BAPO the chitosan reduced cytotoxicity and genotoxicity compared to materials with camphorquinone. The materials with 1.0% and 2.0% chitosan showed increased antibacterial activity in the materials containing BAPO as photoinitiator for both bacteria. SIGNIFICANCE The alternative photoinitiator BAPO and chitosan can improve physical and biological properties of photoactivated resins when compared with the materials with photoinitiator camphorquinone.
Collapse
Affiliation(s)
- Isaías Donizeti Silva
- Dental School, University of Santo Amaro, Rua Professor Eneas de Siqueira Neto, 340, CEP: 04829-900, São Paulo, Brazil.
| | - Letícia Cristina Cidreira Boaro
- College of Dentistry, University of Saskatchewan, Dental Clinic Building, 105, Wiggins Road, Saskatoon, SK, S7N 5E4, Canada.
| | - Bruno Vilela Muniz
- Itapeva Faculty of Social and Agrarian Sciences, Pilão dágua -Rod. Francsco Alves Negrão, Km 285, CEP 18412-000, Itapeva, São Paulo, Brazil.
| | - Karina Cogo-Muller
- Faculty of Pharmaceutical Sciences, University of Campinas, Rua Candido Portinari, 200, CEP: 13083-871, Campinas, Brazil.
| | - Flávia Gonçalves
- Dental School, University of Santo Amaro, Rua Professor Eneas de Siqueira Neto, 340, CEP: 04829-900, São Paulo, Brazil.
| | - William Cunha Brandt
- Dental School, University of Santo Amaro, Rua Professor Eneas de Siqueira Neto, 340, CEP: 04829-900, São Paulo, Brazil.
| |
Collapse
|
15
|
Kalathil Balakrishnan H, Schultz AG, Lee SM, Alexander R, Dumée LF, Doeven EH, Yuan D, Guijt RM. 3D printed porous membrane integrated devices to study the chemoattractant induced behavioural response of aquatic organisms. LAB ON A CHIP 2024; 24:505-516. [PMID: 38165774 DOI: 10.1039/d3lc00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.
Collapse
Affiliation(s)
- Hari Kalathil Balakrishnan
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
- Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Soo Min Lee
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| | - Richard Alexander
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Centre on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Dan Yuan
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Rosanne M Guijt
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| |
Collapse
|
16
|
Cheng YJ, Wu TH, Tseng YS, Chen WF. Development of hybrid 3D printing approach for fabrication of high-strength hydroxyapatite bioscaffold using FDM and DLP techniques. Biofabrication 2024; 16:025003. [PMID: 38226849 DOI: 10.1088/1758-5090/ad1b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
This study develops a hybrid 3D printing approach that combines fused deposition modeling (FDM) and digital light processing (DLP) techniques for fabricating bioscaffolds, enabling rapid mass production. The FDM technique fabricates outer molds, while DLP prints struts for creating penetrating channels. By combining these components, hydroxyapatite (HA) bioscaffolds with different channel sizes (600, 800, and 1000μm) and designed porosities (10%, 12.5%, and 15%) are fabricated using the slurry casting method with centrifugal vacuum defoaming for significant densification. This innovative method produces high-strength bioscaffolds with an overall porosity of 32%-37%, featuring tightly bound HA grains and a layered surface structure, resulting in remarkable cell viability and adhesion, along with minimal degradation rates and superior calcium phosphate deposition. The HA scaffolds show hardness ranging from 1.43 to 1.87 GPa, with increasing compressive strength as the designed porosity and channel size decrease. Compared to human cancellous bone at a similar porosity range of 30%-40%, exhibiting compressive strengths of 13-70 MPa and moduli of 0.8-8 GPa, the HA scaffolds demonstrate robust strengths ranging from 40 to 73 MPa, paired with lower moduli of 0.7-1.23 GPa. These attributes make them well-suited for cancellous bone repair, effectively mitigating issues like stress shielding and bone atrophy.
Collapse
Affiliation(s)
- Yu-Jui Cheng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Han Wu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yu-Sheng Tseng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Fan Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Rothammer M, Strobel P, Zollfrank C, Urmann C. Biocompatible coatings based on photo-crosslinkable cellulose derivatives. Int J Biol Macromol 2023; 250:126063. [PMID: 37524281 DOI: 10.1016/j.ijbiomac.2023.126063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.
Collapse
Affiliation(s)
- Maximilian Rothammer
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Philipp Strobel
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Corinna Urmann
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany.
| |
Collapse
|
18
|
Luo Z, Zhang H, Chen R, Li H, Cheng F, Zhang L, Liu J, Kong T, Zhang Y, Wang H. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization. MICROSYSTEMS & NANOENGINEERING 2023; 9:103. [PMID: 37593440 PMCID: PMC10427687 DOI: 10.1038/s41378-023-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 08/19/2023]
Abstract
Conventional manufacturing techniques to fabricate microfluidic chips, such as soft lithography and hot embossing process, have limitations that include difficulty in preparing multiple-layered structures, cost- and labor-consuming fabrication process, and low productivity. Digital light processing (DLP) technology has recently emerged as a cost-efficient microfabrication approach for the 3D printing of microfluidic chips; however, the fabrication resolution for microchannels is still limited to sub-100 microns at best. Here, we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing- and zoning-controlled vat photopolymerization (DZC-VPP). Specifically, we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization, thereby providing guidance for the fabrication of microchannels with enhanced resolution. By fine-tuning the printing parameters, including optical irradiance, exposure time, projection region, and step distance, we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers, thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing. Remarkably, this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20 μm × 20 μm using a commercial printer with a pixel size of 10 μm × 10 μm; this is significantly higher resolution than previous reports. In addition, this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation. In general, the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.
Collapse
Affiliation(s)
- Zhiming Luo
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Haoyue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Runze Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Hanting Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Lijun Zhang
- Third People’s Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024 P. R. China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital of The, Chinese University of Hong Kong, Shenzhen, 518172 P. R. China
| | - Tiantian Kong
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Yang Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Huanan Wang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| |
Collapse
|
19
|
Ji X, Liang J, Liu J, Shen J, Li Y, Wang Y, Jing C, Mabury SA, Liu R. Occurrence, Fate, Human Exposure, and Toxicity of Commercial Photoinitiators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11704-11717. [PMID: 37515552 DOI: 10.1021/acs.est.3c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Photoinitiators (PIs) are a family of anthropogenic chemicals used in polymerization systems that generate active substances to initiate polymerization reactions under certain radiations. Although polymerization is considered a green method, its wide application in various commercial products, such as UV-curable inks, paints, and varnishes, has led to ubiquitous environmental issues caused by PIs. In this study, we present an overview of the current knowledge on the environmental occurrence, human exposure, and toxicity of PIs and provide suggestions for future research based on numerous available studies. The residual concentrations of PIs in commercial products, such as food packaging materials, are at microgram per gram levels. The migration of PIs from food packaging materials to foodstuffs has been confirmed by more than 100 reports of food contamination caused by PIs. Furthermore, more than 20 PIs have been detected in water, sediment, sewage sludge, and indoor dust collected from Asia, the United States, and Europe. Human internal exposure was also confirmed by the detection of PIs in serum. In addition, PIs were present in human breast milk, indicating that breastfeeding is an exposure pathway for infants. Among the most available studies, benzophenone is the dominant congener detected in the environment and humans. Toxicity studies of PIs reveal multiple toxic end points, such as carcinogenicity and endocrine-disrupting effects. Future investigations should focus on synergistic/antagonistic toxicity effects caused by PIs coexposure and metabolism/transformation pathways of newly identified PIs. Furthermore, future research should aim to develop "greener" PIs with high efficiency, low migration, and low toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiale Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jie Shen
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
20
|
Topa-Skwarczyńska M, Jankowska M, Gruchała-Hałat A, Petko F, Galek M, Ortyl J. High-performance photoinitiating systems for new generation dental fillings. Dent Mater 2023; 39:729. [PMID: 37393151 DOI: 10.1016/j.dental.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To obtain new generation dental composites with improved performance properties compared to currently available dental fillings on the market and to determine the influence of new initiating systems on final product parameters such as degree of cure, hardness, color, and shrinkage. METHODS In order to verify the effectiveness of the developed initiating systems, typical spectroscopic, electrochemical, and kinetic studies using the real-time FT-IR method were shown. Moreover, paste dental fillings were prepared, the compositions were irradiated with the dental lamp, and the degrees of cross-linking were measured by Raman spectroscopy. The polymerization shrinkage was also determined using the rheometer. In addition, their hardness was examined on the Shore scale. Finally, the color analysis of the composites in the L*a*b* color space was compared with the VITA CLASSIC colorant. RESULTS It was shown that, due to their excellent spectroscopic and electrochemical properties, new quinazolin-2-one can act as co-initiators in cationic and radical photopolymerization. It was demonstrated that the most effective composite containing the initiator system in the form of 3-SCH3Ph-Q, IOD, MDEA, and an inorganic filler as nanometric silica and a bonding agent is cured more than 90% after just 1 cycle of dental lamp exposure (30 s), the hardness of the composite after curing on the Shor Scale is 82 ± 4, and the polymerization shrinkage is less than 2.8%. SIGNIFICANCE The article demonstrates effective new initiator systems as an alternative to CQ/amine for obtaining new-generation dental composites. The developed dental composites are a big competition to the currently used dental fillings on the market.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| | - Magdalena Jankowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Alicja Gruchała-Hałat
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Filip Petko
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| |
Collapse
|
21
|
Photoinitiator of photosensitizer? Dual behaviour of m-terphenyls in photopolymerization processes. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
22
|
Shen C, Li Y, Meng Q. Adhesive Polyethylene Glycol-based Hydrogel Patch for Tissue Repair. Colloids Surf B Biointerfaces 2022; 218:112751. [DOI: 10.1016/j.colsurfb.2022.112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
|
23
|
Bakhshi H, Kuang G, Wieland F, Meyer W. Photo-Curing Kinetics of 3D-Printing Photo-Inks Based on Urethane-Acrylates. Polymers (Basel) 2022; 14:2974. [PMID: 35893938 PMCID: PMC9331891 DOI: 10.3390/polym14152974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, photo-curing kinetics for urethane-acrylate-based photo-inks for 3D printing were evaluated using a photo-differential scanning calorimetry analysis. Initially, the photopolymerization kinetics of di- and monofunctional monomers were separately studied at different temperatures (5-85 °C). Later, the photo-curing kinetics and mechanical properties of photo-inks based on different monomer mixtures (40/60-20/80) were evaluated. The results showed that urethane-dimethacrylate (UrDMA) and urethane-acrylate (UrA) had no light absorption in the region of 280-700 nm, making them a proper crosslinker and a reactive diluent, respectively, for the formulation of 3D-printing photo-inks. The kinetics investigations showed a temperature dependency for the photo-curing of UrDMA, where a higher photopolymerization rate (Rp,max: from 5.25 × 10-2 to 8.42 × 10-2 1/s) and double-bound conversion (DBCtotal: from 63.8% to 92.2%) were observed at elevated temperatures (5-85 °C), while the photo-curing of UrA was independent of the temperature (25-85 °C). Enhancing the UrA content from 60% to 80% in the UrDMA/UrA mixtures initially increased and later decreased the photopolymerization rate and conversion, where the mixtures of 30/70 and 25/75 presented the highest values. Meanwhile, increasing the UrA content led to lower glass transition temperatures (Tg) and mechanical strength for the photo-cured samples, where the mixture of 30/70 presented the highest maximum elongation (εmax: 73%).
Collapse
Affiliation(s)
- Hadi Bakhshi
- Department of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany;
- Department of Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.K.); (F.W.)
| | - Guanxing Kuang
- Department of Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.K.); (F.W.)
| | - Franziska Wieland
- Department of Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.K.); (F.W.)
| | - Wolfdietrich Meyer
- Department of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany;
- Department of Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany; (G.K.); (F.W.)
| |
Collapse
|
24
|
Roig-Sanchez S, Kam D, Malandain N, Sachyani-Keneth E, Shoseyov O, Magdassi S, Laromaine A, Roig A. One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydr Polym 2022; 294:119778. [DOI: 10.1016/j.carbpol.2022.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
25
|
Yan J, Lai H, Zeng B, Wang L, Xing F, Xiao P. Photoinduced free radical-releasing systems and their anticancer properties. Photochem Photobiol Sci 2022; 21:1405-1417. [PMID: 35553411 DOI: 10.1007/s43630-022-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
Cancer has been a serious threat and impact on the health and life of human. Phototherapy is considered as a promising therapeutic method to replace the traditional treatment in clinic owing to its noninvasive nature and high efficiency. Photoinitiators have long been used in the field of photopolymerization; however, few studies have been carried out on their potential as anticancer agents under light irradiation. In this study, the effect of a photoinitiator, diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide (TPO), on breast cancer is investigated and the related mechanism is elucidated. It is found that TPO has low dark toxicity and significant phototoxicity. TPO can inhibit cell growth and development and promote cell apoptosis through a mitochondrial pathway under light irradiation. Further studies show that cell apoptosis is induced by free radicals produced from the photolysis of TPO to activate JNK phosphorylation. Overall, we identify the antitumor effects of TPO in vitro for the first time, and provides a proof of concept for its application as a novel photolatent therapeutic drug.
Collapse
Affiliation(s)
- Jieyu Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
| | - Haiwang Lai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China.
| | - Boning Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
| | - Liqing Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
26
|
Fritschen A, Bell AK, Königstein I, Stühn L, Stark RW, Blaeser A. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip. Biomater Sci 2022; 10:1981-1994. [PMID: 35262097 DOI: 10.1039/d1bm01794b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organs-on-a-Chip (OOCs) have recently led to major discoveries and a better understanding of 3D cell organization, cell-cell interactions and tissue response to drugs and biological cues. However, their complexity and variability are still limited by the available fabrication technology. Transparent, cytocompatible and high-resolution 3D-printing could overcome these limitations, offering a flexible and low-cost alternative to soft lithography. Many advances have been made in stereolithography printing regarding resin formulation and the general printing process, but a systematic analysis of the printing process steps, employed resins and post-treatment procedures with a strong focus on the requirements in OOCs is missing. To fill this gap, this work provides an in-depth analysis of three different resin systems in comparison to polystyrene (PS) and poly(dimethylsiloxane) (PDMS), which can be considered the gold-standards in cell culture and microfluidics. The resins were characterized with respect to transparency, cytocompatibility and print resolution. These properties are not only governed by the resin composition, but additionally by the post-treatment procedure. The investigation of the mechanical (elastic modulus ∼2.2 GPa) and wetting properties (∼60° native / 20° plasma treated) showed a behavior very similar to PS. In addition, the absorbance of small molecules was two orders of magnitude lower in the applied resins (diffusion constant ∼0.01 μm2 s-1) than for PDMS (2.5 μm2 s-1), demonstrating the intrinsic suitability of these materials for OOCs. Raman spectroscopy and UV/VIS spectrophotometry revealed that post-treatment increased monomer conversion up to 2 times and removed photo initiator residues, leading to an increased transparency of up to 50% and up to 10-times higher cell viability. High magnification fluorescence imaging of HUVECs and L929 cells cultivated on printed dishes shows the high optical qualities of prints fabricated by the Digital Light Processing (DLP) printer. Finally, components of microfluidic chips such as high-aspect ratio pillars and holes with a diameter of 50 μm were printed. Concluding, the suitability of DLP-printing for OOCs was demonstrated by filling a printed chip with a cell-hydrogel mixture using a microvalve bioprinter, followed by the successful cultivation under perfusion. Our results highlight that DLP-printing has matured into a robust fabrication technology ready for application in extensive and versatile OOC research.
Collapse
Affiliation(s)
- Anna Fritschen
- Technical University of Darmstadt, Department of Mechanical Engineering, BioMedical Printing Technology, Magdalenenstr. 2, 64289 Darmstadt, Germany.
| | - Alena K Bell
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany
| | - Inga Königstein
- Technical University of Darmstadt, Department of Mechanical Engineering, BioMedical Printing Technology, Magdalenenstr. 2, 64289 Darmstadt, Germany.
| | - Lukas Stühn
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany
| | - Robert W Stark
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany
| | - Andreas Blaeser
- Technical University of Darmstadt, Department of Mechanical Engineering, BioMedical Printing Technology, Magdalenenstr. 2, 64289 Darmstadt, Germany. .,Technical University of Darmstadt, Centre for Synthetic Biology, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
27
|
Kim GT, Go HB, Yu JH, Yang SY, Kim KM, Choi SH, Kwon JS. Cytotoxicity, Colour Stability and Dimensional Accuracy of 3D Printing Resin with Three Different Photoinitiators. Polymers (Basel) 2022; 14:polym14050979. [PMID: 35267799 PMCID: PMC8912826 DOI: 10.3390/polym14050979] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023] Open
Abstract
Biocompatibility is important for the 3D printing of resins used in medical devices and can be affected by photoinitiators, one of the key additives used in the 3D printing process. The choice of ingredients must be considered, as the toxicity varies depending on the photoinitiator, and unreacted photoinitiator may leach out of the polymerized resin. In this study, the use of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPO-L) as a photoinitiator for the 3D printing of resin was considered for application in medical device production, where the cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical/physical properties were evaluated. Along with TPO-L, two conventional photoinitiators, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), were considered. A total of 0.1 mol% of each photoinitiator was mixed with the resin matrix to prepare a resin mixture for 3D printing. The specimens were printed using a direct light processing (DLP) type 3D printer. The 3D-printed specimens were postprocessed and evaluated for cytotoxicity, colour stability, dimensional accuracy, degree of conversion, and mechanical properties in accordance with international standards and the methods described in previous studies. The TPO-L photoinitiator showed excellent biocompatibility and colour stability and possessed with an acceptable dimensional accuracy for use in the 3D printing of resins. Therefore, the TPO-L photoinitiator can be sufficiently used as a photoinitiator for dental 3D-printed resin.
Collapse
Affiliation(s)
- Gi-Tae Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Hye-Bin Go
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Jae-Hun Yu
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
| | - Sung-Hwan Choi
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (S.-H.C.); (J.-S.K.); Tel.: +82-2-2228-3102 (S.-H.C.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (G.-T.K.); (H.-B.G.); (S.-Y.Y.); (K.-M.K.)
- BK21 FOUR Program, Yonsei University College of Dentistry, Seoul 03722, Korea;
- Correspondence: (S.-H.C.); (J.-S.K.); Tel.: +82-2-2228-3102 (S.-H.C.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
28
|
Wodzanowski KA, Caplan JL, Kloxin AM, Grimes CL. Multiscale Invasion Assay for Probing Macrophage Response to Gram-Negative Bacteria. Front Chem 2022; 10:842602. [PMID: 35242744 PMCID: PMC8886205 DOI: 10.3389/fchem.2022.842602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The immune system is a complex network of various cellular components that must differentiate between pathogenic bacteria and the commensal bacteria of the human microbiome, where misrecognition is linked to inflammatory disorders. Fragments of bacterial cell wall peptidoglycan bind to pattern recognition receptors within macrophages, leading to immune activation. To study this complex process, a methodology to remodel and label the bacterial cell wall of two different species of bacteria was established using copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC). Additionally, an approach for three-dimensional (3D) culture of human macrophages and their invasion with relevant bacteria in a well-defined hydrogel-based synthetic matrix inspired by the microenvironment of the gut was established. Workflows were developed for human monocyte encapsulation and differentiation into macrophages in 3D culture with high viability. Bacteria invaded into macrophages permitted in situ peptidoglycan labeling. Macrophages exhibited biologically-relevant cytokine release in response to bacteria. This molecularly engineered, multi-dimensional bacteria-macrophage co-culture system will prove useful in future studies to observe immunostimulatory, bacterial fragment production and localization in the cell at the carbohydrate level for insights into how the immune system properly senses bacteria.
Collapse
Affiliation(s)
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Bioimaging Center, Delaware Biotechnology Institute, Newark, DE, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
29
|
Balaban B, Kariksiz N, Eren TN, Avci D. Cyclopolymerizable and cyclopolymeric photoinitiators from diallyl amine and α-hydroxy ketones. Polym Chem 2022. [DOI: 10.1039/d2py00688j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel cyclopolymerizable and one cyclopolymeric (first in the literature) PIs with high reactivity, controllable water solubility, migration stability and high thermal stability were synthesized by attachment of diallyl amine to I2959 or I184.
Collapse
Affiliation(s)
- Burcu Balaban
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Neslihan Kariksiz
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Tugce Nur Eren
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Duygu Avci
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
30
|
Wiesner T, Haas M. Do germanium-based photoinitiators have the potential to replace the well-established acylphosphine oxides? Dalton Trans 2021; 50:12392-12398. [PMID: 34545890 PMCID: PMC8453693 DOI: 10.1039/d1dt02308j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last few decades, there has been an increasing demand for photoinitiators with growing requirements. Nowadays, photoinitiators need to fulfill several requirements such as a low level of toxicity, biocompatibility, fast polymerization rates, high activities, good photobleaching and much more in order to remain competitive on the market. Accordingly, we compare acylphosphine oxides and acylgermanes, two common classes of photoinitiators, with respect to their various synthetic pathways, toxicity, availability and performance.
Collapse
Affiliation(s)
- Tanja Wiesner
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria.
| | - Michael Haas
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria.
| |
Collapse
|