1
|
de Afonso Bonotto NC, da Cruz IBM, Turra BO, Escher ALK, Dos Santos Trombini F, Zimmermann JAB, Azzolin VF, Pillat MM, Ribeiro-Filho EE, Barbisan F. The mitochondrial and cytoplasmic superoxide anion imbalance trigger the expression of certain cellular aging markers in HaCaT keratinocytes. Biogerontology 2024; 26:31. [PMID: 39725767 DOI: 10.1007/s10522-024-10168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components. The superoxide anion (O2⁻) could be a prime candidate for a CATs, as it is continuously produced by eukaryotic cells. To test this hypothesis, mitochondrial and cytoplasmic O2⁻ imbalances were induced in HaCaT keratinocytes using rotenone (ROT, 30 µM), which inhibits mitochondrial complex I and paraquat (PQT, 30 µM), which increases O2⁻ levels via redox cycling. ROT and PQT reduced cellular proliferation rate and elevated β-Galactosidase and transforming growth factor beta (TGF-β) levels. Furthermore, they increased the frequency of larger cells with nuclear alterations, the levels of oxidative markers, and interleukin 1β, a marker of the Senescence-Associated Secretory Phenotype (SASP). However, the mitochondrial O2⁻ imbalance caused by ROT led to more pronounced alterations compared to PQT. These findings support the hypothesis that the existence of CAT components, such as the O2⁻ anion, plays a significant role in cellular aging.
Collapse
Affiliation(s)
- Nathalia Cardoso de Afonso Bonotto
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Bárbara Osmarin Turra
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Ana Laura Kerkhoff Escher
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Dos Santos Trombini
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Postgraduate Program in Nursing, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - João Arthur B Zimmermann
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Verônica Farina Azzolin
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Micheli Mainardi Pillat
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Euler Esteves Ribeiro-Filho
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Fernanda Barbisan
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Heisler EV, Osmarim Turra B, Cardoso de Afonso Bonotto N, da Cruz IBM, Aurélio Echart Montano M, Farina Azzolin V, Dal Magro J, Zaniol F, Perottoni J, Chelotti ME, dos Santos Trombini F, Maia-Ribeiro EA, Barbisan F, Schimith MD. The Modulatory Effect of an Ethanolic Extract of Anredera cordifolia (Ten.) on the Proliferation and Migration of Hyperglycemic Fibroblasts in an In Vitro Diabetic Wound Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:2812290. [PMID: 39411276 PMCID: PMC11479783 DOI: 10.1155/2024/2812290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024]
Abstract
Diabetes mellitus is associated with chronic wound-healing problems that significantly impact patients' quality of life and substantially increase expenditure on healthcare. Therefore, the identification of compounds that can aid healing is justified. Anredera cordifolia (Ten.) has been used in folk medicine for curative purposes; however, the causal mechanisms underlying its healing effects remain to be elucidated. In this study, the effect of the ethanolic extract of A. cordifolia was evaluated in an in vitro healing model using fibroblasts cultivated under normoglycemic and hyperglycemic environments. The extract was predominantly composed of phytol and exhibited genoprotective activity. Fibroblast migration attenuated the adverse effects of hyperglycemia, favoring cell proliferation. Collagen levels were significantly increased in ruptured fibroblasts under both standard and hyperglycemic environments. The phytogenomic effect of the extract on three genes related to extracellular matrix formation, maintenance, and degradation showed that A. cordifolia increased the expression of genes related to matrix synthesis and maintenance in both normoglycemic and hyperglycemic individuals. Furthermore, it reduced the expression of genes related to matrix degradation. Overall, this is the first study to demonstrate the effectiveness of A. cordifolia in wound healing, elucidating possible causal mechanisms that appear to be based on the genoprotective effect of this plant on the migratory and proliferative phases of the wound healing process; these effects are probably related to phytol, its main constituent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Felipe Zaniol
- Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Juliano Perottoni
- Department of Zootechnics and Biological Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Fernanda Barbisan
- Department of Pathology, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
3
|
Mânica da Cruz IB, Chelotti ME, Turra BO, Cardoso de Afonso Bonotto N, Pulcinelli DF, Kerkhoff Escher AL, Klein C, de Azevedo Mello P, Bitencourt GR, Barbisan F. Achyrocline satureioides infusion, popularly prepared and consumed, has an in vitro protective effect on human neural cells exposed to rotenone. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118350. [PMID: 38763375 DOI: 10.1016/j.jep.2024.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 μL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 μg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 μl/mL, AS decreased apoptotic events, whereas the highest concentration (300 μl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Maria Eduarda Chelotti
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Barbara Osmarin Turra
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Débora Felipetto Pulcinelli
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Laura Kerkhoff Escher
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Caroline Klein
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paola de Azevedo Mello
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gustavo Rossato Bitencourt
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Darawsha A, Trachtenberg A, Sharoni Y. ARE/Nrf2 Transcription System Involved in Carotenoid, Polyphenol, and Estradiol Protection from Rotenone-Induced Mitochondrial Oxidative Stress in Dermal Fibroblasts. Antioxidants (Basel) 2024; 13:1019. [PMID: 39199263 PMCID: PMC11351643 DOI: 10.3390/antiox13081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Skin aging is associated with the increased production of mitochondrial reactive oxygen species (mtROS) due to mitochondrial dysfunction, and various phytonutrients and estrogens have been shown to improve skin health. Thus, the aim of the current study was to examine damage to dermal fibroblasts by chemically induced mitochondrial dysfunction and to study the mechanism of the protective effects of carotenoids, polyphenols, and estradiol. Rotenone, a Complex I inhibitor, caused mitochondrial dysfunction in human dermal fibroblasts, substantially reducing respiration and ATP levels, followed by increased mitochondrial and cytosolic ROS, which resulted in apoptotic cell death, an increased number of senescent cells, increased matrix metalloproteinase-1 (MMP1) secretion, and decreased collagen secretion. Pre-treatment with carotenoid-rich tomato extracts, rosemary extract, and estradiol reversed these effects. These protective effects can be partially explained by a cooperative activation of antioxidant response element (ARE/Nrf2) transcriptional activity by the protective compounds and rotenone, which led to the upregulation of antioxidant proteins such as NQO1. To determine if ARE/Nrf2 activity is crucial for cell protection, we inhibited it using the Nrf2 inhibitors ML385 and ochratoxin A. This inhibition markedly reduced the protective effects of the test compounds by diminishing their effect to reduce cytosolic ROS. Our study results indicate that phytonutrients and estradiol protect skin cells from damage caused by mtROS, and thus may delay skin cell senescence and improve skin health.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel; (A.D.); (A.T.)
| |
Collapse
|
5
|
Varghese N, Grimm A, Cader MZ, Eckert A. From Young to Old: Mimicking Neuronal Aging in Directly Converted Neurons from Young Donors. Cells 2024; 13:1260. [PMID: 39120291 PMCID: PMC11311457 DOI: 10.3390/cells13151260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.
Collapse
Affiliation(s)
- Nimmy Varghese
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - M. Zameel Cader
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DS, UK;
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
6
|
Musachio EAS, Pires RG, Fernandes EJ, Andrade S, Meichtry LB, Janner DE, Meira GM, Ribeiro EE, Barbisan F, da Cruz IBM, Prigol M. The Amazonian Camu-Camu Fruit Modulates the Development of Drosophila melanogaster and the Neural Function of Adult Flies under Oxidative Stress Conditions. Antioxidants (Basel) 2024; 13:102. [PMID: 38247526 PMCID: PMC11154359 DOI: 10.3390/antiox13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Camu-camu (Myrciaria dubia) is known for its antioxidant properties, although little is known about its developmental safety effects, particularly on adult neural function under basal redox and oxidative stress conditions. Therefore, this study sought to address this gap by conducting three complementary protocols using Drosophila melanogaster to investigate these effects. The initial assays revealed that second-stage larvae consumed diets supplemented with various concentrations of camu-camu uniformly, establishing a 50% lethal concentration at 4.799 mg/mL. Hence, non-lethal (0.1, 0.5, and 1 mg/mL) and sub-lethal (5 and 10 mg/mL) concentrations were then chosen to evaluate the effects of camu-camu on preimaginal development and adult neural function. Our observations showed that camu-camu impacts the expression of antioxidant enzymes, reactive species, and lipoperoxidation. Notably, sub-lethal concentrations decreased preimaginal viability and locomotor activity, negatively influenced geotaxis and acetylcholinesterase activity, and increased reactive species, catalase, and glutathione S-transferase activity in flies. Additionally, the protective effects of camu-camu against oxidative stress induced by iron (20 mM) were assessed. Flies supplemented with 0.5 mg/mL of camu-camu during the larval period showed improved neural viability and function, and this supplementation was found to protect against oxidative stress. These findings are instrumental in evaluating the safety and efficacy of commercial supplements based on camu-camu, offering significant insights for future research and application.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Rafaela Garay Pires
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Stefani Andrade
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Graziela Moro Meira
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
| | - Euler Esteves Ribeiro
- Center for Research, Teaching and Technological Development-GERONTEC, Open University Foundation for the Elderly, Manaus 69029-040, AM, Brazil;
| | - Fernanda Barbisan
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| |
Collapse
|
7
|
Kim S. LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol 2023; 14:1303151. [PMID: 37881693 PMCID: PMC10597623 DOI: 10.3389/fphys.2023.1303151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Although dermatology offers advanced interventions, molecular mechanisms in skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of coding or non-coding RNAs, regulate gene expression through miRNA competition. Several ceRNA networks investigated up to now offer insights into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-epiregulin contributes to UVB-induced inflammatory skin damage. Predicted ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C sequesters miRNAs in epidermal aging-associated alteration of calcium gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses identify critical genes and compounds for skin aging interventions. In skin wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA networks provide valuable insights into the molecular underpinnings of skin aging and wound healing, offering potential therapeutic strategies for further investigation. This comprehensive review serves as a foundational platform for future research endeavors in these crucial areas of dermatology.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|