1
|
Cornelissen LL, Caram‐Deelder C, Fustolo‐Gunnink SF, Groenwold RHH, Stanworth SJ, Zwaginga JJ, van der Bom JG. Expected individual benefit of prophylactic platelet transfusions in hemato-oncology patients based on bleeding risks. Transfusion 2021; 61:2578-2587. [PMID: 34263930 PMCID: PMC8518514 DOI: 10.1111/trf.16587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prophylactic platelet transfusions prevent bleeding in hemato-oncology patients, but it is unclear how any benefit varies between patients. Our aim was to assess if patients with different baseline risks for bleeding benefit differently from a prophylactic platelet transfusion strategy. STUDY DESIGN AND METHODS Using the data from the randomized controlled TOPPS trial (Trial of Platelet Prophylaxis), we developed a prediction model for World Health Organization grades 2, 3, and 4 bleeding risk (defined as at least one bleeding episode in a 30 days period) and grouped patients in four risk-quartiles based on this predicted baseline risk. Predictors in the model were baseline platelet count, age, diagnosis, disease modifying treatment, disease status, previous stem cell transplantation, and the randomization arm. RESULTS The model had a c-statistic of 0.58 (95% confidence interval [CI] 0.54-0.64). There was little variation in predicted risks (quartiles 46%, 47%, and 51%), but prophylactic platelet transfusions gave a risk reduction in all risk quartiles. The absolute risk difference (ARD) was 3.4% (CI -12.2 to 18.9) in the lowest risk quartile (quartile 1), 7.4% (95% CI -8.4 to 23.3) in quartile 2, 6.8% (95% CI -9.1 to 22.9) in quartile 3, and 12.8% (CI -3.1 to 28.7) in the highest risk quartile (quartile 4). CONCLUSION In our study, generally accepted bleeding risk predictors had limited predictive power (expressed by the low c-statistic), and, given the wide confidence intervals of predicted ARD, could not aid in identifying subgroups of patients who might benefit more (or less) from prophylactic platelet transfusion.
Collapse
Affiliation(s)
- Loes L. Cornelissen
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/LUMCLeidenThe Netherlands
- Department of HematologyLeiden University medical CenterLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Camila Caram‐Deelder
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/LUMCLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Susanna F. Fustolo‐Gunnink
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/LUMCLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Rolf H. H. Groenwold
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Simon J. Stanworth
- Transfusion Medicine, NHS Blood and Transplant (NHSBT)OxfordUK
- Department of HaematologyOxford University Hospitals NHS Foundation TrustOxfordUK
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxfordUK
| | - Jaap Jan Zwaginga
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/LUMCLeidenThe Netherlands
- Department of HematologyLeiden University medical CenterLeidenThe Netherlands
| | - Johanna G. van der Bom
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/LUMCLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Estcourt LJ, McQuilten Z, Powter G, Dyer C, Curnow E, Wood EM, Stanworth SJ. The TREATT Trial (TRial to EvaluAte Tranexamic acid therapy in Thrombocytopenia): safety and efficacy of tranexamic acid in patients with haematological malignancies with severe thrombocytopenia: study protocol for a double-blind randomised controlled trial. Trials 2019; 20:592. [PMID: 31615553 PMCID: PMC6792262 DOI: 10.1186/s13063-019-3663-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background Patients with haematological malignancies often develop thrombocytopenia as a consequence of either their disease or its treatment. Platelet transfusions are commonly given to raise a low platelet count and reduce the risk of clinical bleeding (prophylaxis) or stop active bleeding (therapy). Recent studies have shown that many patients continue to experience bleeding despite the use of prophylactic platelet transfusions. Tranexamic acid is an anti-fibrinolytic, which reduces the breakdown of clots formed in response to bleeding. Anti-fibrinolytics have been shown to prevent bleeding, decrease blood loss and use of red cell transfusions in elective and emergency surgery, and are used widely in these settings. The aim of this trial is to test whether giving tranexamic acid to patients receiving treatment for haematological malignancies reduces the risk of bleeding or death and the need for platelet transfusions. Methods This is a multinational randomised, double-blind, placebo-controlled, parallel, superiority trial. Patients will be randomly assigned to receive tranexamic acid (given intravenously or orally) or a matching placebo in a 1:1 ratio, stratified by site. Patients with haematological malignancies receiving intensive chemotherapy or stem cell transplantation (or both) who are at least 18 years of age and expected to become severely thrombocytopenic for at least 5 days will be eligible for this trial. The primary outcome of the trial is the proportion of patients who died or had bleeding of World Health Organization grade 2 or above during the first 30 days of the trial. We will measure the rates of bleeding daily by using a short, structured assessment of bleeding, and we will record the number of transfusions given to patients. We will assess the risk of arterial and venous thrombosis for 120 days from the start of trial treatment. Discussion This trial will assess the safety and efficacy of using prophylactic tranexamic acid during a period of intensive chemotherapy and associated thrombocytopenia in people with haematological disorders. Trial registration This study was prospectively registered on Current Controlled Trials on 25 March 2015 (ISRCTN73545489) and is also registered on ClinicalTrials.gov (NCT03136445). Electronic supplementary material The online version of this article (10.1186/s13063-019-3663-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and Transplant, Oxford, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Zoe McQuilten
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Haematology, Monash Health, Melbourne, Australia
| | - Gillian Powter
- NHS Blood and Transplant Clinical Trials Unit, Headington, Oxford, UK
| | - Claire Dyer
- NHS Blood and Transplant Clinical Trials Unit, Headington, Oxford, UK
| | - Eleanor Curnow
- NHS Blood and Transplant Statistics and Clinical Studies, Stoke Gifford, Bristol, UK
| | - Erica M Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Haematology, Monash Health, Melbourne, Australia
| | - Simon J Stanworth
- NHS Blood and Transplant, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Malouf R, Ashraf A, Hadjinicolaou AV, Doree C, Hopewell S, Estcourt LJ. Comparison of a therapeutic-only versus prophylactic platelet transfusion policy for people with congenital or acquired bone marrow failure disorders. Cochrane Database Syst Rev 2018; 5:CD012342. [PMID: 29758592 PMCID: PMC5985156 DOI: 10.1002/14651858.cd012342.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Bone marrow disorders encompass a group of diseases characterised by reduced production of red cells, white cells, and platelets, or defects in their function, or both. The most common bone marrow disorder is myelodysplastic syndrome. Thrombocytopenia, a low platelet count, commonly occurs in people with bone marrow failure. Platetet transfusions are routinely used in people with thrombocytopenia secondary to bone marrow failure disorders to treat or prevent bleeding. Myelodysplastic syndrome is currently the most common reason for receiving a platelet transfusion in some Western countries. OBJECTIVES To determine whether a therapeutic-only platelet transfusion policy (transfusion given when patient is bleeding) is as effective and safe as a prophylactic platelet transfusion policy (transfusion given to prevent bleeding according to a prespecified platelet threshold) in people with congenital or acquired bone marrow failure disorders. SEARCH METHODS We searched for randomised controlled trials (RCTs), non-RCTs, and controlled before-after studies (CBAs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2017, Issue 9), Ovid MEDLINE (from 1946), Ovid Embase (from 1974), PubMed (e-publications only), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 12 October 2017. SELECTION CRITERIA We included RCTs, non-RCTs, and CBAs that involved the transfusion of platelet concentrates (prepared either from individual units of whole blood or by apheresis any dose, frequency, or transfusion trigger) and given to treat or prevent bleeding among people with congenital or acquired bone marrow failure disorders.We excluded uncontrolled studies, cross-sectional studies, and case-control studies. We excluded cluster-RCTs, non-randomised cluster trials, and CBAs with fewer than two intervention sites and two control sites due to the risk of confounding. We included all people with long-term bone marrow failure disorders that require platelet transfusions, including neonates. We excluded studies of alternatives to platelet transfusion, or studies of people receiving intensive chemotherapy or a stem cell transplant. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures outlined by Cochrane. Due to the absence of evidence we were unable to report on any of the review outcomes. MAIN RESULTS We identified one RCT that met the inclusion criteria for this review. The study enrolled only nine adults with MDS over a three-year study duration period. The trial was terminated due to poor recruitment rate (planned recruitment 60 participants over two years). Assessment of the risk of bias was not possible for all domains. The trial was a single-centre, single-blind trial. The clinical and demographic characteristics of the participants were never disclosed. The trial outcomes relevant to this review were bleeding assessments, mortality, quality of life, and length of hospital stay, but no data were available to report on any of these outcomes.We identified no completed non-RCTs or CBAs.We identified no ongoing RCTs, non-RCTs, or CBAs. AUTHORS' CONCLUSIONS We found no evidence to determine the safety and efficacy of therapeutic platelet transfusion compared with prophylactic platelet transfusion for people with long-term bone marrow failure disorders. This review underscores the urgency of prioritising research in this area. People with bone marrow failure depend on long-term platelet transfusion support, but the only trial that assessed a therapeutic strategy was halted. There is a need for good-quality studies comparing a therapeutic platelet transfusion strategy with a prophylactic platelet transfusion strategy; such trials should include outcomes that are important to patients, such as quality of life, length of hospital admission, and risk of bleeding.
Collapse
Affiliation(s)
- Reem Malouf
- University of OxfordNational Perinatal Epidemiology Unit (NPEU)Old Road CampusOxfordUKOX3 7LF
| | - Asma Ashraf
- Calvary Mater Hospital; University of NewcastleHaematologyCrn Edith street & Platt streetLevel 4 New Medical buildingWaratahNSWAustralia2298
| | - Andreas V Hadjinicolaou
- University of OxfordHuman Immunology Unit, Institute of Molecular Medicine, Radcliffe Department of MedicineMerton College, Merton StreetOxfordUKOX1 4JD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Sally Hopewell
- University of OxfordNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Botnar Research Centre, Windmill RoadOxfordOxfordshireUKOX3 7LD
| | - Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | | |
Collapse
|
4
|
Singh A, Balasubramanian V, Gupta N. Spontaneous intracranial hemorrhage associated with dengue fever: An emerging concern for general physicians. J Family Med Prim Care 2018; 7:618-628. [PMID: 30112320 PMCID: PMC6069661 DOI: 10.4103/jfmpc.jfmpc_56_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dengue fever (DF) is an arboviral disease caused by a positive-sense RNA virus of the genus Flavivirus. The overall incidence of DF has increased exponentially worldwide over the last three decades. The atypical clinical manifestations of DF grouped under expanded dengue syndrome (EDS), have also been reported more frequently for the last decade. These unusual manifestations are usually associated with coinfections, comorbidities, or complications of prolonged shock. Intracranial hemorrhage (ICH) is one of the rare manifestations of the central nervous system involvement by dengue as a part of EDS. The pathogenesis and treatment of this manifestation also remain controversial. Therefore, we report a case of a previously healthy 65-year-old female who developed ICH as a part of EDS along with a brief review of literature.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Pulmonary, Critical Care and Sleep Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Viswesvaran Balasubramanian
- Department of Respiratory Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Nitesh Gupta
- Department of Respiratory Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Khanal N, Bociek RG, Chen B, Vose JM, Armitage JO, Bierman PJ, Maness LJ, Lunning MA, Gundabolu K, Bhatt VR. Venous thromboembolism in patients with hematologic malignancy and thrombocytopenia. Am J Hematol 2016; 91:E468-E472. [PMID: 27489982 DOI: 10.1002/ajh.24526] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 11/12/2022]
Abstract
The optimal management of hematologic malignancy-associated venous thromboembolism (VTE) in patients with moderate-to-severe thrombocytopenia is unclear. This is a retrospective study of 128 adult patients with hematologic malignancies who were diagnosed with VTE. The outcome of patients with significant thrombocytopenia (≤50,000/µL) was compared with those without. Forty-seven patients (36.7%) had a platelet count ≤50,000/µL during a period of time of perceived need for new or continued anticoagulation. The median nadir platelet count in those with significant thrombocytopenia was 10,000/µL (range 2,000-45,000/µL) versus 165,000/µL (50,000-429,000/µL) in those without (P < 0.001). The median duration of significant thrombocytopenia in the first group was 10 days (1-35 days). Therapy during the period of significant thrombocytopenia included prophylactic-dose low-molecular-weight heparin (LMWH) (47%), therapeutic-dose LMWH or heparin (30%), warfarin (2%), inferior vena cava filter (2%), and observation (17%). Patients without thrombocytopenia were managed with the standard of care therapy. At a median follow-up of more than 2 years, the risk of clinically significant bleeding (11% vs 6%, P = 0.22) including major bleeding (6% vs 2%) and clot progression or recurrence (21% vs 22%, P = 1.00) were similar in patients with or without significant thrombocytopenia. In a multivariate analysis, the risk of recurrence/progression (hazard ratio, HR 0.59, 95% CI 0.21-1.66, P = 0.31) and hemorrhage rate (HR 0.29, 95% CI 0.05-1.56, P = 0.15) did not differ based on the presence of significant thrombocytopenia. Within the limits of this retrospective study, cautious use of prophylactic-dose LMWH may be safe in thrombocytopenic patients with hematologic malignancy-associated VTE. Am. J. Hematol. 91:E468-E472, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nabin Khanal
- Department of Internal Medicine; Creighton University Medical Center; Omaha Nebraska
| | - R. Gregory Bociek
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Baojiang Chen
- Department of Biostatistics; University of Nebraska Medical Center; Omaha Nebraska
| | - Julie M. Vose
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - James O. Armitage
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Philip J. Bierman
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Lori J. Maness
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Matthew A. Lunning
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Krishna Gundabolu
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| | - Vijaya R. Bhatt
- Department of Internal Medicine; Division of Hematology-Oncology, University of Nebraska Medical Center; Omaha Nebraska
| |
Collapse
|
6
|
Desborough M, Estcourt LJ, Doree C, Trivella M, Hopewell S, Stanworth SJ, Murphy MF. Alternatives, and adjuncts, to prophylactic platelet transfusion for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2016; 2016:CD010982. [PMID: 27548292 PMCID: PMC5019360 DOI: 10.1002/14651858.cd010982.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people with thrombocytopenia. Although considerable advances have been made in platelet transfusion therapy since the mid-1970s, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. OBJECTIVES To determine whether agents that can be used as alternatives, or adjuncts, to platelet transfusions for people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation are safe and effective at preventing bleeding. SEARCH METHODS We searched 11 bibliographic databases and four ongoing trials databases including the Cochrane Central Register of Controlled Trials (CENTRAL, 2016, Issue 4), MEDLINE (OvidSP, 1946 to 19 May 2016), Embase (OvidSP, 1974 to 19 May 2016), PubMed (e-publications only: searched 19 May 2016), ClinicalTrials.gov, World Health Organization (WHO) ICTRP and the ISRCTN Register (searched 19 May 2016). SELECTION CRITERIA We included randomised controlled trials in people with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation who were allocated to either an alternative to platelet transfusion (artificial platelet substitutes, platelet-poor plasma, fibrinogen concentrate, recombinant activated factor VII, desmopressin (DDAVP), or thrombopoietin (TPO) mimetics) or a comparator (placebo, standard care or platelet transfusion). We excluded studies of antifibrinolytic drugs, as they were the focus of another review. DATA COLLECTION AND ANALYSIS Two review authors screened all electronically derived citations and abstracts of papers identified by the review search strategy. Two review authors assessed risk of bias in the included studies and extracted data independently. MAIN RESULTS We identified 16 eligible trials. Four trials are ongoing and two have been completed but the results have not yet been published (trial completion dates: April 2012 to February 2017). Therefore, the review included 10 trials in eight references with 554 participants. Six trials (336 participants) only included participants with acute myeloid leukaemia undergoing intensive chemotherapy, two trials (38 participants) included participants with lymphoma undergoing intensive chemotherapy and two trials (180 participants) reported participants undergoing allogeneic stem cell transplantation. Men and women were equally well represented in the trials. The age range of participants included in the trials was from 16 years to 81 years. All trials took place in high-income countries. The manufacturers of the agent sponsored eight trials that were under investigation, and two trials did not report their source of funding.No trials assessed artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin.Nine trials compared a TPO mimetic to placebo or standard care; seven of these used pegylated recombinant human megakaryocyte growth and differentiation factor (PEG-rHuMGDF) and two used recombinant human thrombopoietin (rhTPO).One trial compared platelet-poor plasma to platelet transfusion.We considered that all the trials included in this review were at high risk of bias and meta-analysis was not possible in seven trials due to problems with the way data were reported.We are very uncertain whether TPO mimetics reduce the number of participants with any bleeding episode (odds ratio (OR) 0.40, 95% confidence interval (CI) 0.10 to 1.62, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce the risk of a life-threatening bleed after 30 days (OR 1.46, 95% CI 0.06 to 33.14, three trials, 209 participants, very low quality evidence); or after 90 days (OR 1.00, 95% CI 0.06 to 16.37, one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce platelet transfusion requirements after 30 days (mean difference -3.00 units, 95% CI -5.39 to -0.61, one trial, 120 participants, very low quality evidence). No deaths occurred in either group after 30 days (one trial, 120 participants, very low quality evidence). We are very uncertain whether TPO mimetics reduce all-cause mortality at 90 days (OR 1.00, 95% CI 0.24 to 4.20, one trial, 120 participants, very low quality evidence). No thromboembolic events occurred for participants treated with TPO mimetics or control at 30 days (two trials, 209 participants, very low quality evidence). We found no trials that looked at: number of days on which bleeding occurred, time from randomisation to first bleed or quality of life.One trial with 18 participants compared platelet-poor plasma transfusion with platelet transfusion. We are very uncertain whether platelet-poor plasma reduces the number of participants with any bleeding episode (OR 16.00, 95% CI 1.32 to 194.62, one trial, 18 participants, very low quality evidence). We are very uncertain whether platelet-poor plasma reduces the number of participants with severe or life-threatening bleeding (OR 4.00, 95% CI 0.56 to 28.40, one trial, 18 participants, very low quality evidence). We found no trials that looked at: number of days on which bleeding occurred, time from randomisation to first bleed, number of platelet transfusions, all-cause mortality, thromboembolic events or quality of life. AUTHORS' CONCLUSIONS There is insufficient evidence to determine if platelet-poor plasma or TPO mimetics reduce bleeding for participants with haematological malignancies undergoing intensive chemotherapy or stem cell transplantation. To detect a decrease in the proportion of participants with clinically significant bleeding from 12 in 100 to 6 in 100 would require a trial containing at least 708 participants (80% power, 5% significance). The six ongoing trials will provide additional information about the TPO mimetic comparison (424 participants) but this will still be underpowered to demonstrate this level of reduction in bleeding. None of the included or ongoing trials include children. There are no completed or ongoing trials assessing artificial platelet substitutes, fibrinogen concentrate, recombinant activated factor VII or desmopressin in people undergoing intensive chemotherapy or stem cell transplantation for haematological malignancies.
Collapse
Affiliation(s)
| | - Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineOxfordUK
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Sally Hopewell
- University of OxfordOxford Clinical Trials Research UnitNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesWindmill RoadOxfordOxfordshireUKOX3 7LD
| | - Simon J Stanworth
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe Hospital, Headley WayHeadingtonOxfordUKOX3 9BQ
| | - Michael F Murphy
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNHS Blood and Transplant; National Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe HospitalHeadingtonOxfordUK
| | | |
Collapse
|
7
|
Tamamyan G, Danielyan S, Lambert MP. Chemotherapy induced thrombocytopenia in pediatric oncology. Crit Rev Oncol Hematol 2016; 99:299-307. [DOI: 10.1016/j.critrevonc.2016.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/06/2015] [Accepted: 01/12/2016] [Indexed: 01/19/2023] Open
|
8
|
Estcourt LJ, Stanworth SJ, Doree C, Hopewell S, Trivella M, Murphy MF. Comparison of different platelet count thresholds to guide administration of prophylactic platelet transfusion for preventing bleeding in people with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2015; 2015:CD010983. [PMID: 26576687 PMCID: PMC4717525 DOI: 10.1002/14651858.cd010983.pub2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people who are thrombocytopenic due to bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004, and previously updated in 2012 that addressed four separate questions: prophylactic versus therapeutic-only platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. This review has now been split into four smaller reviews looking at these questions individually; this review compares prophylactic platelet transfusion thresholds. OBJECTIVES To determine whether different platelet transfusion thresholds for administration of prophylactic platelet transfusions (platelet transfusions given to prevent bleeding) affect the efficacy and safety of prophylactic platelet transfusions in preventing bleeding in people with haematological disorders undergoing myelosuppressive chemotherapy or haematopoietic stem cell transplantation (HSCT). SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library 2015, Issue 6, 23 July 2015), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 23 July 2015. SELECTION CRITERIA We included RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in people with haematological disorders (receiving myelosuppressive chemotherapy or undergoing HSCT) that compared different thresholds for administration of prophylactic platelet transfusions (low trigger (5 x 10(9)/L); standard trigger (10 x 10(9)/L); higher trigger (20 x 10(9)/L, 30 x 10(9)/L, 50 x 10(9)/L); or alternative platelet trigger (for example platelet mass)). DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS Three trials met our predefined inclusion criteria and were included for analysis in the review (499 participants). All three trials compared a standard trigger (10 x 10(9)/L) versus a higher trigger (20 x 10(9)/L or 30 x 10(9)/L). None of the trials compared a low trigger versus a standard trigger or an alternative platelet trigger. The trials were conducted between 1991 and 2001 and enrolled participants from fairly comparable patient populations.The original review contained four trials (658 participants); in the previous update of this review we excluded one trial (159 participants) because fewer than 80% of participants had a haematological disorder. We identified no new trials in this update of the review.Overall, the methodological quality of the studies was low across different outcomes according to GRADE methodology. None of the included studies were at low risk of bias in every domain, and all the included studies had some threats to validity.Three studies reported the number of participants with at least one clinically significant bleeding episode within 30 days from the start of the study. There was no evidence of a difference in the number of participants with a clinically significant bleeding episode between the standard and higher trigger groups (three studies; 499 participants; risk ratio (RR) 1.35, 95% confidence interval (CI) 0.95 to 1.90; low-quality evidence).One study reported the number of days with a clinically significant bleeding event (adjusted for repeated measures). There was no evidence of a difference in the number of days of bleeding per participant between the standard and higher trigger groups (one study; 255 participants; relative proportion of days with World Health Organization Grade 2 or worse bleeding (RR 1.71, 95% CI 0.84 to 3.48, P = 0.162; authors' own results; low-quality evidence).Two studies reported the number of participants with severe or life-threatening bleeding. There was no evidence of any difference in the number of participants with severe or life-threatening bleeding between a standard trigger level and a higher trigger level (two studies; 421 participants; RR 0.99, 95% CI 0.52 to 1.88; low-quality evidence).Only one study reported the time to first bleeding episode. There was no evidence of any difference in the time to the first bleeding episode between a standard trigger level and a higher trigger level (one study; 255 participants; hazard ratio 1.11, 95% CI 0.64 to 1.91; low-quality evidence).Only one study reported on all-cause mortality within 30 days from the start of the study. There was no evidence of any difference in all-cause mortality between standard and higher trigger groups (one study; 255 participants; RR 1.78, 95% CI 0.83 to 3.81; low-quality evidence).Three studies reported on the number of platelet transfusions per participant. Two studies reported on the mean number of platelet transfusions per participant. There was a significant reduction in the number of platelet transfusions per participant in the standard trigger group (two studies, mean difference -2.09, 95% CI -3.20 to -0.99; low-quality evidence).One study reported on the number of transfusion reactions. There was no evidence to demonstrate any difference in transfusion reactions between the standard and higher trigger groups (one study; 79 participants; RR 0.07, 95% CI 0.00 to 1.09).None of the studies reported on quality of life. AUTHORS' CONCLUSIONS In people with haematological disorders who are thrombocytopenic due to myelosuppressive chemotherapy or HSCT, we found low-quality evidence that a standard trigger level (10 x 10(9)/L) is associated with no increase in the risk of bleeding when compared to a higher trigger level (20 x 10(9)/L or 30 x 10(9)/L). There was low-quality evidence that a standard trigger level is associated with a decreased number of transfusion episodes when compared to a higher trigger level (20 x 10(9)/L or 30 x 10(9)/L).Findings from this review were based on three studies and 499 participants. Without further evidence, it is reasonable to continue with the current practice of administering prophylactic platelet transfusions using the standard trigger level (10 x 10(9)/L) in the absence of other risk factors for bleeding.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | - Simon J Stanworth
- Oxford University Hospitals NHS Foundation Trust and the University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe Hospital, Headley WayHeadingtonOxfordUKOX3 9BQ
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Sally Hopewell
- University of OxfordCentre for Statistics in MedicineWolfson CollegeLinton RoadOxfordOxfordshireUKOX2 6UD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineWolfson CollegeLinton RoadOxfordOxfordshireUKOX2 6UD
| | - Michael F Murphy
- Oxford University Hospitals and the University of OxfordNHS Blood and Transplant; National Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe HospitalHeadingtonOxfordUK
| | | |
Collapse
|
9
|
Estcourt LJ, Stanworth S, Doree C, Trivella M, Hopewell S, Blanco P, Murphy MF. Different doses of prophylactic platelet transfusion for preventing bleeding in people with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2015; 2015:CD010984. [PMID: 26505729 PMCID: PMC4724938 DOI: 10.1002/14651858.cd010984.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in people who are thrombocytopenic due to bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004, and updated in 2012 that addressed four separate questions: prophylactic versus therapeutic-only platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. This review has now been split into four smaller reviews; this review compares different platelet transfusion doses. OBJECTIVES To determine whether different doses of prophylactic platelet transfusions (platelet transfusions given to prevent bleeding) affect their efficacy and safety in preventing bleeding in people with haematological disorders undergoing myelosuppressive chemotherapy with or without haematopoietic stem cell transplantation (HSCT). SEARCH METHODS We searched for randomised controlled trials in the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library 2015, Issue 6), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 23 July 2015. SELECTION CRITERIA Randomised controlled trials involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in people with malignant haematological disorders or undergoing HSCT that compared different platelet component doses (low dose 1.1 x 10(11)/m(2) ± 25%, standard dose 2.2 x 10(11)/m(2) ± 25%, high dose 4.4 x 10(11)/m(2) ± 25%). DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by The Cochrane Collaboration. MAIN RESULTS We included seven trials (1814 participants) in this review; six were conducted during one course of treatment (chemotherapy or HSCT).Overall the methodological quality of studies was low to moderate across different outcomes according to GRADE methodology. None of the included studies were at low risk of bias in every domain, and all the included studies had some threats to validity.Five studies reported the number of participants with at least one clinically significant bleeding episode within 30 days from the start of the study. There was no difference in the number of participants with a clinically significant bleeding episode between the low-dose and standard-dose groups (four studies; 1170 participants; risk ratio (RR) 1.04, 95% confidence interval (CI) 0.95 to 1.13; moderate-quality evidence); low-dose and high-dose groups (one study; 849 participants; RR 1.02, 95% CI 0.93 to 1.11; moderate-quality evidence); or high-dose and standard-dose groups (two studies; 951 participants; RR 1.02, 95% CI 0.93 to 1.11; moderate-quality evidence).Three studies reported the number of days with a clinically significant bleeding event per participant. There was no difference in the number of days of bleeding per participant between the low-dose and standard-dose groups (two studies; 230 participants; mean difference -0.17, 95% CI -0.51 to 0.17; low quality evidence). One study (855 participants) showed no difference in the number of days of bleeding per participant between high-dose and standard-dose groups, or between low-dose and high-dose groups (849 participants).Three studies reported the number of participants with severe or life-threatening bleeding. There was no difference in the number of participants with severe or life-threatening bleeding between a low-dose and a standard-dose platelet transfusion policy (three studies; 1059 participants; RR 1.33, 95% CI 0.91 to 1.92; low-quality evidence); low-dose and high-dose groups (one study; 849 participants; RR 1.20, 95% CI 0.82 to 1.77; low-quality evidence); or high-dose and standard-dose groups (one study; 855 participants; RR 1.11, 95% CI 0.73 to 1.68; low-quality evidence).Two studies reported the time to first bleeding episodes; we were unable to perform a meta-analysis. Both studies (959 participants) individually found that the time to first bleeding episode was either the same, or longer, in the low-dose group compared to the standard-dose group. One study (855 participants) found that the time to the first bleeding episode was the same in the high-dose group compared to the standard-dose group.Three studies reported all-cause mortality within 30 days from the start of the study. There was no difference in all-cause mortality between treatment arms (low-dose versus standard-dose: three studies; 1070 participants; RR 2.04, 95% CI 0.70 to 5.93; low-quality evidence; low-dose versus high-dose: one study; 849 participants; RR 1.33, 95% CI 0.50 to 3.54; low-quality evidence; and high-dose versus standard-dose: one study; 855 participants; RR 1.71, 95% CI 0.51 to 5.81; low-quality evidence).Six studies reported the number of platelet transfusions; we were unable to perform a meta-analysis. Two studies (959 participants) out of three (1070 participants) found that a low-dose transfusion strategy led to more transfusion episodes than a standard-dose. One study (849 participants) found that a low-dose transfusion strategy led to more transfusion episodes than a high-dose strategy. One study (855 participants) out of three (1007 participants) found no difference in the number of platelet transfusions between the high-dose and standard-dose groups.One study reported on transfusion reactions. This study's authors suggested that a high-dose platelet transfusion strategy may lead to a higher rate of transfusion-related adverse events.None of the studies reported quality-of-life. AUTHORS' CONCLUSIONS In haematology patients who are thrombocytopenic due to myelosuppressive chemotherapy or HSCT, we found no evidence to suggest that a low-dose platelet transfusion policy is associated with an increased bleeding risk compared to a standard-dose or high-dose policy, or that a high-dose platelet transfusion policy is associated with a decreased risk of bleeding when compared to a standard-dose policy.A low-dose platelet transfusion strategy leads to an increased number of transfusion episodes compared to a standard-dose strategy. A high-dose platelet transfusion strategy does not decrease the number of transfusion episodes per participant compared to a standard-dose regimen, and it may increase the number of transfusion-related adverse events.Findings from this review would suggest a change from current practice, with low-dose platelet transfusions used for people receiving in-patient treatment for their haematological disorder and high-dose platelet transfusion strategies not being used routinely.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | - Simon Stanworth
- Oxford University Hospitals and the University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreOxfordUKOX3 9BQ
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Sally Hopewell
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Patricia Blanco
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Michael F Murphy
- Oxford University Hospitals and the University of OxfordNHS Blood and Transplant; National Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe HospitalHeadingtonOxfordUK
| | | |
Collapse
|
10
|
Crighton GL, Estcourt LJ, Wood EM, Trivella M, Doree C, Stanworth S. A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2015; 2015:CD010981. [PMID: 26422767 PMCID: PMC4610062 DOI: 10.1002/14651858.cd010981.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in thrombocytopenic patients with bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate, especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding.This is an update of a Cochrane review first published in 2004 and updated in 2012 that addressed four separate questions: therapeutic-only versus prophylactic platelet transfusion policy; prophylactic platelet transfusion threshold; prophylactic platelet transfusion dose; and platelet transfusions compared to alternative treatments. We have now split this review into four smaller reviews looking at these questions individually; this review is the first part of the original review. OBJECTIVES To determine whether a therapeutic-only platelet transfusion policy (platelet transfusions given when patient bleeds) is as effective and safe as a prophylactic platelet transfusion policy (platelet transfusions given to prevent bleeding, usually when the platelet count falls below a given trigger level) in patients with haematological disorders undergoing myelosuppressive chemotherapy or stem cell transplantation. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (Cochrane Library 2015, Issue 6), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 23 July 2015. SELECTION CRITERIA RCTs involving transfusions of platelet concentrates prepared either from individual units of whole blood or by apheresis, and given to prevent or treat bleeding in patients with malignant haematological disorders receiving myelosuppressive chemotherapy or undergoing HSCT. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by The Cochrane Collaboration. MAIN RESULTS We identified seven RCTs that compared therapeutic platelet transfusions to prophylactic platelet transfusions in haematology patients undergoing myelosuppressive chemotherapy or HSCT. One trial is still ongoing, leaving six trials eligible with a total of 1195 participants. These trials were conducted between 1978 and 2013 and enrolled participants from fairly comparable patient populations. We were able to critically appraise five of these studies, which contained separate data for each arm, and were unable to perform quantitative analysis on one study that did not report the numbers of participants in each treatment arm.Overall the quality of evidence per outcome was low to moderate according to the GRADE approach. None of the included studies were at low risk of bias in every domain, and all the studies identified had some threats to validity. We deemed only one study to be at low risk of bias in all domains other than blinding.Two RCTs (801 participants) reported at least one bleeding episode within 30 days of the start of the study. We were unable to perform a meta-analysis due to considerable statistical heterogeneity between studies. The statistical heterogeneity seen may relate to the different methods used in studies for the assessment and grading of bleeding. The underlying patient diagnostic and treatment categories also appeared to have some effect on bleeding risk. Individually these studies showed a similar effect, that a therapeutic-only platelet transfusion strategy was associated with an increased risk of clinically significant bleeding compared with a prophylactic platelet transfusion policy. Number of days with a clinically significant bleeding event per participant was higher in the therapeutic-only group than in the prophylactic group (one RCT; 600 participants; mean difference 0.50, 95% confidence interval (CI) 0.10 to 0.90; moderate-quality evidence). There was insufficient evidence to determine whether there was any difference in the number of participants with severe or life-threatening bleeding between a therapeutic-only transfusion policy and a prophylactic platelet transfusion policy (two RCTs; 801 participants; risk ratio (RR) 4.91, 95% CI 0.86 to 28.12; low-quality evidence). Two RCTs (801 participants) reported time to first bleeding episode. As there was considerable heterogeneity between the studies, we were unable to perform a meta-analysis. Both studies individually found that time to first bleeding episode was shorter in the therapeutic-only group compared with the prophylactic platelet transfusion group.There was insufficient evidence to determine any difference in all-cause mortality within 30 days of the start of the study using a therapeutic-only platelet transfusion policy compared with a prophylactic platelet transfusion policy (two RCTs; 629 participants). Mortality was a rare event, and therefore larger studies would be needed to establish the effect of these alternative strategies. There was a clear reduction in the number of platelet transfusions per participant in the therapeutic-only arm (two RCTs, 991 participants; standardised mean reduction of 0.50 platelet transfusions per participant, 95% CI -0.63 to -0.37; moderate-quality evidence). None of the studies reported quality of life. There was no evidence of any difference in the frequency of adverse events, such as transfusion reactions, between a therapeutic-only and prophylactic platelet transfusion policy (two RCTs; 991 participants; RR 1.02, 95% CI 0.62 to 1.68), although the confidence intervals were wide. AUTHORS' CONCLUSIONS We found low- to moderate-grade evidence that a therapeutic-only platelet transfusion policy is associated with increased risk of bleeding when compared with a prophylactic platelet transfusion policy in haematology patients who are thrombocytopenic due to myelosuppressive chemotherapy or HSCT. There is insufficient evidence to determine any difference in mortality rates and no evidence of any difference in adverse events between a therapeutic-only platelet transfusion policy and a prophylactic platelet transfusion policy. A therapeutic-only platelet transfusion policy is associated with a clear reduction in the number of platelet components administered.
Collapse
Affiliation(s)
- Gemma L Crighton
- Transfusion Outcome Research Collaborative, Department of Epidemiology and Preventive Medicine, Monash University and Australian Red Cross Blood Service, The Alfred Centre, 99 Commercial Road, Melbourne, VICTORIA, Australia, 3004
| | | | | | | | | | | |
Collapse
|
11
|
Estcourt LJ, Gregg R, Stanworth S, Doree C, Trivella M, Murphy MF, Tinmouth A. Alternative agents versus prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2015:CD010982. [PMID: 25722650 PMCID: PMC4338548 DOI: 10.1002/14651858.cd010982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine whether alternative agents (e.g. artificial platelet substitutes, platelet-poor plasma, fibrinogen, rFVIIa, thrombopoietin mimetics) are as effective and safe as the use of platelet transfusions for the prevention of bleeding (prophylactic platelet transfusion) in patients with haematological disorders who are undergoing myelosuppressive chemotherapy or stem cell transplantation. Antifibrinolytics (lysine analogues) will not be included in this review because they have been the focus of another Cochrane review (Wardrop 2013).
Collapse
Affiliation(s)
- Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Richard Gregg
- Department of Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon Stanworth
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | | | | | - Alan Tinmouth
- Medicine (hematology) and Pathology Centre for Transfusion Research, The Ottawa Health Research Institute and the University of Ottawa, Ottawa, Canada
| |
Collapse
|
12
|
Kaur P, Kaur G. Transfusion support in patients with dengue fever. Int J Appl Basic Med Res 2014; 4:S8-S12. [PMID: 25298950 PMCID: PMC4181139 DOI: 10.4103/2229-516x.140708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/01/2014] [Indexed: 12/20/2022] Open
Abstract
Dengue fever has emerged as a global public health problem in the recent decades. The clinical spectrum of the disease ranges from dengue fever to dengue hemorrhagic fever and dengue shock syndrome. The disease is characterized by increased capillary permeability, thrombocytopenia and coagulopathy. Thrombocytopenia with hemorrhagic manifestations warrants platelet transfusions. There is lack of evidence-based guidelines for transfusion support in patients with dengue fever. This contributes to inappropriate use of blood components and blood centers constantly face the challenge of inventory management during dengue outbreaks. The current review is aimed to highlight the role of platelets and other blood components in the management of dengue. The review was performed after searching relevant published literature in PubMed, Science Direct, Google scholar and various text books and journal articles.
Collapse
Affiliation(s)
- Paramjit Kaur
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Gagandeep Kaur
- Department of Transfusion Medicine, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
13
|
Campbell HE, Estcourt LJ, Stokes EA, Llewelyn CA, Murphy MF, Wood EM, Stanworth SJ. Prophylactic platelet transfusions in patients with blood malignancies: cost analysis of a randomized trial. Transfusion 2014; 54:2394-403. [PMID: 24826894 DOI: 10.1111/trf.12697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND This cost analysis uses data from a randomized trial comparing a no prophylaxis versus prophylactic platelet (PLT) transfusion policy (counts <10 × 10(9) /L) in adult patients with hematologic malignancies. Results are presented for all patients and separately for autologous hematopoietic stem cell transplantation (HSCT) (autoHSCT) and chemotherapy/allogeneic HSCT (chemo/alloHSCT) patients. STUDY DESIGN AND METHODS Data were collected to 30 days on PLT and red blood cell (RBC) transfusions, major bleeds, serious adverse events, critical care, and hematology ward stay. Data were costed using 2011 to 2012 UK unit costs and converted into US$. Sensitivity analyses were performed on uncertain cost variables. RESULTS Across the whole trial no prophylaxis saved costs compared to prophylaxis: -$1760 per patient (95% confidence interval [CI], -$3250 to -$249; p < 0.05). For autoHSCT patients there was no cost difference between arms: -$110 per patient (95% CI, -$1648 to $1565; p = 0.89). For chemo/alloHSCT patients no prophylaxis cost significantly less than prophylaxis: -$5686 per patient (95% CI, -$8580 to -$2853; p < 0.01). The cost impact of no prophylaxis differed significantly between subgroups. Sensitivity analyses varying daily treatment costs and ward stay for chemo/alloHSCT patients reduced cost differences to -$941 per patient (p = 0.21) across the whole trial and -$2927 per patient (p < 0.05) in chemo/alloHSCT subgroup. CONCLUSIONS It is unclear whether a no-prophylaxis policy saves costs overall. In chemo/alloHSCT patients cost savings are apparent but their magnitude is sensitive to a number of variables and must be considered alongside clinical data showing increased bleeding rates. In autoHSCT patients savings generated through lower PLT use in no-prophylaxis arm were offset by cost increases elsewhere, for example, additional RBC transfusions. Cost-effectiveness analyses of alternative PLT transfusion policies simultaneously considering costs and patient-reported outcomes are warranted.
Collapse
Affiliation(s)
- Helen E Campbell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Estcourt LJ, Stanworth SJ, Harrison P, Powter G, McClure M, Murphy MF, Mumford AD. Prospective observational cohort study of the association between thromboelastometry, coagulation and platelet parameters and bleeding in patients with haematological malignancies- The ATHENA study. Br J Haematol 2014; 166:581-91. [DOI: 10.1111/bjh.12928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Lise J. Estcourt
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Simon J. Stanworth
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Paul Harrison
- School of Immunity and Infection; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | | | - Marianne McClure
- Haematology Department; University of Oxford Hospitals NHS Trust; Oxford UK
| | - Michael F. Murphy
- NHS Blood and Transplant; Oxford UK
- Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Andrew D. Mumford
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| |
Collapse
|
15
|
Stanworth SJ, Estcourt LJ, Llewelyn CA, Murphy MF, Wood EM. Impact of prophylactic platelet transfusions on bleeding events in patients with hematologic malignancies: a subgroup analysis of a randomized trial (CME). Transfusion 2014; 54:2385-93. [DOI: 10.1111/trf.12646] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Simon J. Stanworth
- NHS Blood and Transplant/Oxford University Hospitals NHS Trust; John Radcliffe Hospital; Oxford United Kingdom
- Radcliffe Department of Medicine; University of Oxford; Oxford United Kingdom
- NHSBT/MRC Clinical Studies Unit; NHS Blood and Transplant; Cambridge United Kingdom
| | - Lise J. Estcourt
- NHS Blood and Transplant/Oxford University Hospitals NHS Trust; John Radcliffe Hospital; Oxford United Kingdom
- Radcliffe Department of Medicine; University of Oxford; Oxford United Kingdom
- NHSBT/MRC Clinical Studies Unit; NHS Blood and Transplant; Cambridge United Kingdom
| | - Charlotte A. Llewelyn
- NHS Blood and Transplant/Oxford University Hospitals NHS Trust; John Radcliffe Hospital; Oxford United Kingdom
- Radcliffe Department of Medicine; University of Oxford; Oxford United Kingdom
- NHSBT/MRC Clinical Studies Unit; NHS Blood and Transplant; Cambridge United Kingdom
| | - Michael F. Murphy
- NHS Blood and Transplant/Oxford University Hospitals NHS Trust; John Radcliffe Hospital; Oxford United Kingdom
- Radcliffe Department of Medicine; University of Oxford; Oxford United Kingdom
- NHSBT/MRC Clinical Studies Unit; NHS Blood and Transplant; Cambridge United Kingdom
| | - Erica M. Wood
- Transfusion Research Unit; Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Australia
| | | |
Collapse
|
16
|
Webert KE, Alam AQ, Chargé SB, Sheffield WP. Platelet Utilization: A Canadian Blood Services Research and Development Symposium. Transfus Med Rev 2014; 28:84-97. [DOI: 10.1016/j.tmrv.2014.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/24/2023]
|
17
|
Estcourt LJ, Stanworth S, Doree C, Trivella M, Hopewell S, Murphy MF, Tinmouth A. Different doses of prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2014:CD010984. [PMID: 25722652 PMCID: PMC4338578 DOI: 10.1002/14651858.cd010984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine whether different doses of prophylactic platelet transfusions (platelet transfusions given to prevent bleeding) affect their efficacy and safety in preventing bleeding in patients with haematological disorders after chemotherapy with or without stem cell transplantation.
Collapse
Affiliation(s)
- Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Simon Stanworth
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | | | - Sally Hopewell
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | - Alan Tinmouth
- Medicine (hematology) and Pathology Centre for Transfusion Research, The Ottawa Health Research Institute and the University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Estcourt LJ, Crighton GL, Wood EM, Stanworth S, Trivella M, Doree C, Tinmouth A, Murphy MF. A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2014:CD010981. [PMID: 25722649 PMCID: PMC4338539 DOI: 10.1002/14651858.cd010981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine whether a therapeutic-only platelet transfusion policy (platelet transfusions given when patient bleeds) is as effective and safe as a prophylactic platelet transfusion policy (platelet transfusions given to prevent bleeding usually when the platelet count falls below a given trigger level) in patients with haematological disorders undergoing myelosuppressive chemotherapy or stem cell transplantation.
Collapse
Affiliation(s)
- Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Gemma L Crighton
- Clinical Haematology, Royal Children’ s Hospital Melbourne, Melbourne, Australia
| | - Erica M Wood
- Department of Clinical Haematology, Monash University, Melbourne, Australia
| | - Simon Stanworth
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | | | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Alan Tinmouth
- Medicine (hematology) and Pathology Centre for Transfusion Research, The Ottawa Health Research Institute and the University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
19
|
Estcourt LJ, Stanworth S, Doree C, Trivella M, Hopewell S, Murphy MF, Tinmouth A. Comparison of different platelet count thresholds to guide administration of prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation. Cochrane Database Syst Rev 2014:CD010983. [PMID: 25722651 PMCID: PMC4338576 DOI: 10.1002/14651858.cd010983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the protocol for a review and there is no abstract. The objectives are as follows: To determine whether different platelet transfusion thresholds for administration of prophylactic platelet transfusions (platelet transfusions given to prevent bleeding) affect the efficacy and safety of prophylactic platelet transfusions in preventing bleeding in patients with haematological disorders after chemotherapy with or without stem cell transplantation.
Collapse
Affiliation(s)
- Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Simon Stanworth
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | | | - Sally Hopewell
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | - Alan Tinmouth
- Medicine (hematology) and Pathology Centre for Transfusion Research, The Ottawa Health Research Institute and the University of Ottawa, Ottawa, Canada
| |
Collapse
|
20
|
|
21
|
Stanworth SJ, Estcourt LJ, Powter G, Kahan BC, Dyer C, Choo L, Bakrania L, Llewelyn C, Littlewood T, Soutar R, Norfolk D, Copplestone A, Smith N, Kerr P, Jones G, Raj K, Westerman DA, Szer J, Jackson N, Bardy PG, Plews D, Lyons S, Bielby L, Wood EM, Murphy MF. A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N Engl J Med 2013; 368:1771-80. [PMID: 23656642 DOI: 10.1056/nejmoa1212772] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The effectiveness of platelet transfusions to prevent bleeding in patients with hematologic cancers remains unclear. This trial assessed whether a policy of not giving prophylactic platelet transfusions was as effective and safe as a policy of providing prophylaxis. METHODS We conducted this randomized, open-label, noninferiority trial at 14 centers in the United Kingdom and Australia. Patients were randomly assigned to receive, or not to receive, prophylactic platelet transfusions when morning platelet counts were less than 10×10(9) per liter. Eligible patients were persons 16 years of age or older who were receiving chemotherapy or undergoing stem-cell transplantation and who had or were expected to have thrombocytopenia. The primary end point was bleeding of World Health Organization (WHO) grade 2, 3, or 4 up to 30 days after randomization. RESULTS A total of 600 patients (301 in the no-prophylaxis group and 299 in the prophylaxis group) underwent randomization between 2006 and 2011. Bleeding of WHO grade 2, 3, or 4 occurred in 151 of 300 patients (50%) in the no-prophylaxis group, as compared with 128 of 298 (43%) in the prophylaxis group (adjusted difference in proportions, 8.4 percentage points; 90% confidence interval, 1.7 to 15.2; P=0.06 for noninferiority). Patients in the no-prophylaxis group had more days with bleeding and a shorter time to the first bleeding episode than did patients in the prophylaxis group. Platelet use was markedly reduced in the no-prophylaxis group. A prespecified subgroup analysis identified similar rates of bleeding in the two study groups among patients undergoing autologous stem-cell transplantation. CONCLUSIONS The results of our study support the need for the continued use of prophylaxis with platelet transfusion and show the benefit of such prophylaxis for reducing bleeding, as compared with no prophylaxis. A significant number of patients had bleeding despite prophylaxis. (Funded by the National Health Service Blood and Transplant Research and Development Committee and the Australian Red Cross Blood Service; TOPPS Controlled-Trials.com number, ISRCTN08758735.).
Collapse
Affiliation(s)
- Simon J Stanworth
- National Health Service (NHS) Blood and Transplant, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, and Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Estcourt LJ, Heddle N, Kaufman R, McCullough J, Murphy MF, Slichter S, Wood EM, Stanworth SJ. The challenges of measuring bleeding outcomes in clinical trials of platelet transfusions. Transfusion 2013; 53:1531-43. [DOI: 10.1111/trf.12058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022]
|
23
|
Rioux-Massé B, Laroche V, Bowman RJ, Lindgren BR, Cohn CS, Pulkrabek SM, McCullough J. The influence of bleeding on trigger changes for platelet transfusion in patients with chemotherapy-induced thrombocytopenia. Transfusion 2012; 53:306-14. [PMID: 22670810 DOI: 10.1111/j.1537-2995.2012.03727.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND For patients with thrombocytopenia without bleeding risk factors, a platelet transfusion trigger of 10 × 10(9) /L is recommended. No studies have evaluated the clinicians' decision-making process leading to trigger changes. STUDY DESIGN AND METHODS We report on the evaluation of trigger changes and the relation with bleeding. Eighty patients previously enrolled in the SPRINT trial represent the patient population for the current analysis. RESULTS Seventy-four patients had a starting trigger of 10 × 10(9) /L. Only a minority of patients treated with chemotherapy alone (3/12, 25%) and autologous transplant (6/15, 40%) had a change in their trigger in contrast to the majority of allogeneic transplant (37/47, 79%; p = 0.001 and p = 0.009, respectively, when compared to allogeneic transplant group). Bleeding was the main reason reported by clinicians for a trigger change, but the occurrence of significant bleeding (Grade 2-4) was similar in patients with or without a trigger change (51 and 54%, p = 1.00). Clinicians were influenced by the bleeding system: grade 1 mucocutaneous bleeding leading to a trigger change was overrepresented (71% of cases), as was grade 2 genitourinary bleeding not leading to a trigger change (57% of cases). CONCLUSION A universal trigger of 10 × 10(9) /L may not be maintained in a diverse population of patients with their respective bleeding risk factors. Because the trigger is changed often, it may not be as effective as previously believed.
Collapse
Affiliation(s)
- Benjamin Rioux-Massé
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Institute for Engineering in Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Estcourt L, Stanworth S, Doree C, Hopewell S, Murphy MF, Tinmouth A, Heddle N. Prophylactic platelet transfusion for prevention of bleeding in patients with haematological disorders after chemotherapy and stem cell transplantation. Cochrane Database Syst Rev 2012:CD004269. [PMID: 22592695 DOI: 10.1002/14651858.cd004269.pub3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Platelet transfusions are used in modern clinical practice to prevent and treat bleeding in thrombocytopenic patients with bone marrow failure. Although considerable advances have been made in platelet transfusion therapy in the last 40 years, some areas continue to provoke debate especially concerning the use of prophylactic platelet transfusions for the prevention of thrombocytopenic bleeding. OBJECTIVES To determine the most effective use of platelet transfusion for the prevention of bleeding in patients with haematological disorders undergoing chemotherapy or stem cell transplantation. SEARCH METHODS This is an update of a Cochrane review first published in 2004. We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL Issue 4, 2011), MEDLINE (1950 to Nov 2011), EMBASE (1980 to Nov 2011) and CINAHL (1982 to Nov 2011), using adaptations of the Cochrane RCT search filter, the UKBTS/SRI Transfusion Evidence Library, and ongoing trial databases to 10 November 2011. SELECTION CRITERIA RCTs involving transfusions of platelet concentrates, prepared either from individual units of whole blood or by apheresis, and given to prevent bleeding in patients with haematological disorders. Four different types of prophylactic platelet transfusion trial were included. DATA COLLECTION AND ANALYSIS In the original review one author initially screened all electronically derived citations and abstracts of papers, identified by the review search strategy, for relevancy. Two authors performed this task in the updated review. Two authors independently assessed the full text of all potentially relevant trials for eligibility. Two authors completed data extraction independently. We requested missing data from the original investigators as appropriate. MAIN RESULTS There were 18 trials that were eligible for inclusion, five of these were still ongoing.Thirteen completed published trials (2331 participants) were included for analysis in the review. The original review contained nine trials (718 participants). This updated review includes six new trials (1818 participants).Two trials (205 participants) in the original review are now excluded because fewer than 80% of participants had a haematological disorder.The four different types of prophylactic platelet transfusion trial, that were the focus of this review, were included within these thirteen trials.Three trials compared prophylactic platelet transfusions versus therapeutic-only platelet transfusions. There was no statistical difference between the number of participants with clinically significant bleeding in the therapeutic and prophylactic arms but the confidence interval was wide (RR 1.66; 95% CI 0.9 to 3.04).The time taken for a clinically significant bleed to occur was longer in the prophylactic platelet transfusion arm. There was a clear reduction in platelet transfusion usage in the therapeutic arm. There was no statistical difference between the number of participants in the therapeutic and prophylactic arms with platelet refractoriness, the only adverse event reported.Three trials compared different platelet count thresholds to trigger administration of prophylactic platelet transfusions. No statistical difference was seen in the number of participants with clinically significant bleeding (RR 1.35; 95% CI 0.95 to 1.9), however, this type of bleeding occurred on fewer days in the group of patients transfused at a higher platelet count threshold (RR 1.72; 95% CI 1.33 to 2.22).The lack of a difference seen for the number of participants with clinically significant bleeding may be due to the studies, in combination, having insufficient power to demonstrate a difference, or due to masking of the effect by a higher number of protocol violations in the groups of patients with a lower platelet count threshold. Using a lower platelet count threshold led to a significant reduction in the number of platelet transfusions used. There were no statistical differences in the number of adverse events reported between the two groups.Six trials compared different doses of prophylactic platelet transfusions. There was no evidence to suggest that using a lower platelet transfusion dose increased: the number of participants with clinically significant (WHO grade 2 or above) (RR 1.02; 95% CI 0.93 to 1.11), or life-threatening (WHO grade 4) bleeding (RR 1.87; 95% CI 0.86 to 4.08). A higher platelet transfusion dose led to a reduction in the number of platelet transfusion episodes, but an increase in total platelet utilisation. Only one adverse event, wheezing after transfusion, had a significantly higher incidence when standard and high dose transfusions were compared but this difference was not seen when low dose and high dose transfusions were compared. It is therefore likely to be a type I error (false positive).One small trial compared prophylactic platelet transfusions versus platelet-poor plasma. The risk of a significant bleed was decreased in the prophylactic platelet transfusion arm (RR 0.47; 95% CI 0.23 to 0.95) and this was statistically significant.All studies had threats to validity; the majority of these were due to methodology of the studies not being described in adequate detail.Although it was not the main focus of the review, it was interesting to note that in one of the pre-specified sub-group analyses (treatment type) two studies showed that patients receiving an autologous transplant have a lower risk of bleeding than patients receiving intensive chemotherapy or an allogeneic transplant (RR 0.73, 95% CI 0.65 to 0.82). AUTHORS' CONCLUSIONS These conclusions refer to the four different types of platelet transfusion trial separately. Firstly, there is no evidence that a prophylactic platelet transfusion policy prevents bleeding. Two large trials comparing a therapeutic versus prophylactic platelet transfusion strategy, that have not yet been published, should provide important new data on this comparison. Secondly, there is no evidence, at the moment, to suggest a change from the current practice of using a platelet count of 10 x 10(9)/L. However, the evidence for a platelet count threshold of 10 x 10(9)/L being equivalent to 20 x 10(9)/L is not as definitive as it would first appear and further research is required. Thirdly, platelet dose does not affect the number of patients with significant bleeding, but whether it affects number of days each patient bleeds for is as yet undetermined. There is no evidence that platelet dose affects the incidence of WHO grade 4 bleeding.Prophylactic platelet transfusions were more effective than platelet-poor plasma at preventing bleeding.
Collapse
Affiliation(s)
- Lise Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Vamvakas EC. Assessment of haemostasis in platelet transfusion clinical trials with differential follow-up. Vox Sang 2012; 103:180-1. [DOI: 10.1111/j.1423-0410.2012.01594.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
New thoughts on the correct dosing of prophylactic platelet transfusions to prevent bleeding. Curr Opin Hematol 2012; 18:427-35. [PMID: 21946073 DOI: 10.1097/moh.0b013e32834babf4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Recent studies have evaluated the effects of platelet dose on hemostasis. RECENT FINDINGS As long as a critical level of 5000 platelets/μl is maintained, platelet counts do not affect bleeding. The risk of WHO grade 2 or greater bleeding was 25% on days with morning platelet counts of less than 5000/μl and was 17% at platelet counts between 6000 and 80 000/μl (P < 0.001). Therefore, it is not surprising that platelet doses of half to twice the usual dose of 2.2 × 10(11) platelets/transfusion/body surface area (BSA) do not affect any bleeding grade. However, the risk of grade 2 or greater bleeding is higher in patients receiving an allogeneic hematopoietic stem cell transplant (HSCT, 79%) versus those receiving chemotherapy for hematologic malignancies (73%) or those receiving an autologous HSCT (57%) (P < 0.001 for the latter versus the first two groups). In contrast, in children under 18, the risk of bleeding was higher in all treatment groups than in adults, particularly for children receiving autologous HSCT (93 to 83% based on increasing patient age). However, for none of these treatment categories did platelet dose affect bleeding risk. SUMMARY Platelet doses in ranges between half to twice the usual dose of 2.2 × 10(11) platelets/transfusion/BSA have no affect on WHO bleeding grades.
Collapse
|
27
|
Kurukularatne C, Dimatatac F, Teo DLT, Lye DC, Leo YS. When Less is More: Can We Abandon Prophylactic Platelet Transfusion in Dengue Fever? ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2011. [DOI: 10.47102/annals-acadmedsg.v40n12p539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dengue fever (DF) has several hematological manifestations including thrombocytopenia and increased bleeding risk. Prophylactic platelet transfusion—in the absence of major bleeding—is utilized in DF with thrombocytopenia with the intention of preventing hemorrhagic complications. However, prophylactic platelet transfusion in DF is neither standardized nor supported by clinical evidence. We conclude that risks, costs and poor resource utilization associated with prophylactic platelet transfusion in DF far outweigh any potential hematological benefit, and as such, should not constitute routine clinical practice.
Key words: Thrombocytopenia, Preventitive, Arbovirus, Bleeding, Hemorrhage
Collapse
Affiliation(s)
| | | | - Diana LT Teo
- Blood Services Group, Health Sciences Authority, Singapore
| | | | | |
Collapse
|
28
|
Butler CE, Dickens EL. Transfusion tomorrow: Royal College of Pathologists, November 2010. Transfus Med 2011; 21:224-30. [PMID: 21733005 DOI: 10.1111/j.1365-3148.2011.01091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- C E Butler
- Department of Haematology, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
29
|
Psaila B, Bussel JB, Frelinger AL, Babula B, Linden MD, Li Y, Barnard MR, Tate C, Feldman EJ, Michelson AD. Differences in platelet function in patients with acute myeloid leukemia and myelodysplasia compared to equally thrombocytopenic patients with immune thrombocytopenia. J Thromb Haemost 2011; 9:2302-10. [PMID: 21920014 PMCID: PMC3210015 DOI: 10.1111/j.1538-7836.2011.04506.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Severe thrombocytopenia is a major risk factor for hemorrhage, but platelet function and bleeding risk at low platelet counts are poorly understood, because of the limitations of platelet function testing at very low platelet counts. OBJECTIVES To examine and compare platelet function in severely thrombocytopenic patients with acute myeloid leukemia (AML) or myelodysplasia (MDS) with that in patients with immune thrombocytopenia (ITP). METHODS Whole blood flow cytometric measurement of platelet activation and platelet reactivity to agonists was correlated with the immature platelet fraction (IPF) and bleeding symptoms. RESULTS Patients with AML/MDS had smaller platelets, lower IPF and substantially lower platelet surface expression of activated glycoprotein (GP)IIb-IIIa and GPIb, both with and without addition of ex vivo ADP or thrombin receptor-activating peptide, than patients with ITP. In both ITP and AML/MDS patients, increased platelet surface GPIb on circulating platelets and expression of activated GPIIb-IIIa and GPIb on ex vivo activated platelets correlated with a higher IPF. Whereas platelet reactivity was higher for AML/MDS patients with bleeding than for those with no bleeding, platelet reactivity was lower for ITP patients with bleeding than for those with no bleeding. CONCLUSIONS AML/MDS patients have lower in vivo platelet activation and ex vivo platelet reactivity than patients with ITP. The proportion of newly produced platelets correlates with the expression of platelet surface markers of activation. These differences might contribute to differences in bleeding tendency between AML/MDS and ITP patients. This study is the first to define differences in platelet function between AML/MDS patients and ITP patients with equivalent degrees of thrombocytopenia.
Collapse
Affiliation(s)
- Bethan Psaila
- Platelet Disorders Center, Division of Pediatric Hematology-Oncology, Weill-Cornell Medical College, New York, NY, U.S.A
- Department of Haematology, Imperial College School of Medicine, London, U.K
| | - James B. Bussel
- Platelet Disorders Center, Division of Pediatric Hematology-Oncology, Weill-Cornell Medical College, New York, NY, U.S.A
| | - Andrew L. Frelinger
- Center for Platelet Function Studies, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Center for Platelet Research Studies, Division of Hematology/Oncology, Children’s Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, U.S.A
| | - Bracken Babula
- Platelet Disorders Center, Division of Pediatric Hematology-Oncology, Weill-Cornell Medical College, New York, NY, U.S.A
| | - Matthew D. Linden
- Center for Platelet Function Studies, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, U.S.A
| | - Youfu Li
- Center for Platelet Function Studies, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, U.S.A
| | - Marc R. Barnard
- Center for Platelet Function Studies, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Center for Platelet Research Studies, Division of Hematology/Oncology, Children’s Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, U.S.A
| | - Chinara Tate
- Platelet Disorders Center, Division of Pediatric Hematology-Oncology, Weill-Cornell Medical College, New York, NY, U.S.A
| | - Eric J. Feldman
- Division of Hematology and Medical Oncology, Weill-Cornell Medical College, New York, NY, U.S.A
| | - Alan D. Michelson
- Center for Platelet Function Studies, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, U.S.A
- Center for Platelet Research Studies, Division of Hematology/Oncology, Children’s Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, U.S.A
| |
Collapse
|
30
|
Vamvakas EC. Meta-analysis of the studies of bleeding complications of platelets pathogen-reduced with the Intercept system. Vox Sang 2011; 102:302-16. [PMID: 21957897 DOI: 10.1111/j.1423-0410.2011.01555.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The eligibility criteria of a previously reported meta-analysis (Transfusion 2011;51:1058-1071) of randomized controlled trials (RCTs) of pathogen reduction of platelets in patients with hypoproliferative thrombocytopenia were modified to examine the impact on the findings of: (1) inclusion of a (previously excluded) RCT; (2) restriction of eligibility to RCTs of the Intercept (amotosalen-HCl/ultraviolet-A-light) system; and (3) differences in the methods used to assess bleeding complications. MATERIALS AND METHODS Five RCTs comparing the risk of all, clinically significant (grades 2 through 4) and/or severe (grades 3 and 4) bleeding complications between recipients of platelets treated with Intercept vs. standard unmanipulated platelets were included. Odds ratios (ORs) of bleeding complications of similar severity recorded during similar periods of observation were calculated across all studies and across homogeneous subsets of studies by random-effects methods. RESULTS Treatment with Intercept increased all bleeding complications when four RCTs meeting the eligibility criteria of the previous meta-analysis were integrated, but not across all the five currently available studies [summary OR=1·24; 95% confidence interval (CI), 0·79-1·93]. Clinically significant bleeding complications increased when the results of the SPRINT RCT were based on the expanded safety analysis (summary OR=1·52; 95% CI, 1·09-2·12)--but not the initial report (summary OR=1·30; 95% CI, 0·54-3·14)--of that study. CONCLUSIONS Treatment with Intercept may increase the risk of all and clinically significant (albeit not severe) bleeding complications in RCTs maintaining a platelet count of ≥10×10(9) or ≥20×10(9)/l through increased platelet transfusions.
Collapse
Affiliation(s)
- E C Vamvakas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
31
|
Abstract
Although neonatal thrombocytopenia (platelet count < 150×10(9) /l) is a common finding in hospital practice, a careful clinical history and examination of the blood film is often sufficient to establish the diagnosis and guide management without the need for further investigations. In preterm neonates, early-onset thrombocytopenia (<72h) is usually secondary to antenatal causes, has a characteristic pattern and resolves without complications or the need for treatment. By contrast, late-onset thrombocytopenia in preterm neonates (>72h) is nearly always due to post-natally acquired bacterial infection and/or necrotizing enterocolitis, which rapidly leads to severe thrombocytopenia (platelet count<50×10(9) /l). Thrombocytopenia is much less common in term neonates and the most important cause is neonatal alloimmune thrombocytopenia (NAIT), which confers a high risk of perinatal intracranial haemorrhage and long-term neurological disability. Prompt diagnosis and transfusion of human platelet antigen-compatible platelets is key to the successful management of NAIT. Recent studies suggest that more than half of neonates with severe thrombocytopenia receive platelet transfusion(s) based on consensus national or local guidelines despite little evidence of benefit. The most pressing problem in management of neonatal thrombocytopenia is identification of safe, effective platelet transfusion therapy and controlled trials are urgently needed.
Collapse
Affiliation(s)
- Subarna Chakravorty
- Centre for Haematology, Imperial College London, London Department of Paediatrics, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | |
Collapse
|
32
|
Andreu G. [Pathogen reduction for platelets: available techniques and recent developments]. Transfus Clin Biol 2011; 18:444-62. [PMID: 21724440 DOI: 10.1016/j.tracli.2011.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The will to reach for blood components a microbiological safety comparable to that of plasma-derived drugs led to the development of numerous pathogen reduction research programs for red blood cells and\or platelets in the 1990s. A consensus conference organized in 2007 allowed to define the main steps and precautions to be taken for the implementation of these processes. In the specific case of platelet concentrates, three processes stay this day in the run, even if they are not at the same development stage. A process using ultraviolet C only is at the stage of preclinical studies. The Mirasol® process, based on the activation of riboflavin by exposure to ultraviolet A and ultraviolet B is CE marked (class IIb), and a clinical study was published in 2010. The Intercept® process, involving the activation of a psoralen molecule by exposure to ultraviolet A, is CE marked (class III) since 2002, and has been licensed in France since 2005, in Germany since 2005 and in Switzerland since 2010. At least 12 clinical studies have been published. In regard to this last pathogen reduction process, the medical and scientific documentation, from in vitro investigations to post-marketing observational studies, is much more developed than the corresponding documentation of some innovative processes at the time of their generalization, such as the SAG-mannitol solution for red cell concentrates in 1979, leukoreduction filters for platelets and red cells concentrates in the 1990s, the solvent detergent therapeutic plasma in 1992 or the methylene blue therapeutic plasma in 2006.
Collapse
Affiliation(s)
- G Andreu
- GIP-Institut national de la transfusion sanguine (INTS), Paris, France.
| |
Collapse
|
33
|
Estcourt LJ, Stanworth SJ, Murphy MF. Platelet transfusions for patients with haematological malignancies: who needs them? Br J Haematol 2011; 154:425-40. [DOI: 10.1111/j.1365-2141.2010.08483.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Josephson CD, Glynn SA, Kleinman SH, Blajchman MA. A multidisciplinary "think tank": the top 10 clinical trial opportunities in transfusion medicine from the National Heart, Lung, and Blood Institute-sponsored 2009 state-of-the-science symposium. Transfusion 2011; 51:828-41. [PMID: 21496044 PMCID: PMC5851593 DOI: 10.1111/j.1537-2995.2010.02898.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In September 2009, the National Heart, Lung, and Blood Institute convened the State-of-the-Science Symposium in Transfusion Medicine to identify Phase II and/or III clinical trials that would provide important information to advance transfusion medicine. STUDY DESIGN AND METHODS Seven multidisciplinary subcommittees developed proposals in the following areas: 1) platelet (PLT) product use, 2) neonatal and/or pediatric transfusion practice, 3) surgical transfusion practice, 4) intensive care unit and/or in trauma transfusion practice, 5) plasma and/or cryoprecipitate product use and therapeutic apheresis practice, 6) red blood cell (RBC) product use and/or blood conservation management, and 7) medical transfusion practice or blood donor studies. The committees consisted of transfusion medicine specialists, hematologists, cardiovascular surgeons, anesthesiologists, neonatologists, critical care physicians, and clinical trial methodologists. Proposals were presented and an external panel evaluated and prioritized each concept for scientific merit, clinical importance, and feasibility. RESULTS Twenty-four concepts were presented by the subcommittees. Ten concepts addressed four areas deemed most important: 1) PLT transfusion strategies to prevent and/or mitigate bleeding in neonates and patients with hematologic malignancies, 2) RBC transfusion trigger strategies to improve overall outcomes in different patient populations, 3) evaluation of optimal plasma:PLT:RBC ratios in trauma resuscitation, and 4) pathogen inactivation of PLTs to improve PLT transfusion safety. CONCLUSIONS The proposal themes not only represent inquiries about the indications for transfusion, but also epitomize the lack of consensus when clinical practice lacks a strong evidence base. Ultimately, the purpose of this publication is to provide a "blueprint" of ideas for further development rather than endorse any one specific clinical trial design.
Collapse
|
35
|
Clinical Trial Opportunities in Transfusion Medicine: Proceedings of a National Heart, Lung, and Blood Institute State-of-the-Science Symposium. Transfus Med Rev 2010; 24:259-85. [DOI: 10.1016/j.tmrv.2010.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|