1
|
Ma Y, Shi Y, Wang Y, Wu Q, Cheng B, Li Y, Wang Z, Chai X, Ren A, Li G. Role of Endoplasmic Reticulum Stress in Nano-Selenium Alleviating Prehierarchical Follicular Atresia Induced by Mercury in Laying Hens. Biol Trace Elem Res 2022; 200:5205-5217. [PMID: 35094234 DOI: 10.1007/s12011-021-03084-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yumeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhuosi Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaoying Chai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
2
|
Ma Y, Cheng B, Li Y, Wu Q, Wang Y, Chai X, Ren A. Protective effect of nano-selenium on mercury-induced prehierarchical follicular atresia in laying hens. Poult Sci 2022; 101:102190. [PMID: 36252503 PMCID: PMC9579407 DOI: 10.1016/j.psj.2022.102190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the effect of nano-selenium (nano-Se) in protecting laying hens from mercury (Hg)-induced prehierarchical follicular atresia. Furthermore, the endoplasmic reticulum stress (ERS) was explored to reveal the molecular mechanism. In vivo, 720 Hyline-Brown laying hens were treated with Hg and nano-Se alone or in combination. In vitro, the prehierarchical follicles were treated with Hg, nano-Se and 4-phenyl butyric acid (4-PBA) alone or in combination (Control, 25 μM Hg group, 10 μM nano-Se group, 20 μM nano-Se group, 25 μM Hg + 10 μM nano-Se group, 25 μM Hg + 20 μM nano-Se group, 25 μM Hg + 4-PBA group, and 25 μM Hg + 20 μM nano-Se + 4-PBA group). The GCs were treated with Hg and nano-Se alone or in combination (Control, 15 μM Hg group, 6 μM nano-Se group, 12 μM nano-Se group, 15 μM Hg + 6 μM nano-Se group, 15 μM Hg + 12 μM nano-Se group). The results revealed that dietary Hg significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition prevented these reductions (P < 0.05). Hg exposure significantly induced the accumulation of Hg in PHFs (P < 0.05), prehierarchical follicular atresia (P < 0.05) and apoptosis in PHFs, whereas nano-Se addition significantly prevented these effects (P < 0.05). The levels of sex hormones (P < 0.05) were significantly decreased after Hg exposure in vivo and in vitro, while nano-Se addition prevented the reductions. Furthermore, the RNA-Seq results showed that the key factors of the ERS presented differential expression, including C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) in GCs. Hg exposure significantly increased the key gene expression of endoplasmic reticulum stress in GCs, whereas nano-Se addition prevented the induction of expression of these genes. In addition, the protein levels of PERK, inositol requiring protein 1α (IRE1α) and ATF6 were significantly increased, whereas nano-Se addition prevented the enhancements of protein expression in GCs. In conclusion, this study shows that Hg exposure can reduce induce prehierarchical follicular atresia, whereas nano-Se can prevent these effects. Our results also elucidate a key role of ERS in these protective effects of nano-Se in laying hens.
Collapse
|
3
|
Ma Y, Cheng B, Li Y, Wang Z, Li X, Ren A, Wu Q, Zhu D, Ren B. Protective Effect of Nanoselenium on Renal Oxidative Damage Induced by Mercury in Laying Hens. Biol Trace Elem Res 2022; 200:3785-3797. [PMID: 34642862 DOI: 10.1007/s12011-021-02956-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
This study investigated the effects of dietary nanoselenium (nano-Se) supplementation protecting from renal oxidative damages induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se. A total of 576 40-week-old Hyline-White laying hens were randomly allocated to 4 groups with 6 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet), control + 27.0 mg/kg Hg, control + 5.0 mg/kg nano-Se, and Hg27.0 + 5.0 mg/kg nano-Se. The results revealed that dietary Hg exposure significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se supplementation partially reversed the reductions. Besides, dietary Hg exposure could induce histopathology damages and apoptosis in kidney, whereas nano-Se addition could alleviate these toxicities effectively. After Hg exposure, the activities and gene expressions of superoxidative dismutase (SOD) (P < 0.05), catalase (CAT) (P < 0.01), glutathione reductase (GR) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.05), and glutathione (GSH) content (P < 0.05) were significantly decreased, while the malondialdehyde (MDA) level was significantly increased (P < 0.05) in kidney. However, nano-Se supplementation partially reversed the levels and gene expressions of these antioxidant biomarkers in kidney. Furthermore, dietary Hg exposure significantly increased the gene expressions of PERK (P < 0.05), ATF4 (P < 0.05), CHOP (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), ASK1 (P < 0.05), Caspase-9 (P < 0.05), Caspase-8 (P < 0.05), Caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se supplementation partially reversed these increases of gene expressions. In summary, this study provides evidence that dietary Hg exposure can induce renal oxidative damages, and elucidates an important role of ER stress pathway in nano-Se alleviating renal apoptosis in laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yumeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhuosi Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Doudou Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bingbing Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
4
|
Yang CY, Liu SH, Su CC, Fang KM, Yang TY, Liu JM, Chen YW, Chang KC, Chuang HL, Wu CT, Lee KI, Huang CF. Methylmercury Induces Mitochondria- and Endoplasmic Reticulum Stress-Dependent Pancreatic β-Cell Apoptosis via an Oxidative Stress-Mediated JNK Signaling Pathway. Int J Mol Sci 2022; 23:2858. [PMID: 35270009 PMCID: PMC8910963 DOI: 10.3390/ijms23052858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Methylmercury (MeHg), a long-lasting organic pollutant, is known to induce cytotoxic effects in mammalian cells. Epidemiological studies have suggested that environmental exposure to MeHg is linked to the development of diabetes mellitus (DM). The exact molecular mechanism of MeHg-induced pancreatic β-cell cytotoxicity is still unclear. Here, we found that MeHg (1-4 μM) significantly decreased insulin secretion and cell viability in pancreatic β-cell-derived RIN-m5F cells. A concomitant elevation of mitochondrial-dependent apoptotic events was observed, including decreased mitochondrial membrane potential and increased proapoptotic (Bax, Bak, p53)/antiapoptotic (Bcl-2) mRNA ratio, cytochrome c release, annexin V-Cy3 binding, caspase-3 activity, and caspase-3/-7/-9 activation. Exposure of RIN-m5F cells to MeHg (2 μM) also induced protein expression of endoplasmic reticulum (ER) stress-related signaling molecules, including C/EBP homologous protein (CHOP), X-box binding protein (XBP-1), and caspase-12. Pretreatment with 4-phenylbutyric acid (4-PBA; an ER stress inhibitor) and specific siRNAs for CHOP and XBP-1 significantly inhibited their expression and caspase-3/-12 activation in MeHg-exposed RIN-mF cells. MeHg could also evoke c-Jun N-terminal kinase (JNK) activation and reactive oxygen species (ROS) generation. Antioxidant N-acetylcysteine (NAC; 1mM) or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox; 100 μM) markedly prevented MeH-induced ROS generation and decreased cell viability in RIN-m5F cells. Furthermore, pretreatment of cells with SP600125 (JNK inhibitor; 10 μM) or NAC (1 mM) or transfection with JNK-specific siRNA obviously attenuated the MeHg-induced JNK phosphorylation, CHOP and XBP-1 protein expression, apoptotic events, and insulin secretion dysfunction. NAC significantly inhibited MeHg-activated JNK signaling, but SP600125 could not effectively reduce MeHg-induced ROS generation. Collectively, these findings demonstrate that the induction of ROS-activated JNK signaling is a crucial mechanism underlying MeHg-induced mitochondria- and ER stress-dependent apoptosis, ultimately leading to β-cell death.
Collapse
Affiliation(s)
- Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan;
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Tsung-Yuan Yang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medicine, Institute of Medicine, Chung-Shan Medical University, Taichung 402, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Haw-Ling Chuang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan;
| | - Cheng-Tien Wu
- Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan;
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan;
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| |
Collapse
|
5
|
Ma Y, Shi Y, Zou X, Wu Q, Wang J. Apoptosis induced by mercuric chloride is associated with upregulation of PERK-ATF4-CHOP pathway in chicken embryonic kidney cells. Poult Sci 2020; 99:5802-5813. [PMID: 33142498 PMCID: PMC7647797 DOI: 10.1016/j.psj.2020.06.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mercuric chloride (HgCl2) is a serious environmental toxicant. So far, the toxicity mechanism of HgCl2 in chicken embryonic kidney (CEK) cells is not still fully understood. In this study, the possible molecular mechanisms of HgCl2 on apoptosis of CEK cells were investigated. Results showed that the cell morphology changed, and cell viability was significantly decreased (P < 0.05) after HgCl2 exposure. Besides, apoptosis rate was significantly increased after HgCl2 exposure (P < 0.05). The gene and protein expressions of B-cell lymphoma-2 associate X/B-cell lymphoma-2 (P < 0.05), caspase-3 (P < 0.05), and caspase-9 (P < 0.05) were significantly enhanced by HgCl2 in CEK cells. We also found that intracellular reactive oxygen species level was significantly enhanced (P < 0.05), and the flux of calcium ion to mitochondria occurred after HgCl2 exposure. In terms of molecular mechanisms, the mRNA and protein expressions associated with endoplasmic reticulum (ER) stress were significantly increased after HgCl2 exposure (P < 0.05), including glucose regulated protein 78, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). However, pretreated with 1-μmol/L 4-phenylbutyrate (ER stress inhibitor) alleviated the apoptosis and downregulated PERK-ATF4-CHOP pathway in CEK cells. Taken together, upregulation of PERK-ATF4-CHOP pathway of ER stress induced by HgCl2 is associated with apoptosis in CEK cells.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaoting Zou
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jianping Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Chu JH, Yan YX, Gao PC, Chen XW, Fan RF. Response of selenoproteins gene expression profile to mercuric chloride exposure in chicken kidney. Res Vet Sci 2020; 133:4-11. [PMID: 32916514 DOI: 10.1016/j.rvsc.2020.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
Kidney is a primary target organ for mercuric chloride (HgCl2) toxicity. Selenium (Se) can exert antagonistic effect on heavy metals-induced organ toxicity by regulating the expression of selenoproteins. The objective of this study was to investigate the effect of HgCl2 on the gene expression of selenoproteins in chicken kidney. Sixty male Hyline brown chickens were randomly and evenly divided into two groups. After acclimatization for one week, chickens were provided with the standard diet as well as non-treated water (CON group), and standard diet as well as HgCl2-treated water (250 ppm, HgCl2 group). After seven weeks, kidney tissues were collected to examine the mRNA expression levels of 25 selenoproteins genes and protein expression levels of 4 selenoproteins. Moreover, correlation analysis and principal component analysis (PCA) were used to analyze the expression patterns of 25 selenoproteins. The results showed that HgCl2 exposure significantly decreased the mRNA expression of Glutathione peroxidase 1 (GPX1), GPX4, Thioredoxin reductase 2 (TXNRD2), Iodothyronine deiodinase 1 (DIO1), Methionine-Rsulfoxide reductase 1 (SELR), 15-kDa selenoprotein (SEP15), selenoprotein I (SELI), SELK, SELM, SELN, SELP, SELS, SELT, SELW, and SEPHS2. Meanwhile, HgCl2 exposure significantly increased the mRNA expression of GPX3, TXNRD1, and SELU. Western blot analysis showed that the expression levels of GPX3, TXNRD1, SELK, and SELN were concordant with these mRNA expression levels. Analysis results of selenoproteins expression patterns showed that HgCl2-induced the main disorder expression of selenoproteins with antioxidant activity and endoplasmic reticulum resident selenoproteins. In conclusion, selenoproteins respond to HgCl2 exposure in a characteristic manner in chicken kidney.
Collapse
Affiliation(s)
- Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yu-Xue Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
7
|
Carranza-Torres IE, Viveros-Valdez E, Guzmán-Delgado NE, García-Davis S, Morán-Martínez J, Betancourt-Martínez ND, Balderas-Rentería I, Carranza-Rosales P. Protective effects of phenolic acids on mercury-induced DNA damage in precision-cut kidney slices. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:367-375. [PMID: 31168340 PMCID: PMC6535197 DOI: 10.22038/ijbms.2019.30056.7242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective(s): Precision-cut tissue slices are considered an organotypic 3D model widely used in biomedical research. The comet assay is an important screening test for early genotoxicity risk assessment that is mainly applied on in vitro models. The aim of the present study was to provide a 3D organ system for determination of genotoxicity using a modified method of the comet assay since the stromal components from the original tissue make this technique complicated. Materials and Methods: A modified comet assay technique was validated using precision-cut hamster kidney slices to analyze the antigenotoxic effect of the phenolic compounds caffeic acid, chlorogenic acid, and rosmarinic acid in tissue slices incubated with 15 µM HgCl2. Cytotoxicity of the phenolic compounds was studied in Vero cells, and by morphologic analysis in tissue slices co-incubated with HgCl2 and phenolic compounds. Results: A modification of the comet assay allows obtaining better and clear comet profiles for analysis. Non-cytotoxic concentrations of phenolic acids protected kidney tissue slices against mercury-induced DNA damage, and at the same time, were not nephrotoxic. The highest protection was provided by 3 µg/ml caffeic acid, although 6 µg/ml rosmarinic and 9 µg/ml chlorogenic acids also exhibited protective effects. Conclusion: This is the first time that a modification of the comet assay technique is reported as a tool to visualize the comets from kidney tissue slices in a clear and simple way. The phenolic compounds tested in this study provided protection against mercury-induced genotoxic damage in precision-cut kidney slices.
Collapse
Affiliation(s)
- Irma Edith Carranza-Torres
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México.,Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Nancy Elena Guzmán-Delgado
- División de Investigación, Unidad Médica de Alta Especialidad # 34, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| | - Sara García-Davis
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila. Torreón, Coah. México
| | - Isaías Balderas-Rentería
- Laboratorio de Ingeniería Genética y Genómica, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México
| | - Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, NL. México
| |
Collapse
|
8
|
The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi's syndrome: A comprehensive review. Toxicology 2019; 423:1-31. [PMID: 31095988 DOI: 10.1016/j.tox.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
Fanconi's Syndrome (FS) is a disorder characterized by impaired renal proximal tubule function. FS is associated with a vast defect in the renal reabsorption of several chemicals. Inherited and/or acquired conditions seem to be connected with FS. Several xenobiotics including many pharmaceuticals are capable of inducing FS and nephrotoxicity. Although the pathological state of FS is well described, the exact underlying etiology and cellular mechanism(s) of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and FS are not elucidated. Constant and high dependence of the renal reabsorption process to energy (ATP) makes mitochondrial dysfunction as a pivotal mechanism which could be involved in the pathogenesis of FS. The current review focuses on the footprints of mitochondrial impairment in the etiology of xenobiotics-induced FS. Moreover, the importance of mitochondria protecting agents and their preventive/therapeutic capability against FS is highlighted. The information collected in this review may provide significant clues to new therapeutic interventions aimed at minimizing xenobiotics-induced renal injury, serum electrolytes imbalance, and FS.
Collapse
|
9
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
10
|
Qian Y, Han QH, Wang LC, Guo Q, Wang XD, Tu PF, Zeng KW, Liang H. Total saponins of Albiziae Cortex show anti-hepatoma carcinoma effects by inducing S phase arrest and mitochondrial apoptosis pathway activation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:20-29. [PMID: 29655853 DOI: 10.1016/j.jep.2018.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/01/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Albiziae Cortex (AC) is a widely used traditional medicine in China. It is possess various properties to treat insomnia, traumatic injuries, diuresis, sthenia, and confusion. Total saponins of Albiziae Cortex (TSAC) are the most abundant bioactive components of AC, which were reported to show significant anti-tumor effects in vivo and in vitro. But the underlying mechanism of TSAC remained to be revealed. AIM OF STUDY In this study, we investigated the anti-hepatoma carcinoma effects and the potential mechanism of TSAC in vivo and in vitro. MATERIALS AND METHODS We first purified TSAC from crude extracts and characterized the major bioactive compounds by high performance liquid chromatography (HPLC). Effects of TSAC on viability of various hepatoma carcinoma cell lines were measured by MTT. Inhibition on cell proliferation was analysed using colony formation assay. Cell cycle distribution was revealed by flow cytometry. The apoptotic cells were observed by Hoechst 33258 staining and acridine orange (AO)/ethidium bromide (EB) double staining. Microstructures of apoptotic cells were examined by Transmission electron microscopy (TEM). The mitochondrial membrane potential were determined by JC-1 staining. Western blot was used to investigate the effects of TSAC on apoptosis-related proteins, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax), and S-phase related protein cyclin A, cyclin E and cyclin-dependent kinases 2 (CDK2). Effects on tumor growth was assessed by H22-bearing ICR mice. RESULTS TSAC significantly decreased the hepatoma carcinoma cell viability and inhibited HepG2 cell colony formation in a concentration-dependent manner. We also found that TSAC inhibited HepG2 cell growth via induction of S phase arrest. Further study showed that TSAC significantly down-regulated the expressions of cyclin A, cyclin E and CDK2 in HepG2 cells. Meanwhile, TSAC could effectively induce mitochondria-dependent caspase apoptosis pathway activation. Furthermore, TSAC increased the expression of pro-apoptotic protein Bax and decreased the expression of anti-apoptotic protein Bcl-2. In vivo assay showed that the anti-tumor effects of TSAC were significantly augmented without increasing toxicity in H22-bearing ICR mice. CONCLUSION TSAC could inhibit cell proliferation through inducing S phase arrest and activate cell apoptosis via mitochondria-dependent apoptosis pathway. Therefore, TSAC could be a promising agent in clinical trials for anti-hepatoma carcinoma treatment.
Collapse
Affiliation(s)
- Yi Qian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing-Hua Han
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xu-Da Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
11
|
Ren X, Zhang L, Zhang Y, Mao L, Jiang H. Mitochondria response to camptothecin and hydroxycamptothecine-induced apoptosis in Spodoptera exigua cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:97-104. [PMID: 28755702 DOI: 10.1016/j.pestbp.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Camptothecin (CPT), a natural alkaloid extracted from Camptotheca acuminata Decne, exhibits potential insecticidal activities against various insect species. Our previous studies have showed that CPTs induced apoptosis in Spodoptera exigua Hübner cell line which is mediated preliminarily by the mitochondrial pathway. In this study, changes of mitochondrial morphologic and function were investigated to characterize mitochondrial responses in CPTs induced apoptosis. After incubation IOZCAS-Spex-II cells with CPT and HCPT, mitochondria exhibited obvious changes in the size, morphology and distribution, and ultrastructural alterations characterized by disruption of cristae and membrane. The typical characteristics of apoptosis, including chromatin condensation, nucleus shrivels, and cytoplasmic vacuoles were found. CPT and HCPT induced IOZCAS-Spex-II cell apoptosis accompanied with increased dramatically cytosolic Ca2+ and reduced mitochondrial membrane potential in the dose and time-dependent pattern. Cytochrome c release induced by CPT and HCPT was partially reduced in the presence of CsA, which suggested that the opening of mitochondrial permeability transition pore. Taken together, these results suggested the role of mitochondria in regulation of insect cell apoptosis, which provided the basic information for illustrating the apoptosis pathway in insects and for using reasonably CPTs to control insect pests.
Collapse
Affiliation(s)
- Xiaoshuang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
12
|
Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:55-80. [PMID: 28339347 PMCID: PMC6088787 DOI: 10.1080/10937404.2016.1243501] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to advances in modern medicine, life expectancies are lengthening and leading to an increase in the population of older individuals. The aging process leads to significant alterations in many organ systems, with the kidney being particularly susceptible to age-related changes. Within the kidney, aging leads to ultrastructural changes such as glomerular and tubular hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis, which may compromise renal plasma flow (RPF) and glomerular filtration rate (GFR). These alterations may reduce the functional reserve of the kidneys, making them more susceptible to pathological events when challenged or stressed, such as following exposure to nephrotoxicants. An important and prevalent environmental toxicant that induces nephrotoxic effects is mercury (Hg). Since exposure of normal kidneys to mercuric ions might induce glomerular and tubular injury, aged kidneys, which may not be functioning at full capacity, may be more sensitive to the effects of Hg than normal kidneys. Age-related renal changes and the effects of Hg in the kidney have been characterized separately. However, little is known regarding the influence of nephrotoxicants, such as Hg, on aged kidneys. The purpose of this review was to summarize known findings related to exposure of aged and diseased kidneys to the environmentally relevant nephrotoxicant Hg.
Collapse
Affiliation(s)
- Christy C Bridges
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| | - Rudolfs K Zalups
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| |
Collapse
|
13
|
Schumacher L, Abbott LC. Effects of methyl mercury exposure on pancreatic beta cell development and function. J Appl Toxicol 2016; 37:4-12. [PMID: 27594070 DOI: 10.1002/jat.3381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/31/2022]
Abstract
Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lauren Schumacher
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, TX, 77843-4458, USA
| | - Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, TX, 77843-4458, USA
| |
Collapse
|
14
|
Sahin D, Erdolu CO, Karadenizli S, Kara A, Bayrak G, Beyaz S, Demir B, Ates N. Effects of gestational and lactational exposure to low dose mercury chloride (HgCl2) on behaviour, learning and hearing thresholds in WAG/Rij rats. EXCLI JOURNAL 2016; 15:391-402. [PMID: 27540351 PMCID: PMC4983802 DOI: 10.17179/excli2016-315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/05/2016] [Indexed: 01/18/2023]
Abstract
We investigated the effects of inorganic mercury exposure during gestational/lactational periods on the behaviour, learning and hearing functions in a total of 32, 5-week-old and 5-month-old WAG/Rij rats (equally divided into 4 groups as 5-week and 5-month control mercury exposure groups). We evaluated the rats in terms of locomotor activity (LA), the Morris-water-maze (MWM) test and the passive avoidance (PA) test to quantify learning and memory performance; we used distortion product otoacoustic emission (DPOAE) tests to evaluate hearing ability. There were no significant differences between the 5-week-old rat groups in LA, and we detected a significant difference (p < 0.05) in the HgCl2-treated group in PA, MWM and DPOAE tests compared with the control group. The HgCl2-treated 5-week-old group exhibited worse emotional memory performance in PA, worse spatial learning and memory performances in MWM. There were no significant differences between the groups of 5-month-old rats in LA, MWM or PA. However, the DPOAE tests worsened in the mid- and high-frequency hearing thresholds. The HgCl2-treated 5-month-old group exhibited the most hearing loss of all groups. Our results convey that mercury exposure in young rats may worsen learning and memory performances as well as hearing at high-frequency levels. While there was no statistically significant difference in the behavior and learning tests in adult rats, the DPOAE test produced poorer results. Early detection of effects of mercury exposure provides medicals team with an opportunity to determinate treatment regimens and mitigate ototoxicity. DPOAE test can be used in clinical and experimental research investigating heavy metal ototoxicity.
Collapse
Affiliation(s)
- Deniz Sahin
- Kocaeli University / Medical Faculty, Physiology, Kocaeli, Turkey
| | | | | | - Ahmet Kara
- Sakarya University Training and Research Hospital, Otorhinolaryngology Department, Sakarya,Turkey
| | - Gunce Bayrak
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Sumeyye Beyaz
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Buse Demir
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University / Medical Faculty, Physiology, Kocaeli, Turkey
| |
Collapse
|
15
|
Carneiro MFH, Morais C, Small DM, Vesey DA, Barbosa F, Gobe GC. Thimerosal induces apoptotic and fibrotic changes to kidney epithelial cells in vitro. ENVIRONMENTAL TOXICOLOGY 2015; 30:1423-1433. [PMID: 24942245 DOI: 10.1002/tox.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Thimerosal is an ethyl mercury-containing compound used mainly in vaccines as a bactericide. Although the kidney is a key target for mercury toxicity, thimerosal nephrotoxicity has not received the same attention as other mercury species. The aim of this study was to determine the potential cytotoxic mechanisms of thimerosal on human kidney cells. Human kidney proximal tubular epithelial (HK2) cells were exposed for 24 h to thimerosal (0-2 µM), and assessed for cell viability, apoptosis, and cell proliferation; expression of proteins Bax, nuclear factor-κB subunits, and transforming growth factor-β1 (TGFβ1); mitochondrial health (JC-1, MitoTracker Red CMXRos); and fibronectin levels (enzyme-linked immunosorbent assay). Thimerosal diminished HK2 cell viability and mitosis, promoted apoptosis, impaired the mitochondrial permeability transition, enhanced Bax and TGFβ1 expression, and augmented fibronectin secretion. This is the first report about kidney cell death and pro-fibrotic mechanisms promoted by thimerosal. Collectively, these in vitro results demonstrate that (1) thimerosal induces kidney epithelial cell apoptosis via upregulating Bax and the mitochondrial apoptotic pathway, and (2) thimerosal is a potential pro-fibrotic agent in human kidney cells. We suggest that new evidence on toxicity as well as continuous surveillance in terms of fibrogenesis is required concerning thimerosal use.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Christudas Morais
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Toxicon 2015; 102:14-24. [PMID: 26004494 DOI: 10.1016/j.toxicon.2015.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
Diplodiosis, a neuromycotoxicosis of cattle and sheep grazing on mouldy cobs infected by Stenocarpella maydis, is considered the last major veterinary mycotoxicosis for which the causative mycotoxin is still unknown. The current study was aimed at characterizing the cell death observed in mouse neuroblastoma (Neuro-2a), Chinese hamster ovary (CHO-K1) and Madin-Darby bovine kidney (MDBK) cell lines exposed to the S. maydis metabolites (i.e. diplodiatoxin and dipmatol) by investigating the roles of necrosis and apoptosis. Necrosis was investigated using the lactate dehydrogenase (LDH) leakage and propidium iodide (PI) flow cytometry assays and apoptosis was evaluated using the caspase-3/7 and Annexin V flow cytometry assays. In addition, transmission electron microscopy (TEM) was used to correlate the cell death pathways observed in this study with their typical morphologies. Both diplodiatoxin and dipmatol (750 μM) induced necrosis and caspase-dependent apoptosis in Neuro-2a, CHO-K1 and MDBK cells. Ultrastructurally, the two mycotoxins induced mitochondrial damage, cytoplasmic vacuolation and nuclear fragmentation in the three cell lines. These findings have laid a foundation for future studies aimed at elucidating in detail the mechanism of action of the S. maydis metabolites.
Collapse
|
17
|
Patnaik R, Padhy RN. Cellular and Nuclear Toxicity of HgCl2 to In Vitro Grown Lymphocytes from Human Umbilical Cord Blood. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0503-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Haleem NYA, El-Aasar HM, Zaki SM, Sabry SM, El-Zainy AW. Concomitant protective and therapeutic role of verapamil in chronic mercury induced nephrotoxicity in the adult rat: histological, morphometric and ultrastructural study. Arch Med Sci 2015; 11:199-209. [PMID: 25861308 PMCID: PMC4379360 DOI: 10.5114/aoms.2013.37342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/16/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Mercury intoxication is a widespread problem as mercury is used in the manufacture of thermometers, batteries and electrical switches. It forms one of the most diffusible environmental pollutants. Mercury has a nephrotoxic effect which could occur at low exposure levels. Verapamil could help in the treatment of mercuric toxicity. The aim of the study was to examine the protective and therapeutic effect of concomitant verapamil on chronic mercuric chloride nephrotoxicity. This was done through histological, morphometric and transmission electron microscopic studies. MATERIAL AND METHODS Sixty adult male albino rats were used. The rats were divided into a control group and 4 experimental groups: group I (HgCl2), group II (concomitant HgCl2 and verapamil), group III (HgCl2 withdrawal) and group IV (HgCl2 withdrawal then verapamil treatment). RESULTS Chronic administration of HgCl2 resulted in cortical nephrotoxic effects in the form of glomerular sclerosis, acute tubular necrosis and interstitial inflammatory cellular infiltration which eventually ended in interstitial fibrosis. Concomitant use of verapamil with HgCl2 improved the previous pathological changes partially. The findings in group III were less severe compared to group IV. The persistence of the pathological findings in these groups reflects the irreversible nephrotoxic changes caused by chronic HgCl2 exposure. CONCLUSIONS We concluded that the concomitant administration of verapamil has a much better effect in minimizing the nephrotoxic effect caused by chronic HgCl2 than its therapeutic administration. So, we recommended the prophylactic use of verapamil in suspected cases of chronic mercuric chloride nephrotoxicity to preserve renal function.
Collapse
|
19
|
Vergilio C, Carvalho C, Melo E. Mercury-induced dysfunctions in multiple organelles leading to cell death. Toxicol In Vitro 2015; 29:63-71. [DOI: 10.1016/j.tiv.2014.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 01/26/2023]
|
20
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 2015; 28:231-54. [DOI: 10.1007/s10534-015-9823-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
|
21
|
Cinnabar-induced subchronic renal injury is associated with increased apoptosis in rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:278931. [PMID: 25629042 PMCID: PMC4300031 DOI: 10.1155/2015/278931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day) for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg), renal mercury (RHg), serum creatinine (SCr), and urine kidney injury molecule 1 (KIM-1) were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.
Collapse
|
22
|
Huang JX, Blaskovich MA, Cooper MA. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 2014; 10:1621-35. [DOI: 10.1517/17425255.2014.967681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Vasiliev AD, Golovnev NN. Crystal structure of bis(α,α′-dithio-bis(formamidinium)) bis(μ2-chloro)hexachlorodimercurate(II). RUSS J INORG CHEM+ 2013. [DOI: 10.1134/s0036023613110235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Mello-Carpes PB, Barros W, Borges S, Alves N, Rizzetti D, Peçanha FM, Vassallo DV, Wiggers GA, Izquierdo I. Chronic exposure to low mercury chloride concentration induces object recognition and aversive memories deficits in rats. Int J Dev Neurosci 2013; 31:468-72. [PMID: 23770019 DOI: 10.1016/j.ijdevneu.2013.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022] Open
Abstract
This work examines the effects of chronic exposure to low inorganic mercury (mercury chloride, HgCl(2)) concentration on the recognition and aversive memories. Forty male Wistar rats were divided into 4 groups treated during 30 or 60 days with saline (control) or HgCl(2) doses. After treated the animals were tested considering object recognition and inhibitory avoidance behavioral memory paradigms. Elevated plus maze, open field and tail flick tests were used to assess anxiety, locomotor and exploratory activity and pain thresholds. Only exposure for 60 days to HgCl(2) induced in memory deficits quantified in the object recognition task. In the inhibitory avoidance all the animals exposed to mercury (for 30 or 60 days) presented worst performance than control animals. Our results suggest that chronic exposure to low mercury chloride concentrations impairs memory formation.
Collapse
|
25
|
Chronic exposure to mercuric chloride during gestation affects sensorimotor development and later behaviour in rats. Behav Brain Res 2012; 234:43-50. [DOI: 10.1016/j.bbr.2012.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/15/2012] [Accepted: 06/04/2012] [Indexed: 11/15/2022]
|
26
|
Barygina VV, Aref’eva AS, Zatsepina OV. The role of mercury in the processes of vital activity of the human and mammalian organisms. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363210130037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Redmill PS, McCabe C. Molecular dynamics study of the behavior of selected nanoscale building blocks in a gel-phase lipid bilayer. J Phys Chem B 2010; 114:9165-72. [PMID: 20583770 PMCID: PMC2925108 DOI: 10.1021/jp1039942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cellular membrane functions as a regulating barrier between the intracellular and extracellular regions. For a molecule to reach the interior of the cell from the extracellular fluid, it must diffuse across the membrane, via either active or passive transport. The rigid structure of lipid bilayers, which are a key component of cellular membranes, prohibit simple diffusion of most particles, while vital nutrients are transported to the interior by specific mechanisms, such as ion channels and transport proteins. Although the cellular membrane provides the cell with protection against unwanted toxins that may be in the extracellular medium, some foreign particles can reach the interior of the cell, resulting in irregularities in cellular function. This behavior is particularly noted for permeants with compact molecular structure, suggesting that common nanoscale building blocks, such as fullerenes, may enter into the interior of a cell. To gauge the propensity for such particles to cross the membrane, we have computed the Gibbs free energy of transfer along the axis normal to the bilayer surface for two nanoscale building blocks, C(60) and a hydrogen-terminated polyhedral oligomeric silsequioxane (H-POSS) monomer, in a hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer using molecular dynamics simulations and potential of mean force calculations. The studies show that C(60) has a substantial energetic preference for the soft polymer region of the lipid bilayer system, below the water/bilayer interface, with a transition energy from bulk water of -19.8 kcal/mol. The transition of C(60) from the bulk water to the center of the bilayer, while also energetically favorable, has to overcome a +5.9 kcal/mol energetic barrier in the hydrophobic lipid tail region. The H-POSS simulations indicate an energy minimum at the water-bilayer interface, with an energy of -10.9 kcal/mol; however, a local minimum of -2.7 kcal/mol is also observed in the hydrophobic dense aliphatic region. The energy barrier seen in the hydrophobic core region of the C(60) study is likely due to the significant penalty associated with inserting the relatively large particle into such a dense region. In contrast, whereas H-POSS is found to be subject to an energetic penalty upon insertion into the bilayer, the relatively small size of the H-POSS solute renders this penalty less significant. The energy barrier seen in the soft polymer region for the H-POSS monomer is primarily attributed to the lack of favorable solute-bilayer electrostatic interactions, which are present in the interfacial region, and fewer van der Waals interactions in the soft polymer region than the dense aliphatic region. These results indicate that C(60) may partition into the organic phase of the DPPC/water system, given the favorable free energies in the soft polymer and dense aliphatic regions of the bilayer, and H-POSS is likely to partition near the water-bilayer interface, where the particle has low-energy electrostatic interactions with the polar head groups of the bilayer.
Collapse
Affiliation(s)
- Patrick S. Redmill
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Ahn JI, Baik SY, Ko MJ, Shin HJ, Chung HJ, Jeong HS. Effects of Mercuric Chloride on Gene Expression in NRK-52E Cells. Genomics Inform 2010. [DOI: 10.5808/gi.2010.8.1.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
29
|
Stacchiotti A, Morandini F, Bettoni F, Schena I, Lavazza A, Grigolato PG, Apostoli P, Rezzani R, Aleo MF. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 2009; 264:215-24. [PMID: 19720107 DOI: 10.1016/j.tox.2009.08.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
A close link between stress protein up-regulation and oxidative damage may provide a novel therapeutic tool to counteract nephrotoxicity induced by toxic metals in the human population, mainly in children, of industrialized countries. Here we analysed the time course of the expression of several heat shock proteins, glucose-regulated proteins and metallothioneins in a rat proximal tubular cell line (NRK-52E) exposed to subcytotoxic doses of inorganic mercury and lead. Concomitantly, we used morphological and biochemical methods to evaluate metal-induced cytotoxicity and oxidative damage. In particular, as biochemical indicators of oxidative stress we detected reactive oxygen species (ROS) and nitrogen species (RNS), total glutathione (GSH) and glutathione-S-transferase (GST) activity. Our results clearly demonstrated that mercury increases ROS and RNS levels and the expressions of Hsp25 and inducible Hsp72. These findings are corroborated by evident mitochondrial damage, apoptosis or necrosis. By contrast, lead is unable to up-regulate Hsp72 but enhances Grp78 and activates nuclear Hsp25 translocation. Furthermore, lead causes endoplasmic reticulum (ER) stress, vacuolation and nucleolar segregation. Lastly, both metals stimulate the over-expression of MTs, but with a different time course. In conclusion, in NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury. Indeed, different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Human Anatomy Unit, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Q, Wang Q, Yang X, Shen X, Zhang B. Differential cytotoxic effects of denitroaristolochic acid II and aristolochic acids on renal epithelial cells. Toxicol Lett 2009; 184:5-12. [DOI: 10.1016/j.toxlet.2008.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/06/2008] [Accepted: 10/10/2008] [Indexed: 11/25/2022]
|
31
|
Pereira LO, Bicalho LS, Campos-da-Paz Lopes M, De Sousa TMM, Báo SN, De Fátima Menezes Almeida Santos M, Fonseca MJP. DNA damage and apoptosis induced by Pteridium aquilinum aqueous extract in the oral cell lines HSG and OSCC-3. J Oral Pathol Med 2008; 38:441-7. [DOI: 10.1111/j.1600-0714.2008.00705.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Cambier S, Bénard G, Mesmer-Dudons N, Gonzalez P, Rossignol R, Brèthes D, Bourdineaud JP. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int J Biochem Cell Biol 2008; 41:791-9. [PMID: 18765295 DOI: 10.1016/j.biocel.2008.08.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/29/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The neurotoxic compound methylmercury (MeHg) is a commonly encountered pollutant in the environment, and constitutes a hazard for human health through fish eating. To study the impact of MeHg on mitochondrial structure and function, we contaminated the model fish species Danio rerio with food containing 13 microg of MeHg per gram, an environmentally relevant dose. Mitochondria from contaminated zebrafish muscles presented structural abnormalities under electron microscopy observation. In permeabilized muscle fibers, we observed, a strong inhibition of both state 3 mitochondrial respiration and functionally isolated maximal cytochrome c oxidase (COX) activity after 49 days of MeHg exposure. However, the state 4 respiratory rate remained essentially unchanged. This suggested a defect at the level of ATP synthesis. Accordingly, we measured a dramatic decrease in the rate of ATP release by skinned muscle fibers using either pyruvate and malate or succinate as respiratory substrates. However, the amount and the assembly of the ATP synthase were identical in both control and contaminated muscle mitochondrial fractions. This suggests that MeHg induced a decoupling of mitochondrial oxidative phosphorylation in the skeletal muscle of zebrafish. Western blot analysis showed a 30% decrease of COX subunit IV levels, a 50% increase of ATP synthase subunit alpha, and a 40% increase of the succinate dehydrogenase Fe/S protein subunit in the contaminated muscles. This was confirmed by the analysis of gene expression levels, using RT-PCR. Our study provides a basis for further analysis of the deleterious effect of MeHg on fish health via mitochondrial impairment.
Collapse
Affiliation(s)
- S Cambier
- CNRS, UMR 5805, Ecotoxicologie des Systèmes Aquatiques, Université de Bordeaux 1, Place du Dr Peyneau, 33120 Arcachon, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Fouda AMM, Daba MHY, Dahab GM, Sharaf el-Din OA. Thymoquinone Ameliorates Renal Oxidative Damage and Proliferative Response Induced by Mercuric Chloride in Rats. Basic Clin Pharmacol Toxicol 2008; 103:109-18. [DOI: 10.1111/j.1742-7843.2008.00260.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
de Oliveira Ribeiro CA, Nathalie MD, Gonzalez P, Yannick D, Jean-Paul B, Boudou A, Massabuau JC. Effects of dietary methylmercury on zebrafish skeletal muscle fibres. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:304-309. [PMID: 21783867 DOI: 10.1016/j.etap.2007.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 05/31/2023]
Abstract
Mercury and more specifically methylmercury have been reported as hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. Adult male zebrafish (Danio rerio) were distributed in two groups: a control group (fed with uncontaminated food) and a MeHg-contaminated group (fed with food containing 13.5μgHgg(-1) (dry wt)). Five fish per condition were removed after 7, 21 and 63 days. Bioaccumulation of mercury was determined and muscle samples from control and exposed groups were fixed for histological and ultrastructural studies. In contaminated muscles were observed a decrease of the inter-bundle surface, mitochondria with variable shapes, sizes and cristae disorganization, also decreasing the surface area and inter-bundle surfaces. Indeed, damage in the endoplasmic reticulum cisternae was observed. For statistical evaluation the damages in mitochondria was quantified by image. According to the current results, methylmercury affects the structure of fibre cells of D. rerio after trophic and low dose exposure.
Collapse
Affiliation(s)
- Ciro Alberto de Oliveira Ribeiro
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Parana, CP 19031, CEP:81.531-990, Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Rana SVS. Metals and apoptosis: recent developments. J Trace Elem Med Biol 2008; 22:262-84. [PMID: 19013355 DOI: 10.1016/j.jtemb.2008.08.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/01/2008] [Accepted: 07/11/2008] [Indexed: 12/20/2022]
Abstract
Apoptosis, also known as programmed cell death is a highly regulated and crucial process found in all multicellular organisms. It is not only implicated in regulatory mechanisms of cells, but has been attributed to a number of diseases, i.e. inflammation, malignancy, autoimmunity and neurodegeneration. A variety of toxins can induce apoptosis. Carcinogenic transition metals, viz. cadmium, chromium and nickel promote apoptosis along with DNA base modifications, strand breaks and rearrangements. Generation of reactive oxygen species, accumulation of Ca(2+), upregulation of caspase-3, down regulation of bcl-2, and deficiency of p-53 lead to arsenic-induced apoptosis. In the case of cadmium, metallothionein expression determines the choice between apoptosis and necrosis. Reactive oxygen species (ROS) and p53 contribute in apoptosis caused by chromium. Immuno suppressive mechanisms contribute in lead-induced apoptosis whereas in the case of mercury, p38 mediated caspase activation regulate apoptosis. Nickel kills the cells by apoptotic pathways. Copper induces apoptosis by p53 dependent and independent pathways. Beryllium stimulates the formation of ROS that play a role in Be-induced macrophage apoptosis. Selenium induces apoptosis by producing superoxide that activates p53. Thus, disorders of apoptosis may play a critical role in some of the most debilitating metal-induced afflictions including hepatotoxicity, renal toxicity, neurotoxicity, autoimmunity and carcinogenesis. An understanding of metal-induced apoptosis will be helpful in the development of preventive molecular strategies.
Collapse
Affiliation(s)
- Suresh Vir Singh Rana
- Toxicology Laboratory, Department of Zoology, Ch. Charan Singh University, Meerut, India.
| |
Collapse
|
36
|
Peraza MA, Cromey DW, Carolus B, Carter DE, Gandolfi AJ. Morphological and functional alterations in human proximal tubular cell line induced by low level inorganic arsenic: evidence for targeting of mitochondria and initiated apoptosis. J Appl Toxicol 2007; 26:356-67. [PMID: 16773642 DOI: 10.1002/jat.1149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The kidney is a known target organ for arsenic and is critical for both arsenic biotransformation and elimination. Previous studies have demonstrated that at high doses (ppm) inorganic arsenic is toxic to mitochondria primarily by affecting cellular respiration. However, the effect of inorganic arsenic on mitochondria after low level exposures is not known, particularly in the kidney. Thus the functional and morphological effects of low level inorganic arsenic were investigated in a human proximal tubular cell line, HK-2. Mitochondrial function was assessed at subcytotoxic concentrations of arsenite (< or = 10 microm) by examining the alteration of the mitochondrial membrane potential using MitoTracker Red, a mitochondrion selective dye. In a subset of cells, subcytotoxic arsenite led to mitochondrial membrane depolarization, which could subsequently lead to permeability transition and apoptosis. Subcytotoxic arsenite also induced translocation of phosphatidylserine, indicative of early-stage apoptosis. To confirm whether subcytotoxic arsenite induces cellular and/or mitochondrial morphological alterations consistent with initiated apoptosis, HK-2 cells were evaluated with transmission electron microscopy. Classic morphology of apoptosis was not observed with subcytotoxic arsenite exposures; however, evidence of necrotic changes in the cytoplasmic structure and mitochondrial morphology were apparent. Therefore, based on depolarization of mitochondria and the externalization of phosphatidylserine, HK-2 cells appear to initiate apoptosis following subcytotoxic arsenite insult, but morphological changes indicate that HK-2 cells fail to complete apoptosis and ultimately undergo necrosis. Therefore, subcytotoxic arsenite can be sufficiently toxic to mitochondria that they lose their ability to keep the cell on course for apoptotic cell death.
Collapse
Affiliation(s)
- Marjorie A Peraza
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
38
|
Carranza-Rosales P, Guzmán-Delgado NE, Cruz-Vega DE, Balderas-Rentería I, Gandolfi AJ. DMPS reverts morphologic and mitochondrial damage in OK cells exposed to toxic concentrations of HgCl2. Cell Biol Toxicol 2006; 23:163-76. [PMID: 17131097 DOI: 10.1007/s10565-006-0132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Mercuric chloride (HgCl(2)) is a highly toxic compound, which can cause nephrotoxic damage. In the present study effects of HgCl(2) on mitochondria integrity and energy metabolism, as well as antidotal effects of 2,3-dimercaptopropane-1-sulfonate (DMPS) were investigated in the opossum kidney derived cell line (OK). OK cell monolayers were incubated during 0, 1, 3, 6, and 9 h in serum-free culture medium containing 15 microM HgCl(2), either in the absence or in the presence of 60 microM DMPS in a 1:4 ratio. Intracellular ATP content, MTT reduction, and HSP70/HSP90 induction were studied; confocal, transmission electron microscopy, and light microscopy studies were also performed. For confocal analysis, a mitochondrial selective probe (MitoTracker Red CMXH2Ros) was used. Antioxidant activity of DMPS was also studied by the scavenging of the free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) technique. A decrease of ATP content, an impaired ability to reduce tetrazolium, and dramatic changes on cellular and mitochondrial morphology, and energetic levels were found after either 6 or 9 h of HgCl(2) exposure. Increased expression of HSP90 and HSP70 were also seen. When OK cells were co-incubated with HgCl(2) and DMPS, cellular morphology, viability, intracellular ATP, and mitochondrial membrane potential were partially restored; a protective effect on mitochondrial morphology was also seen. DMPS also showed potent antioxidant activity in vitro. Mitochondrial protection could be the cellular mechanism mediated by DMPS in OK cells exposed to a toxic concentration of HgCl(2).
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- División de Biología Celular y Molecular Centro de Investigación Biomédica del Noreste. IMSS. Administración de Correos No. 4., Apartado Postal 020, Colonia Independencia, Monterrey, NL, CP 64720, México.
| | | | | | | | | |
Collapse
|
39
|
Yole M, Wickstrom M, Blakley B. Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury. Toxicology 2006; 231:40-57. [PMID: 17210217 DOI: 10.1016/j.tox.2006.11.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 10/29/2006] [Accepted: 11/12/2006] [Indexed: 12/14/2022]
Abstract
The effects of 1 min-4 h exposures to four Hg compounds (mercuric chloride [HgCl2], methyl mercuric chloride [CH3HgCl], p-chloromercuribenzoate [p-CMB] and thimerosal [TMS; ethylmercurithiosalicylate]) on cell death, microtubules, actin, CD3 receptor expression, protein tyrosine phosphorylation (PTyr-P) and intracellular calcium ([Ca2+]i) levels were investigated in YAC-1 lymphoma cells using flow cytometry. YOPRO-1 (YP) and propidium iodide (PI) dye uptake indicated all forms of Hg tested were toxic at concentrations ranging from 25.8-48.4 microM, with two distinct patterns of effects. Early apoptosis was prolonged for CH3HgCl- and TMS-treated cells, with more than 50% remaining YP+/PI- after 4h. Both CH3HgCl and TMS induced complete loss of beta-tubulin fluorescence, indicative of microtubule depolymerization and inhibition of tubulin synthesis and/or beta-tubulin degradation, while F-actin fluorescence diminished to a lesser degree and only after loss beta-tubulin. CH3HgCl and TMS induced an almost immediate two-fold increase in CD3 fluorescence, with levels returning to baseline within minutes. With continued exposure, CD3 fluorescence was reduced to approximately 50% of baseline values. Both compounds also increased PTyr-P two- to three-fold immediately, with levels returning to baseline at 4h. Similarly, two- to three-fold increases in [Ca2+]i were noted after 1 min exposure. [Ca2+]i increased progressively, reaching levels five- to eight-fold greater than control values. In contrast, dye uptake was delayed with HgCl2 and p-CMB, although cell death proceeded rapidly, with almost all non-viable cells being late apoptotic (YP+/PI+) by 4h. p-CMB produced early reductions in F-actin, and after 4h, complete loss of F-actin with only partial reduction of total beta-tubulin was seen with both p-CMB and HgCl2. HgCl2 reduced CD3 expression and PTyr-P slightly within minutes, while p-CMB produced similar effects on CD3 only at 4h, at which time PTyr-P was increased two- to three-fold. Both compounds increased [Ca2+]i within minutes, though levels remained under twice the baseline concentration after 15 min exposure. With continued exposure, [Ca2+]i increased to levels two- to five-fold greater than control values. These findings indicate the two groups of Hg compounds may induce cell death by distinct pathways, reflecting interactions with different cellular targets leading to cell death.
Collapse
Affiliation(s)
- Margaret Yole
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon SK S7N 5B4, Canada.
| | | | | |
Collapse
|
40
|
Stacchiotti A, Borsani E, Ricci F, Lavazza A, Rezzani R, Bianchi R, Rodella LF. Bimoclomol ameliorates mercuric chloride nephrotoxicity through recruitment of stress proteins. Toxicol Lett 2006; 166:168-77. [PMID: 16891066 DOI: 10.1016/j.toxlet.2006.06.644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022]
Abstract
Bimoclomol (BIM), is a stress proteins coinducer, that acts synergistically with a mild stressor to activate cytoprotective stress proteins. BIM has been successfully utilized in animal models for the treatment of various nervous, cardiac and cerebrovascular diseases. Mercuric chloride (HgCl(2)) induces acute renal failure in rats by a single dosage. The present in vivo study was conducted to assess the efficacy of BIM against acute HgCl(2) nephrotoxicity. At different times after BIM and/or HgCl(2) exposure we evaluated renal morphology and the localization/abundance of three stress proteins (HSP72, GRP75, HSP60) by electron microscopy, immunohistochemistry and Western blot analysis. BIM delivery to rats 6h before mercury, ameliorated damage to renal ultrastructure, with recovery of tubular and mitochondrial membranes 24h after mercury treatment. In rats pretreated with BIM prior to HgCl(2) exposure, HSP72 was significantly overexpressed in proximal tubules in a time-dependent manner. In contrast, the amounts of GRP75 and HSP60 after BIM pretreatment were comparable to the group treated with mercury alone, but these stress proteins had translocated to the nuclei at 14 and 24h, respectively. These novel findings suggest that BIM mitigates HgCl(2) nephrotoxicity in rats through the early recruitment of stress proteins in midcortical proximal tubules that are the main renal mercury-targets.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, I 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bettini S, Ciani F, Franceschini V. Recovery of the olfactory receptor neurons in the African Tilapia mariae following exposure to low copper level. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 76:321-8. [PMID: 16309755 DOI: 10.1016/j.aquatox.2005.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 05/05/2023]
Abstract
Low levels of Cu(2+) are known to specifically cause olfactory neuron death in fish olfactory epithelium. This study investigated the morphological changes in the olfactory mucosa of the cichlid Tilapia mariae, after a 4-day exposure to different concentrations of Cu(2+) (20, 40 and 100 microg/l), and the regeneration time-frame, when fish exposed to 20 microg/l were returned to dechlorinated tap water. Light microscopy, combined with Fluoro Jade-B staining, permitted the observation of a dose-dependent damage which became less severe and more circumscribed to receptor cells when Cu(2+) concentration decreased. The regeneration process in the olfactory tissue was examined in fish after 0, 3, and 10 days of recovery in well water. Immunostaining with PCNA showed a massive mitotic activity in the basal region of the mucosa immediately after exposure was terminated. The mitotically produced elements were immature neurons since they expressed the neural growth-associated phosphoprotein GAP-43. After 3 days of recovery the nuclei had already completed their migration to the upper portion of the epithelium and mitotic activity was much less intensive. After 10 days the olfactory tissue did not present differences when compared to the control tissue. These results suggest that after 10 days the regeneration is completed and the integrity of the tissue restored.
Collapse
|
42
|
Bharara MS, Parkin S, Atwood DA. Solution behavior of Hg(II)-cystamine by Uv-Vis and199Hg NMR. MAIN GROUP CHEMISTRY 2005. [DOI: 10.1080/10241220600595450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|